|
1
|
de Cos Sánchez J, González Sojo MA,
Montero MV, Calvo Pérez MC, Vicente MJ and Valle MH: Non-small cell
lung cancer and silent brain metastasis. Survival and prognostic
factors. Lung Cancer. 63:140–145. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Wood SL, Pernemalm M, Crosbie PA and
Whetton AD: Molecular histology of lung cancer: From targets to
treatments. Cancer Treat Rev. 41:361–375. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Khan N and Mukhtar H: Dietary agents for
prevention and treatment of lung cancer. Cancer Lett. 359:155–164.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Shang GH, Jia CQ, Tian H, Xiao W, Li Y,
Wang AH, Dong L and Lin DJ: Serum high mobility group box protein 1
as a clinical marker for non-small cell lung cancer. Respir Med.
103:1949–1953. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Andersson U, Antoine DJ and Tracey KJ: The
functions of HMGB1 depend on molecular localization and
post-translational modifications. J Intern Med. 276:420–424. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Sun X and Tang D: HMGB1-dependent and
-independent autophagy. Autophagy. 10:1873–1876. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zhang R, Li Y, Wang Z, Chen L, Dong X and
Nie X: Interference with HMGB1 increases the sensitivity to
chemotherapy drugs by inhibiting HMGB1-mediated cell autophagy and
inducing cell apoptosis. Tumour Biol. 36:8585–8592. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Yu Y, Tang D and Kang R: Oxidative
stress-mediated HMGB1 biology. Front Physiol. 6:932015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kang R, Livesey KM, Zeh HJ, Loze MT and
Tang D: HMGB1: A novel beclin 1-binding protein active in
autophagy. Autophagy. 6:1209–1211. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Goh WW, Fan M, Low HS, Sergot M and Wong
L: Enhancing the utility of proteomics signature profiling (PSP)
with pathway derived subnets (PDSs), performance analysis and
specialised ontologies. BMC Genomics. 14:352013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Musumeci D, Roviello GN and Montesarchio
D: An overview on HMGB1 inhibitors as potential therapeutic agents
in HMGB1-related pathologies. Pharmacol Ther. 141:347–357. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Bianchi ME: HMGB1 loves company. J Leukoc
Biol. 86:573–576. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Hori O, Brett J, Slattery T, Cao R, Zhang
J, Chen JX, Nagashima M, Lundh ER, Vijay S, Nitecki D, et al: The
receptor for advanced glycation end products (RAGE) is a cellular
binding site for amphoterin. Mediation of neurite outgrowth and
co-expression of rage and amphoterin in the developing nervous
system. J Biol Chem. 270:25752–25761. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Park JS, Svetkauskaite D, He Q, Kim JY,
Strassheim D, Ishizaka A and Abraham E: Involvement of toll-like
receptors 2 and 4 in cellular activation by high mobility group box
1 protein. J Biol Chem. 279:7370–7377. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Tian J, Avalos AM, Mao SY, Chen B, Senthil
K, Wu H, Parroche P, Drabic S, Golenbock D, Sirois C, et al:
Toll-like receptor 9-dependent activation by DNA-containing immune
complexes is mediated by HMGB1 and RAGE. Nat Immunol. 8:487–496.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Tang D, Kang R, Coyne CB, Zeh HJ and Lotze
MT: PAMPs and DAMPs: Signal 0s that spur autophagy and immunity.
Immunol Rev. 249:158–175. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Park JS, Gamboni-Robertson F, He Q,
Svetkauskaite D, Kim JY, Strassheim D, Sohn JW, Yamada S, Maruyama
I, Banerjee A, et al: High mobility group box 1 protein interacts
with multiple Toll-like receptors. Am J Physiol Cell Physiol.
290:C917–C924. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Lee SA, Kwak MS, Kim S and Shin JS: The
role of high mobility group box 1 in innate immunity. Yonsei Med J.
55:1165–1176. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Shen X, Hong L, Sun H, Shi M and Song Y:
The expression of high-mobility group protein box 1 correlates with
the progression of non-small cell lung cancer. Oncol Rep.
22:535–539. 2009.PubMed/NCBI
|
|
20
|
Rouhiainen A, Kuja-Panula J, Tumova S and
Rauvala H: RAGE-mediated cell signaling. Methods Mol Biol.
