Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
May-2018 Volume 15 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2018 Volume 15 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The potential function of microRNAs as biomarkers and therapeutic targets in multiple myeloma (Review)

  • Authors:
    • Bingying Zhu
    • Shaoqing Ju
    • Haidan Chu
    • Xianjuan Shen
    • Yan Zhang
    • Xi Luo
    • Hui Cong
  • View Affiliations / Copyright

    Affiliations: Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China, Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
    Copyright: © Zhu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 6094-6106
    |
    Published online on: March 2, 2018
       https://doi.org/10.3892/ol.2018.8157
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Multiple myeloma (MM), accounting for ~1% of all types of human cancer and 13% of all hematological malignancies, is characterized by the malignant proliferation of monoclonal plasma cells (PCs) in the bone marrow. MM leads to end stage organ impairment, including bone lesions, renal dysfunction, hypercalcemia and anemia. So far, the specific pathogenesis of MM remains unclear and no early‑stage sensitive biomarker of MM has been well characterized. Furthermore, treating MM is difficult, as the majority of patients eventually relapse or become refractory following treatment using presently available methods. To date, a number of studies have demonstrated that microRNAs (miRNAs) may serve crucial functions in the progression of numerous cancers, including MM. During the tumorigenesis and pathogenesis of MM, there are multiple carcinogenic events that involve the pernicious transformation from normal to malignant PCs. miRNAs, as oncogenes or tumor suppressors, regulate MM progression‑related signaling pathways. In the present review, the up‑to‑date preliminary basic studies and associated clinical works on the underlying mechanisms of aberrant miRNA profiling in MM have been summarized, including an evaluation of its value as a potential biomarker and a novel therapeutic strategy for MM.
View Figures

Figure 1

View References

1 

Rebecca RL, Kimberly KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Durie BGM: Patient Handbook: Multiple Myeloma, Cancer of the Bone Marrow. International Myeloma Foundation; North Hollywood, CA: 2010

3 

Ailawadhi S, Aldoss IT, Yang D, Razavi P, Cozen W, Sher T and Chanan-Khan A: Outcome disparities in multiple myeloma: A SEER-based comparative analysis of ethnic subgroups. Br J Haematol. 158:91–98. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Rollig C, Knop S and Bornhauser M: Multiple myeloma. Lancet. 385:2197–2208. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Zhao Q, Luo F, Ma J and Yu X: Bone metastasis-related MicroRNAs: New targets for treatment. Curr Cancer Drug Targets. 15:716–725. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Rossi M, Tagliaferri P and Tassone P: MicroRNAs in multiple myeloma and related bone disease. Ann Transl Med. 3:3342015.PubMed/NCBI

7 

Rocci A, Hofmeister CC and Pichiorri F: The potential of miRNAs as biomarkers for multiple myeloma. Expert Rev Mol Diagn. 14:947–959. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Bi CL and Chng WJ: miRNA deregulation in multiple myeloma. Chin Med J (Engl). 124:3164–3169. 2011.PubMed/NCBI

9 

Ghobrial IM: Myeloma as a model for the process of metastasis: Implications for therapy. Blood. 120:20–30. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Cottini F and Anderson K: Novel therapeutic targets in multiple myeloma. Clin Adv Hematol Oncol. 13:236–248. 2015.PubMed/NCBI

11 

Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, Zeldenrust SR, Dingli D, Russell SJ, Lust JA, et al: Improved survival in multiple myeloma and the impact of novel therapies. Blood. 111:2516–2520. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Kumar SK, Dimopoulos MA, Kastritis E, Terpos E, Nahi H, Goldschmidt H, Hillengass J, Leleu X, Beksac M, Alsina M, et al: Natural history of relapsed myeloma, refractory to immunomodulatory drugs and proteasome inhibitors: A multicenter IMWG study. Leukemia. 31:2443–2448. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Ahmad N, Haider S, Jagannathan S, Anaissie E and Driscoll JJ: MicroRNA theragnostics for the clinical management of multiple myeloma. Leukemia. 28:732–738. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Kubiczkova L, Kryukov F, Slaby O, Dementyeva E, Jarkovsky J, Nekvindova J, Radova L, Greslikova H, Kuglik P, Vetesnikova E, et al: Circulating serum microRNAs as novel diagnostic and prognostic biomarkers for multiple myeloma and monoclonal gammopathy of undetermined significance. Haematologica. 99:511–518. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Li F, Hao M, Feng X, Zang M, Qin Y, Yi S, Li Z, Xu Y, Zhou L, Sui W, et al: Downregulated miR-33b is a novel predictor associated with disease progression and poor prognosis in multiple myeloma. Leuk Res. 39:793–799. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Shukla GC, Singh J and Barik S: MicroRNAs: Processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol. 3:83–92. 2011.PubMed/NCBI

17 

Zhang Q, Yan W, Bai Y, Xu H, Fu C, Zheng W, Zhu Y and Ma J: Synthetic miR-145 mimic inhibits multiple myeloma cell growth in vitro and in vivo. Oncol Rep. 33:448–456. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Sun Y, Pan J, Mao S and Jin J: IL-17/miR-192/IL-17Rs regulatory feedback loop facilitates multiple myeloma progression. PLoS One. 9:e1146472014. View Article : Google Scholar : PubMed/NCBI

19 

Yang Y, Li F, Saha MN, Abdi J, Qiu L and Chang H: miR-137 and miR-197 induce apoptosis and suppress tumorigenicity by targeting MCL-1 in multiple myeloma. Clin Cancer Res. 21:2399–2411. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Macfarlane LA and Murphy PR: MicroRNA: Biogenesis, function and role in cancer. Curr Genomics. 11:537–561. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Rossi M, Amodio N, Di Martino MT, Tagliaferri P, Tassone P and Cho WC: MicroRNA and multiple myeloma: From laboratory findings to translational therapeutic approaches. Curr Pharm Biotechnol. 15:459–467. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Di Martino MT, Amodio N, Tassone P and Tagliaferri P: Functional analysis of microRNA in multiple myeloma. Methods Mol Biol. 1375:181–194. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Raimondi L, De Luca A, Morelli E, Giavaresi G, Tagliaferri P, Tassone P and Amodio N: MicroRNAs: Novel crossroads between myeloma cells and the bone marrow microenvironment. Biomed Res Int. 2016:65045932016. View Article : Google Scholar : PubMed/NCBI

25 

Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, et al: Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 99:15524–15529. 2002. View Article : Google Scholar : PubMed/NCBI

26 

Pichiorri F, Suh SS, Rocci A, De Luca L, Taccioli C, Santhanam R, Zhou W, Benson DM Jr, Hofmainster C, Alder H, et al: Downregulation of p53-inducible microRNAs 192, 194 and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell. 18:367–381. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Misiewicz-Krzeminska I, Sarasquete ME, Quwaider D, Krzeminski P, Ticona FV, Paíno T, Delgado M, Aires A, Ocio EM, García-Sanz R, et al: Restoration of microRNA-214 expression reduces growth of myeloma cells through positive regulation of P53 and inhibition of DNA replication. Haematologica. 98:640–648. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Zhang Q, Wang LQ, Wong KY, Li ZY and Chim CS: Infrequent DNA methylation of miR-9-1 and miR-9-3 in multiple myeloma. J Clin Pathol. 68:557–561. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Cipolla GA, Park JK, de Oliveira LA, Lobo-Alves SC, de Almeida RC, Farias TD, Lemos Dde S, Malheiros D, Lavker RM and Petzl-Erler ML: A 3′UTR polymorphism marks differential KLRG1 mRNA levels through disruption of a miR-584-5p binding site and associates with pemphigus foliaceus susceptibility. Biochim Biophys Acta. 1859:1306–1313. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Zhao JJ and Carrasco RD: Crosstalk between microRNA30a/b/c/d/e-5p and the canonical Wnt pathway: Implications for multiple myeloma therapy. Cancer Res. 74:5351–5358. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Brocke-Heidrich K, Kretzschmar AK, Pfeifer G, Henze C, Löffler D, Koczan D, Thiesen HJ, Burger R, Gramatzki M and Horn F: Interleukin-6-dependent gene expression profiles in multiple myeloma INA-6 cells reveal a Bcl-2 family-independent survival pathway closely associated with Stat3 activation. Blood. 103:242–251. 2004. View Article : Google Scholar : PubMed/NCBI