963:239–263. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Sirois CM, Jin T, Miller AL, Bertheloot D,
Nakamura H, Horvath GL, Mian A, Jiang J, Schrum J, Bossaller L, et
al: RAGE is a nucleic acid receptor that promotes inflammatory
responses to DNA. J Exp Med. 210:2447–2463. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Chen RC, Yi PP, Zhou RR, Xiao MF, Huang
ZB, Tang DL, Huang Y and Fan XG: The role of HMGB1-RAGE axis in
migration and invasion of hepatocellular carcinoma cell lines. Mol
Cell Biochem. 390:271–280. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Riuzzi F, Sorci G and Donato R: The
amphoterin (HMGB1)/receptor for advanced glycation end products
(RAGE) pair modulates myoblast proliferation, apoptosis,
adhesiveness, migration, and invasiveness. Functional inactivation
of RAGE in L6 myoblasts results in tumor formation in vivo. J Biol
Chem. 281:8242–8253. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Yaser AM, Huang Y, Zhou RR, Hu GS, Xiao
MF, Huang ZB, Duan CJ, Tian W, Tang DL and Fan XG: The Role of
receptor for advanced glycation end products (RAGE) in the
proliferation of hepatocellular carcinoma. Int J Mol Sci.
13:5982–5997. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wu X, Mi Y, Yang H, Hu A, Zhang Q and
Shang C: The activation of HMGB1 as a progression factor on
inflammation response in normal human bronchial epithelial cells
through RAGE/JNK/NF-κB pathway. Mol Cell Biochem. 380:249–257.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Liang Y, Hou C, Kong J, Wen H, Zheng X, Wu
L, Huang H and Chen Y: HMGB1 binding to receptor for advanced
glycation end products enhances inflammatory responses of human
bronchial epithelial cells by activating p38 MAPK and ERK1/2. Mol
Cell Biochem. 405:63–71. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ohmori H, Luo Y and Kuniyasu H:
Non-histone nuclear factor HMGB1 as a therapeutic target in
colorectal cancer. Expert Opin Ther Targets. 15:183–193. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Nogueira-Machado JA and de Oliveira Volpe
CM: HMGB-1 as a target for inflammation controlling. Recent Pat
Endocr Metab Immune Drug Discov. 6:201–209. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Taguchi A, Blood DC, del Toro G, Canet A,
Lee DC, Qu W, Tanji N, Lu Y, Lalla E, Fu C, et al: Blockade of
RAGE-amphoterin signalling suppresses tumour growth and metastases.
Nature. 405:354–360. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kawada M, Usami I, Someno T, Watanabe T,
Abe H, Inoue H, Ohba S, Masuda T, Tabata Y, Yamaguchi S and Ikeda
D: NBRI17671, a new antitumor compound, produced by
Acremonium sp. CR17671. J Antibiot (Tokyo). 63:237–243.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Brett J, Schmidt AM, Yan SD, Zou YS,
Weidman E, Pinsky D, Nowygrod R, Neeper M, Przysiecki C, Shaw A, et
al: Survey of the distribution of a newly characterized receptor
for advanced glycation end products in tissues. Am J Pathol.
143:1699–1712. 1993.PubMed/NCBI
|
|
32
|
Schraml P, Bendik I and Ludwig CU:
Differential messenger RNA and protein expression of the receptor
for advanced glycosylated end products in normal lung and non-small
cell lung carcinoma. Cancer Res. 57:3669–3671. 1997.PubMed/NCBI
|
|
33
|
Katsuoka F, Kawakami Y, Arai T, Imuta H,
Fujiwara M, Kanma H and Yamashita K: Type II alveolar epithelial
cells in lung express receptor for advanced glycation end products
(RAGE) gene. Biochem Biophys Res Commun. 238:512–516. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Wang H, Li Y, Yu W, Ma L, Ji X and Xiao W:
Expression of the receptor for advanced glycation end-products and
frequency of polymorphism in lung cancer. Oncol Lett. 10:51–60.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wang JL, Wu DW, Cheng ZZ, Han WZ, Xu SW
and Sun NN: Expression of high mobility group box-B1 (HMGB-1) and
matrix metalloproteinase-9 (MMP-9) in non-small cell lung cancer
(NSCLC). Asian Pac J Cancer Prev. 15:4865–4869. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Xu L, Zhou Y, Liu Q, Luo JM, Qing M, Tang
XY, Yao XS, Wang CH and Wen ZK: CXCR4/SDF-1 pathway is crucial for
TLR9 agonist enhanced metastasis of human lung cancer cell. Biochem
Biophys Res Commun. 382:571–576. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang C, Fei G, Liu Z, Li Q, Xu Z and Ren
T: HMGB1 was a pivotal synergistic effecor for CpG oligonucleotide
to enhance the progression of human lung cancer cells. Cancer Biol
Ther. 13:727–736. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Liu PL, Tsai JR, Hwang JJ, Chou SH, Cheng
YJ, Lin FY, Chen YL, Hung CY, Chen WC, Chen YH and Chong IW:
High-mobility group box 1-mediated matrix metalloproteinase-9
expression in non-small cell lung cancer contributes to tumor cell
invasiveness. Am J Respir Cell Mol Biol. 43:530–538. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Gribar SC, Richardson WM, Sodhi CP and
Hackam DJ: No longer an innocent bystander: Epithelial toll-like
receptor signaling in the development of mucosal inflammation. Mol
Med. 14:645–659. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Lotze MT, Zeh HJ, Rubartelli A, Sparvero
LJ, Amoscato AA, Washburn NR, Devera ME, Liang X, Tör M and Billiar
T: The grateful dead: Damage-associated molecular pattern molecules
and reduction/oxidation regulate immunity. Immunol Rev. 220:60–81.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kumagai Y, Takeuchi O and Akira S:
Pathogen recognition by innate receptors. J Infect Chemother.