32 

Leotta M, Biamonte L, Raimondi L, Ronchetti D, Di Martino MT, Botta C, Leone E, Pitari MR, Neri A, Giordano A, et al: A p53-dependent tumor suppressor network is induced by selective miR-125a-5p inhibition in multiple myeloma cells. J Cell Physiol. 229:2106–2116. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Shen X, Guo Y, Yu J, Qi J, Shi W, Wu X, Ni H and Ju S: miRNA-202 in bone marrow stromal cells affects the growth and adhesion of multiple myeloma cells by regulating B cell-activating factor. Clin Exp Med. 16:307–316. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Zhou Y, Chen L, Barlogie B, Stephens O, Wu X, Williams DR, Cartron MA, van Rhee F, Nair B, Waheed S, et al: High-risk myeloma is associated with global elevation of miRNAs and overexpression of EIF2C2/AGO2. Proc Natl Acad Sci USA. 107:7904–7909. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Hao M, Zang M, Zhao L, Deng S, Xu Y, Qi F, An G, Qin Y, Sui W, Li F, et al: Serum high expression of miR-214 and miR-135b as novel predictor for myeloma bone disease development and prognosis. Oncotarget. 7:19589–19600. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Pichiorri F, Suh SS, Ladetto M, Kuehl M, Palumbo T, Drandi D, Taccioli C, Zanesi N, Alder H, Hagan JP, et al: MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci USA. 105:12885–12890. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Unno K, Zhou Y, Zimmerman T, Platanias LC and Wickrema A: Identification of a novel microRNA cluster miR-193b-365 in multiple myeloma. Leuk Lymphoma. 50:1865–1871. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Roccaro AM, Sacco A, Thompson B, Leleu X, Azab AK, Azab F, Runnels J, Jia X, Ngo HT, Melhem MR, et al: MicroRNAs 15a and 16 regulate tumor proliferation in multiple myeloma. Blood. 113:6669–6680. 2009. View Article : Google Scholar : PubMed/NCBI

39 

Chi J, Ballabio E, Chen XH, Kušec R, Taylor S, Hay D, Tramonti D, Saunders NJ, Littlewood T, Pezzella F, et al: MicroRNA expression in multiple myeloma is associated with genetic subtype, isotype and survival. Biol Direct. 6:232011. View Article : Google Scholar : PubMed/NCBI

40 

Yyusnita, Norsiah, Zakiah I, Chang KM, Purushotaman VS, Zubaidah Z and Jamal R: MicroRNA (miRNA) expression profiling of peripheral blood samples in multiple myeloma patients using microarray. Malays J Pathol. 34:133–143. 2012.PubMed/NCBI

41 

Campo S, Allegra A, D'Ascola A, Alonci A, Scuruchi M, Russo S, Avenoso A, Gerace D, Campo GM and Musolino C: MiRNome expression is deregulated in the peripheral lymphoid compartment of multiple myeloma. Br J Haematol. 165:801–813. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Wang W, Corrigan-Cummins M, Barber EA, Saleh LM, Zingone A, Ghafoor A, Costello R, Zhang Y, Kurlander RJ, Korde N, et al: Aberrant Levels of miRNAs in Bone marrow microenvironment and peripheral blood of myeloma patients and disease progression. J Mol Diagn. 17:669–678. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Hao M, Zang M, Wendlandt E, Xu Y, An G, Gong D, Li F, Qi F, Zhang Y, Yang Y, et al: Low serum miR-19a expression as a novel poor prognostic indicator in multiple myeloma. Int J Cancer. 136:1835–1844. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Agarwal V, Bell GW, Nam JW and Bartel DP: Predicting effective microRNA target sites in mammalian mRNAs. Elife. 4:2015.doi: 10.7554/eLife.05005. View Article : Google Scholar

45 

Betel D, Koppal A, Agius P, Sander C and Leslie C: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 11:R902010. View Article : Google Scholar : PubMed/NCBI

46 

Anders G, Mackowiak SD, Jens M, Maaskola J, Kuntzagk A, Rajewsky N, Landthaler M and Dieterich C: doRiNA: A database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res. 40:D180–D186. 2012. View Article : Google Scholar : PubMed/NCBI