14:86–92. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Venereau E, De Leo F, Mezzapelle R,
Careccia G, Musco G and Bianchi ME: HMGB1 as biomarker and drug
target. Pharmacol Res. 111:534–544. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yanai H, Ban T, Wang Z, Choi MK, Kawamura
T, Negishi H, Nakasato M, Lu Y, Hangai S, Koshiba R, et al: HMGB
proteins function as universal sentinels for nucleic-acid-mediated
innate immune responses. Nature. 462:99–103. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Beaulieu LM, Lin E, Morin KM, Tanriverdi K
and Freedman JE: Regulatory effects of TLR2 on megakaryocytic cell
function. Blood. 117:5963–5974. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lin E, Freedman JE and Beaulieu LM: Innate
immunity and toll-like receptor antagonists: A potential role in
the treatment of cardiovascular diseases. Cardiovasc Ther.
27:117–123. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Dasu MR, Devaraj S, Park S and Jialal I:
Increased toll-like receptor (TLR) activation and TLR ligands in
recently diagnosed type 2 diabetic subjects. Diabetes Care.
33:861–868. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Kim J, Sohn E, Kim CS, Jo K and Kim JS:
The role of high-mobility group box-1 protein in the development of
diabetic nephropathy. Am J Nephrol. 33:524–529. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Singh B, Biswas I, Bhagat S, Kumari Surya
S and Khan GA: HMGB1 facilitates hypoxia-induced vWF upregulation
through TLR2-MYD88-SP1 pathway. Eur J Immunol. 46:2388–2400. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Qiu Y, Yang J, Wang W, Zhao W, Peng F,
Xiang Y, Chen G, Chen T, Chai C, Zheng S, et al: HMGB1-promoted and
TLR2/4-dependent NK cell maturation and activation take part in
rotavirus-induced murine biliary atresia. PLoS Pathog.
10:e10040112014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Conti L, Lanzardo S, Arigoni M, Antonazzo
R, Radaelli E, Cantarella D, Calogero RA and Cavallo F: The
noninflammatory role of high mobility group box 1/Toll-like
receptor 2 axis in the self-renewal of mammary cancer stem cells.
FASEB J. 27:4731–4744. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhang H, Yang N, Wang T, Dai B and Shang
Y: Vitamin D reduces inflammatory response in asthmatic mice
through HMGB1/TLR4/NF-κB signaling pathway. Mol Med Rep.
17:2915–2920. 2018.PubMed/NCBI
|
|
52
|
Gunasekaran MK, Virama-Latchoumy AL,
Girard AC, Planesse C, Guérin-Dubourg A, Ottosson L, Andersson U,
Césari M, Roche R and Hoareau L: TLR4-dependant pro-inflammatory
effects of HMGB1 on human adipocyte. Adipocyte. 5:384–388. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yu LX, Yan L, Yang W, Wu FQ, Ling Y, Chen
SZ, Tang L, Tan YX, Cao D, Wu MC, et al: Platelets promote tumour
metastasis via interaction between TLR4 and tumour cell-released
high-mobility group box1 protein. Nat Commun. 5:52562014.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ivanov S, Dragoi AM, Wang X, Dallacosta C,
Louten J, Musco G, Sitia G, Yap GS, Wan Y, Biron CA, et al: A novel
role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA.