47 

Shang J, Yao Y, Fan X, Shangguan L, Li J, Liu H and Zhou Y: miR-29c-3p promotes senescence of human mesenchymal stem cells by targeting CNOT6 through p53-p21 and p16-pRB pathways. Biochim Biophys Acta. 1863:520–532. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Gulla A, Di Martino MT, Cantafio Gallo ME, Morelli E, Amodio N, Botta C, Pitari MR, Lio SG, Britti D, Stamato MA, et al: A 13 mer LNA-i-miR-221 inhibitor restores drug sensitivity in melphalan-refractory multiple myeloma cells. Clin Cancer Res. 22:1222–1233. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Di Martino MT, Gullà A, Cantafio ME, Lionetti M, Leone E, Amodio N, Guzzi PH, Foresta U, Conforti F, Cannataro M, et al: In vitro and in vivo anti-tumor activity of miR-221/222 inhibitors in multiple myeloma. Oncotarget. 4:242–255. 2013. View Article : Google Scholar : PubMed/NCBI

50 

Zhao JJ, Chu ZB, Hu Y, Lin J, Wang Z, Jiang M, Chen M, Wang X, Kang Y, Zhou Y, et al: Targeting the miR-221-222/PUMA/BAK/BAX pathway abrogates dexamethasone resistance in multiple myeloma. Cancer Res. 75:4384–4397. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Galm O, Yoshikawa H, Esteller M, Osieka R and Herman JG: SOCS-1, a negative regulator of cytokine signaling, is frequently silenced by methylation in multiple myeloma. Blood. 101:2784–2788. 2003. View Article : Google Scholar : PubMed/NCBI

52 

Chen L, Li C, Zhang R, Gao X, Qu X, Zhao M, Qiao C, Xu J and Li J: miR-17-92 cluster microRNAs confers tumorigenicity in multiple myeloma. Cancer Lett. 309:62–70. 2011. View Article : Google Scholar : PubMed/NCBI

53 

Peng J, Thakur A, Zhang S, Dong Y, Wang X, Yuan R, Zhang K and Guo X: Expressions of miR-181a and miR-20a in RPMI8226 cell line and their potential as biomarkers for multiple myeloma. Tumour Biol. 36:8545–8552. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Xu S, Cecilia SG, De Veirman K, Vande Broek I, Leleu X, De Becker A, Van Camp B, Vanderkerken K and Van Riet I: Upregulation of miR-135b is involved in the impaired osteogenic differentiation of mesenchymal stem cells derived from multiple myeloma patients. PLoS One. 8:e797522013. View Article : Google Scholar : PubMed/NCBI

55 

Liang B, Yin JJ and Zhan XR: MiR-301a promotes cell proliferation by directly targeting TIMP2 in multiple myeloma. Int J Clin Exp Pathol. 8:9168–9174. 2015.PubMed/NCBI

56 

Morelli E, Leone E, Cantafio ME, Di Martino MT, Amodio N, Biamonte L, Gullà A, Foresta U, Pitari MR, Botta C, et al: Selective targeting of IRF4 by synthetic microRNA-125b-5p mimics induces anti-multiple myeloma activity in vitro and in vivo. Leukemia. 29:2173–2183. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Xu H, Liu C, Zhang Y, Guo X, Liu Z, Luo Z, Chang Y, Liu S, Sun Z and Wang X: Let-7b-5p regulates proliferation and apoptosis in multiple myeloma by targeting IGF1R. Acta Biochim Biophys Sin (Shanghai). 46:965–972. 2014. View Article : Google Scholar : PubMed/NCBI

58 

Amodio N, Leotta M, Bellizzi D, Di Martino MT, D'Aquila P, Lionetti M, Fabiani F, Leone E, Gullà AM, Passarino G, et al: DNA-demethylating and anti-tumor activity of synthetic miR-29b mimics in multiple myeloma. Oncotarget. 3:1246–1258. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Jagannathan S, Vad N, Vallabhapurapu S, Vallabhapurapu S, Anderson KC and Driscoll JJ: MiR-29b replacement inhibits proteasomes and disrupts aggresome+autophagosome formation to enhance the antimyeloma benefit of bortezomib. Leukemia. 29:727–738. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Zhang YK, Wang H, Leng Y, Li ZL, Yang YF, Xiao FJ, Li QF, Chen XQ and Wang LS: Overexpression of microRNA-29b induces apoptosis of multiple myeloma cells through down regulating Mcl-1. Biochem Biophys Res Commun. 414:233–239. 2011. View Article : Google Scholar : PubMed/NCBI