Blood. 110:1970–1981. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Hemmi H, Takeuchi O, Kawai T, Kaisho T,
Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K and
Akira S: A Toll-like receptor recognizes bacterial DNA. Nature.
408:740–745. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Su Z, Wang T, Zhu H, Zhang P, Han R, Liu
Y, Ni P, Shen H, Xu W and Xu H: HMGB1 modulates Lewis cell
autophagy and promotes cell survival via RAGE-HMGB1-Erk1/2 positive
feedback during nutrient depletion. Immunobiology. 220:539–544.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ahmad-Nejad P, Häcker H, Rutz M, Bauer S,
Vabulas RM and Wagner H: Bacterial CpG-DNA and lipopolysaccharides
activate Toll-like receptors at distinct cellular compartments. Eur
J Immunol. 32:1958–1968. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Latz E, Schoenemeyer A, Visintin A,
Fitzgerald KA, Monks BG, Knetter CF, Lien E, Nilsen NJ, Espevik T
and Golenbock DT: TLR9 signals after translocating from the ER to
CpG DNA in the lysosome. Nat Immunol. 5:190–198. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hacker H, Vabulas RM, Takeuchi O, Hoshino
K, Akira S and Wagner H: Immune cell activation by bacterial
CpG-DNA through myeloid differentiation marker 88 and tumor
necrosis factor receptor-associated factor (TRAF)6. J Exp Med.
192:595–600. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ren T, Wen ZK, Liu ZM, Liang YJ, Guo ZL
and Xu L: Functional expression of TLR9 is associated to the
metastatic potential of human lung cancer cell: Functional active
role of TLR9 on tumor metastasis. Cancer Biol Ther. 6:1704–1709.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Sun KK, Ji C, Li X, Zhang L, Deng J, Zhong
N and Wu XY: Overexpression of high mobility group protein B1
correlates with the proliferation and metastasis of lung
adenocarcinoma cells. Mol Med Rep. 7:1678–1682. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wei F, Yang F, Li J, Zheng Y, Yu W, Yang L
and Ren X: Soluble Toll-like receptor 4 is a potential serum
biomarker in non-small cell lung cancer. Oncotarget. 7:40106–40114.
2016.PubMed/NCBI
|
|
63
|
Xia Q, Xu J, Chen H, Gao Y, Gong F, Hu L
and Yang L: Association between an elevated level of HMGB1 and
non-small-cell lung cancer: A meta-analysis and literature review.
Onco Targets Ther. 9:3917–3923. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Jakubowska K, Naumnik W, Niklinska W and
Chyczewska E: Clinical Significance of HMGB-1 and TGF-β level in
serum and BALF of advanced Non-small cell lung cancer. Adv Exp Med
Biol. 852:49–58. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Tang D, Kang R, Livesey KM, Cheh CW,
Farkas A, Loughran P, Hoppe G, Bianchi ME, Tracey KJ, Zeh HJ III
and Lotze MT: Endogenous HMGB1 regulates autophagy. J Cell Biol.
190:881–892. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kang R, Zeh HJ, Lotze MT and Tang D: The
Beclin 1 network regulates autophagy and apoptosis. Cell Death
Differ. 18:571–580. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Kang R, Tang D, Livesey KM, Schapiro NE,
Lotze MT and Zeh HJ III: The receptor for advanced glycation
End-products (RAGE) protects pancreatic tumor cells against
oxidative injury. Antioxid Redox Signal. 15:2175–2184. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kang R, Tang D, Schapiro NE, Livesey KM,
Farkas A, Loughran P, Bierhaus A, Lotze MT and Zeh HJ: The receptor
for advanced glycation end products (RAGE) sustains autophagy and
limits apoptosis, promoting pancreatic tumor cell survival. Cell
Death Differ. 17:666–676. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Copetti T, Bertoli C, Dalla E, Demarchi F
and Schneider C: p65/RelA modulates BECN1 transcription and
autophagy. Mol Cell Biol. 29:2594–2608. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Livesey KM, Kang R, Vernon P, Buchser W,
Loughran P, Watkins SC, Zhang L, Manfredi JJ, Zeh HJ III, Li L, et
al: p53/HMGB1 complexes regulate autophagy and apoptosis. Cancer
Res. 72:1996–2005. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zhang X, Wang H and Wang J: Expression of
HMGB1 and NF-κB p65 and its significance in non-small cell lung
cancer. Contemp Oncol (Pozn). 17:350–355. 2013.PubMed/NCBI
|
|
72
|
Zhang C, Ge S, Hu C, Yang N and Zhang J:
MiRNA-218, a new regulator of HMGB1, suppresses cell migration and
invasion in non-small cell lung cancer. Acta Biochim Biophys Sin
(Shanghai). 45:1055–1061. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Yao S, Zhao T and Jin H: Expression of
MicroRNA-325-3p and its potential functions by targeting HMGB1 in
non-small cell lung cancer. Biomed Pharmacother. 70:72–79. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Xiao P and Liu WL: MiR-142-3p functions as
a potential tumor suppressor directly targeting HMGB1 in
non-small-cell lung carcinoma. Int J Clin Exp Pathol.