61 

Amodio N, Bellizzi D, Leotta M, Raimondi L, Biamonte L, D'Aquila P, Di Martino MT, Calimeri T, Rossi M, Lionetti M, et al: miR-29b induces SOCS-1 expression by promoter demethylation and negatively regulates migration of multiple myeloma and endothelial cells. Cell Cycle. 12:3650–3662. 2013. View Article : Google Scholar : PubMed/NCBI

62 

Amodio N, Di Martino MT, Foresta U, Leone E, Lionetti M, Leotta M, Gullà AM, Pitari MR, Conforti F, Rossi M, et al: miR-29b sensitizes multiple myeloma cells to bortezomib-induced apoptosis through the activation of a feedback loop with the transcription factor Sp1. Cell Death Dis. 3:e4362012. View Article : Google Scholar : PubMed/NCBI

63 

Cosco D, Cilurzo F, Maiuolo J, Federico C, Di Martino MT, Cristiano MC, Tassone P, Fresta M and Paolino D: Delivery of miR-34a by chitosan/PLGA nanoplexes for the anticancer treatment of multiple myeloma. Sci Rep. 5:175792015. View Article : Google Scholar : PubMed/NCBI

64 

Di Martino MT, Campani V, Misso G, Cantafio Gallo ME, Gullà A, Foresta U, Guzzi PH, Castellano M, Grimaldi A, Gigantino V, et al: In vivo activity of miR-34a mimics delivered by stable nucleic acid lipid particles (SNALPs) against multiple myeloma. PLoS One. 9:e900052014. View Article : Google Scholar : PubMed/NCBI

65 

Di Martino MT, Leone E, Amodio N, Foresta U, Lionetti M, Pitari MR, Cantafio ME, Gullà A, Conforti F, Morelli E, et al: Synthetic miR-34a mimics as a novel therapeutic agent for multiple myeloma: In vitro and in vivo evidence. Clin Cancer Res. 18:6260–6270. 2012. View Article : Google Scholar : PubMed/NCBI

66 

Shen X, Guo Y, Qi J, Shi W, Wu X, Ni H and Ju S: Study on the association between miRNA-202 expression and drug sensitivity in multiple myeloma cells. Pathol Oncol Res. 22:531–539. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Gatt ME, Zhao JJ, Ebert MS, Zhang Y, Chu Z, Mani M, Gazit R, Carrasco DE, Dutta-Simmons J, Adamia S, et al: MicroRNAs 15a/16-1 function as tumor suppressor genes in multiple myeloma. Blood. 2010.doi: 10.1182/blood-2009-11-253294. View Article : Google Scholar : PubMed/NCBI

68 

Sun CY, She XM, Qin Y, Chu ZB, Chen L, Ai LS, Zhang L and Hu Y: miR-15a and miR-16 affect the angiogenesis of multiple myeloma by targeting VEGF. Carcinogenesis. 34:426–435. 2013. View Article : Google Scholar : PubMed/NCBI

69 

Tian Z, Zhao JJ, Tai YT, Amin SB, Hu Y, Berger AJ, Richardson P, Chauhan D and Anderson KC: Investigational agent MLN9708/2238 targets tumor-suppressor miR33b in MM cells. Blood. 120:3958–3967. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Min DJ, Ezponda T, Kim MK, Will CM, Martinez-Garcia E, Popovic R, Basrur V, Elenitoba-Johnson KS and Licht JD: MMSET stimulates myeloma cell growth through microRNA-mediated modulation of c-MYC. Leukemia. 27:686–694. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Tessel MA, Benham AL, Krett NL, Rosen ST and Gunaratne PH: Role for microRNAs in regulating glucocorticoid response and resistance in multiple myeloma. Horm Cancer. 2:182–189. 2011. View Article : Google Scholar : PubMed/NCBI

72 

Oeztuerk-Winder F, Guinot A, Ochalek A and Ventura JJ: Regulation of human lung alveolar multipotent cells by a novel p38a MAPK/miR-17-92 axis. EMBO J. 31:3431–3441. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, Newman J, Bronson RT, Crowley D, Stone JR, et al: Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell. 132:875–886. 2008. View Article : Google Scholar : PubMed/NCBI

74 

Hirano T, Ishihara K and Hibi M: Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene. 19:2548–2556. 2000. View Article : Google Scholar : PubMed/NCBI

75 

Gutierrez NC, Sarasquete ME, Misiewicz-Krzeminska I, Delgado M, De Las Rivas J, Ticona FV, Fermiñán E, Martín-Jiménez P, Chillón C, Risueño A, et al: Deregulation of microRNA expression in the different genetic subtypes of multiple myeloma and correlation with gene expression profiling. Leukemia. 24:629–637. 2010. View Article : Google Scholar : PubMed/NCBI

76 

Mott JL, Kobayashi S, Bronk SF and Gores GJ: mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene. 26:6133–6140. 2007. View Article : Google Scholar : PubMed/NCBI

77 

Mraz M, Pospisilova S, Malinova K, Slapak I and Mayer J: MicroRNAs in chronic lymphocytic leukemia pathogenesis and disease subtypes. Leuk Lymphoma. 50:506–509. 2009. View Article : Google Scholar : PubMed/NCBI

78 

Amodio N, Stamato MA, Gullà AM, Morelli E, Romeo E, Raimondi L, Pitari MR, Ferrandino I, Misso G, Caraglia M, et al: Therapeutic targeting of miR-29b/HDAC4 epigenetic loop in multiple myeloma. Mol Cancer Ther. 15:1364–1375. 2016. View Article : Google Scholar : PubMed/NCBI

79 

Rossi M, Pitari MR, Amodio N, Di Martino MT, Conforti F, Leone E, Botta C, Paolino FM, Del Giudice T, Iuliano E, et al: miR-29b negatively regulates human osteoclastic cell differentiation and function: Implications for the treatment of multiple myeloma-related bone disease. J Cell Physiol. 228:1506–1515. 2013. View Article : Google Scholar : PubMed/NCBI

80 

Zhang S, Wu S, Qu X, Zhao M, Xu J, Jianyong L and Lijuan C: Down-regulation of microRNA-29c is associated with renal failure in multiple myeloma. Leuk Lymphoma. 55:226–228. 2014. View Article : Google Scholar : PubMed/NCBI

81 

Munker R, Liu CG, Taccioli C, Alder H and Heerema N: MicroRNA profiles of drug-resistant myeloma cell lines. Acta Haematol. 123:201–204. 2010. View Article : Google Scholar : PubMed/NCBI

82 

Ma J, Liu S and Wang Y: MicroRNA-21 and multiple myeloma: Small molecule and big function. Med Oncol. 31:942014. View Article : Google Scholar : PubMed/NCBI

83 

Zheng P, Guo H, Li G, Han S, Luo F and Liu Y: PSMB4 promotes multiple myeloma cell growth by activating NF-κB-miR-21 signaling. Biochem Biophys Res Commun. 458:328–333. 2015. View Article : Google Scholar : PubMed/NCBI

84 

Wang X, Li C, Ju S, Wang Y, Wang H and Zhong R: Myeloma cell adhesion to bone marrow stromal cells confers drug resistance by microRNA-21 up-regulation. Leuk Lymphoma. 52:1991–1998. 2011. View Article : Google Scholar : PubMed/NCBI

85 

Jones CI, Zabolotskaya MV, King AJ, Stewart HJ, Horne GA, Chevassut TJ and Newbury SF: Identification of circulating microRNAs as diagnostic biomarkers for use in multiple myeloma. Br J Cancer. 107:1987–1996. 2012. View Article : Google Scholar : PubMed/NCBI

86 

Sevcikova S, Kubiczkova L, Sedlarikova L, Slaby O and Hajek R: Serum miR-29a as a marker of multiple myeloma. Leuk Lymphoma. 54:189–191. 2013. View Article : Google Scholar : PubMed/NCBI

87 

Qu X, Zhao M, Wu S, Yu W, Xu J, Xu J, Li J and Chen L: Circulating microRNA 483-5p as a novel biomarker for diagnosis survival prediction in multiple myeloma. Med Oncol. 31:2192014. View Article : Google Scholar : PubMed/NCBI

88 

Li F, Xu Y, Deng S, Li Z, Zou D, Yi S, Sui W, Hao M and Qiu L: MicroRNA-15a/16-1 cluster located at chromosome 13q14 is down-regulated but displays different expression pattern and prognostic significance in multiple myeloma. Oncotarget. 6:38270–38282. 2015. View Article : Google Scholar : PubMed/NCBI