8:10800–10807. 2015.PubMed/NCBI
|
|
75
|
Liu Y, Hu X, Xia D and Zhang S:
MicroRNA-181b is downregulated in non-small cell lung cancer and
inhibits cell motility by directly targeting HMGB1. Oncol Lett.
12:4181–4186. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zhu J, Luo J, Li Y, Jia M, Wang Y, Huang Y
and Ke S: HMGB1 induces human non-small cell lung cancer cell
motility by activating integrin αvβ3/FAK through TLR4/NF-κB
signaling pathway. Biochem Biophys Res Commun. 480:522–527. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Stordal B and Davey M: Understanding
cisplatin resistance using cellular models. IUBMB Life. 59:696–699.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Yang Y and Xian L: The association between
the ERCC1/2 polymorphisms and the clinical outcomes of the
platinum-based chemotherapy in non-small cell lung cancer (NSCLC):
A systematic review and meta-analysis. Tumour Biol. 35:2905–2921.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Wang Y, Li XP, Yin JY, Zhang Y, He H, Qian
CY, Chen J, Zheng Y, Smieszkol K, Fu YL, et al: Association of
HMGB1 and HMGB2 genetic polymorphisms with lung cancer chemotherapy
response. Clin Exp Pharmacol Physiol. 41:408–415. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Spira A and Ettinger DS: Multidisciplinary
management of lung cancer. N Engl J Med. 350:379–392. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Kelland L: The resurgence of
platinum-based cancer chemotherapy. Nat Rev Cancer. 7:573–584.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Pan B, Chen D, Huang J, Wang R, Feng B,
Song H and Chen L: HMGB1-mediated autophagy promotes docetaxel
resistance in human lung adenocarcinoma. Mol Cancer. 13:1652014.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Krynetskaia NF, Phadke MS, Jadhav SH and
Krynetskiy EY: Chromatin-associated proteins HMGB1/2 and PDIA3
trigger cellular response to chemotherapy-induced DNA damage. Mol
Cancer Ther. 8:864–872. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Aranda F, Bloy N, Galluzzi L, Kroemer G
and Senovilla L: Vitamin B6 improves the immunogenicity of
cisplatin-induced cell death. Oncoimmunology. 3:e9556852014.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Amann R and Peskar BA: Anti-inflammatory
effects of aspirin and sodium salicylate. Eur J Pharmacol. 447:1–9.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wang H, Zhu S, Zhou R, Li W and Sama AE:
Therapeutic potential of HMGB1-targeting agents in sepsis. Expert
Rev Mol Med. 10:e322008. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Lim SC, Kim SM, Choi JE, Kim CH, Duong HQ,
Han SI and Kang HS: Sodium salicylate switches glucose
depletion-induced necrosis to autophagy and inhibits high mobility
group box protein 1 release in A549 lung adenocarcinoma cells.
Oncol Rep. 19:1165–1171. 2008.PubMed/NCBI
|
|
88
|
Ulloa L, Ochani M, Yang H, Tanovic M,
Halperin D, Yang R, Czura CJ, Fink MP and Tracey KJ: Ethyl pyruvate
prevents lethality in mice with established lethal sepsis and
systemic inflammation. Proc Natl Acad Sci USA. 99:12351–12356.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Zhou RR, Kuang XY, Huang Y, Li N, Zou MX,
Tang DL and Fan XG: Potential role of High mobility group box 1 in
hepatocellular carcinoma. Cell Adh Migr. 8:493–498. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Guo X, Guo R, Luo X and Zhou L: Ethyl
pyruvate ameliorates experimental colitis in mice by inhibiting the
HMGB1-Th17 and Th1/Tc1 responses. Int Immunopharmacol. 29:454–461.
2015. View Article : Google Scholar : PubMed/NCBI
|