89 

Grasedieck S, Sorrentino A, Langer C, Buske C, Döhner H, Mertens D and Kuchenbauer F: Circulating microRNAs in hematological diseases: Principles, challenges and perspectives. Blood. 121:4977–4984. 2013. View Article : Google Scholar : PubMed/NCBI

90 

Chen X, Liang H, Zhang J, Zen K and Zhang CY: Secreted microRNAs: A new form of intercellular communication. Trends Cell Biol. 22:125–132. 2012. View Article : Google Scholar : PubMed/NCBI

91 

Seckinger A, Meißner T, Moreaux J, Benes V, Hillengass J, Castoldi M, Zimmermann J, Ho AD, Jauch A, Goldschmidt H, et al: miRNAs in multiple myeloma-a survival relevant complex regulator of gene expression. Oncotarget. 6:39165–39183. 2015. View Article : Google Scholar : PubMed/NCBI

92 

Bergsagel PL, Kuehl WM, Zhan F, Sawyer J, Barlogie B and Shaughnessy J Jr: Cyclin D dysregulation: An early and unifying pathogenic event in multiple myeloma. Blood. 106:296–303. 2005. View Article : Google Scholar : PubMed/NCBI

93 

Huang JJ, Yu J, Li JY, Liu YT and Zhong RQ: Circulating microRNA expression is associated with genetic subtype and survival of multiple myeloma. Med Oncol. 29:2402–2408. 2012. View Article : Google Scholar : PubMed/NCBI

94 

Rocci A, Hofmeister CC, Geyer S, Stiff A, Gambella M, Cascione L, Guan J, Benson DM, Efebera YA, Talabere T, et al: Circulating miRNA markers show promise as new prognosticators for multiple myeloma. Leukemia. 28:1922–1926. 2014. View Article : Google Scholar : PubMed/NCBI

95 

Wu P, Agnelli L, Walker BA, Todoerti K, Lionetti M, Johnson DC, Kaiser M, Mirabella F, Wardell C, Gregory WM, et al: Improved risk stratification in myeloma using a microRNA-based classifier. Br J Haematol. 162:348–359. 2013. View Article : Google Scholar : PubMed/NCBI

96 

Navarro A, Diaz T, Tovar N, Pedrosa F, Tejero R, Cibeira MT, Magnano L, Rosiñol L, Monzó M, Bladé J and de Larrea Fernández C: A serum microRNA signature associated with complete remission and progression after autologous stem-cell transplantation in patients with multiple myeloma. Oncotarget. 6:1874–1883. 2015. View Article : Google Scholar : PubMed/NCBI

97 

Zhang L, Pan L, Xiang B, Zhu H, Wu Y, Chen M, Guan P, Zou X, Valencia CA, Dong B, et al: Potential role of exosome-associated microRNA panels and in vivo environment to predict drug resistance for patients with multiple myeloma. Oncotarget. 7:30876–30891. 2016.PubMed/NCBI

98 

Yang WC and Lin SF: Mechanisms of drug resistance in relapse and refractory multiple myeloma. Biomed Res Int. 2015:3414302015. View Article : Google Scholar : PubMed/NCBI

99 

Cantafio Gallo ME, Nielsen BS, Mignogna C, Arbitrio M, Botta C, Frandsen NM, Rolfo C, Tagliaferri P, Tassone P and Di Martino MTL: Pharmacokinetics and pharmacodynamics of a 13-mer LNA-inhibitor-miR-221 in mice and non-human primates. Mol Ther Nucleic Acids. 5:e3362016. View Article : Google Scholar : PubMed/NCBI

100 

Zhao JJ, Lin J, Zhu D, Wang X, Brooks D, Chen M, Chu ZB, Takada K, Ciccarelli B, Admin S, et al: miR-30-5p functions as a tumor suppressor and novel therapeutic tool by targeting the oncogenic Wnt/β-catenin/BCL9 pathway. Cancer Res. 74:1801–1813. 2014. View Article : Google Scholar : PubMed/NCBI

101 

Guo J, McKenna SL, O'Dwyer ME, Cahill MR and O'Driscoll CM: RNA interference for multiple myeloma therapy: Targeting signal transduction pathways. Expert Opin Ther Targets. 20:107–121. 2016. View Article : Google Scholar : PubMed/NCBI

102 

Palagani A, de Beeck KO, Naulaerts S, Diddens J, Chirumamilla Sekhar C, Van Camp G, Laukens K, Heyninck K, Gerlo S, Mestdagh P, et al: Ectopic microRNA-150-5p transcription sensitizes glucocorticoid therapy response in MM1S multiple myeloma cells but fails to overcome hormone therapy resistance in MM1R cells. PLoS One. 9:e1138422014. View Article : Google Scholar : PubMed/NCBI

103 

Li J, Zhang Y, Liu Y, Dai X, Li W, Cai X, Yin Y, Wang Q, Xue Y, Wang C, et al: Microvesicle-mediated transfer of microRNA-150 from monocytes to endothelial cells promotes angiogenesis. J Biol Chem. 288:23586–23596. 2013. View Article : Google Scholar : PubMed/NCBI

104 

Lambert JM, Moshfegh A, Hainaut P, Wiman KG and Bykov VJ: Mutant p53 reactivation by PRIMA-1MET induces multiple signaling pathways converging on apoptosis. 29:1329–1338. 2010.

105 

Saha MN, Abdi J, Yang Y and Chang H: miRNA-29a as a tumor suppressor mediates PRIMA-1Met-induced anti-myeloma activity by targeting c-Myc. Oncotarget. 7:7149–7160. 2016. View Article : Google Scholar : PubMed/NCBI

106 

Besse L, Sedlarikova L, Kryukov F, Nekvindova J, Radova L, Slaby O, Kuglik P, Almasi M, Penka M, Krejci M, et al: Circulating serum MicroRNA-130a as a novel putative marker of extramedullary myeloma. PLoS One. 10:e01372942015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhu B, Ju S, Chu H, Shen X, Zhang Y, Luo X and Cong H: The potential function of microRNAs as biomarkers and therapeutic targets in multiple myeloma (Review). Oncol Lett 15: 6094-6106, 2018.
APA
Zhu, B., Ju, S., Chu, H., Shen, X., Zhang, Y., Luo, X., & Cong, H. (2018). The potential function of microRNAs as biomarkers and therapeutic targets in multiple myeloma (Review). Oncology Letters, 15, 6094-6106. https://doi.org/10.3892/ol.2018.8157
MLA
Zhu, B., Ju, S., Chu, H., Shen, X., Zhang, Y., Luo, X., Cong, H."The potential function of microRNAs as biomarkers and therapeutic targets in multiple myeloma (Review)". Oncology Letters 15.5 (2018): 6094-6106.
Chicago
Zhu, B., Ju, S., Chu, H., Shen, X., Zhang, Y., Luo, X., Cong, H."The potential function of microRNAs as biomarkers and therapeutic targets in multiple myeloma (Review)". Oncology Letters 15, no. 5 (2018): 6094-6106. https://doi.org/10.3892/ol.2018.8157
Copy and paste a formatted citation
x
Spandidos Publications style
Zhu B, Ju S, Chu H, Shen X, Zhang Y, Luo X and Cong H: The potential function of microRNAs as biomarkers and therapeutic targets in multiple myeloma (Review). Oncol Lett 15: 6094-6106, 2018.
APA
Zhu, B., Ju, S., Chu, H., Shen, X., Zhang, Y., Luo, X., & Cong, H. (2018). The potential function of microRNAs as biomarkers and therapeutic targets in multiple myeloma (Review). Oncology Letters, 15, 6094-6106. https://doi.org/10.3892/ol.2018.8157
MLA
Zhu, B., Ju, S., Chu, H., Shen, X., Zhang, Y., Luo, X., Cong, H."The potential function of microRNAs as biomarkers and therapeutic targets in multiple myeloma (Review)". Oncology Letters 15.5 (2018): 6094-6106.
Chicago
Zhu, B., Ju, S., Chu, H., Shen, X., Zhang, Y., Luo, X., Cong, H."The potential function of microRNAs as biomarkers and therapeutic targets in multiple myeloma (Review)". Oncology Letters 15, no. 5 (2018): 6094-6106. https://doi.org/10.3892/ol.2018.8157
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team