|
1
|
Tokino T and Nakamura Y: The role of
p53-target genes in human cancer. Crit Rev Oncol Hematol. 33:1–6.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Kratz CP, Achatz MI, Brugières L, Frebourg
T, Garber JE, Greer MC, Hansford JR, Janeway KA, Kohlmann WK, McGee
R, et al: Cancer screening recommendations for individuals with
Li-Fraumeni syndrome. Clin Cancer Res. 23:e38–e45. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Wilson JR, Bateman AC, Hanson H, An Q,
Evans G, Rahman N, Jones JL and Eccles DM: A novel HER2-positive
breast cancer phenotype arising from germline TP53 mutations. J Med
Genet. 47:771–774. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Melhem-Bertrandt A, Bojadzieva J, Ready
KJ, Obeid E, Liu DD, Gutierrez-Barrera AM, Litton JK, Olopade OI,
Hortobagyi GN, Strong LC and Arun BK: Early onset HER2-positive
breast cancer is associated with germline TP53 mutations. Cancer.
118:908–913. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Lalloo F, Varley J, Moran A, Ellis D,
O'dair L, Pharoah P, Antoniou A, Hartley R, Shenton A, Seal S, et
al: BRCA1, BRCA2 and TP53 mutations in very early-onset breast
cancer with associated risks to relatives 1. Eur J Cancer.
42:1143–1150. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Olivier M, Langerød A, Carrieri P, Bergh
J, Klaar S, Eyfjord J, Theillet C, Rodriguez C, Lidereau R, Bièche
I, et al: The clinical value of somatic TP53 gene mutations in
1,794 patients with breast cancer. Clin Cancer Res. 12:1157–1167.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Varna M, Bousquet G, Plassa LF, Bertheau P
and Janin A: TP53 status and response to treatment in breast
cancers. J Biomed Biotechnol. 2011:2845842011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Wang Y, Helland Å, Holm R, Skomedal H,
Abeler VM, Danielsen HE, Tropé CG, Børresen-Dale AL and Kristiansen
GB: TP53 mutations in early-stage ovarian carcinoma, relation to
long-term survival. Br J Cancer. 90:678–685. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Langerød A, Zhao H, Borgan Ø, Nesland JM,
Bukholm IR, Ikdahl T, Kåresen R, Børresen-Dale AL and Jeffrey SS:
TP53 mutation status and gene expression profiles are powerful
prognostic markers of breast cancer. Breast Cancer Res. 9:R302007.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Chae BJ, Bae JS, Lee A, Park WC, Seo YJ,
Song BJ, Kim JS and Jung SS: p53 as a specific prognostic factor in
triple-negative breast cancer. Jap J Clin Oncol. 39:217–224. 2009.
View Article : Google Scholar
|
|
11
|
Weisman PS, Ng CK, Brogi E, Eisenberg RE,
Won HH, Piscuoglio S, De Filippo MR, Ioris R, Akram M, Norton L, et
al: Genetic alterations of triple negative breast cancer by
targeted next-generation sequencing and correlation with tumor
morphology. Mod Pathol. 29:476–488. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wattel E, Preudhomme C, Hecquet B,
Vanrumbeke M, Ouesnel B, Deryite I, Morel P and Fenaux P: 53
Mutations are associated with resistance to chemotherapy and short
survival in hematologic malignancies. Blood. 84:3148–3157.
1994.PubMed/NCBI
|
|
13
|
Børresen-Dale AL: TP53 and breast cancer.
Hum Mutat. 21:292–300. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kato S, Han SY, Liu W, Otsuka K, Shibata
H, Kanamaru R and Ishioka C: Understanding the function-structure
and function-mutation relationships of p53 tumor suppressor protein
by high-resolution missense mutation analysis. Proc Natl Acad Sci
USA. 100:8424–8429. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
National Cancer Institute (NCI): NCI
dictionary of cancer terms. https://www.cancer.gov/publications/dictionaries/cancer-terms
|
|
16
|
Komarova EA, Chumakov PM and Gudcov AV:
Molecular genetics of cancer. TP53 in cancer origin and treatment.
Edited by Cowell JK. 9:195–221. 2009.
|
|
17
|
Hasty P and Christy BA: p53 as an
intervention target for cancer and aging. Pathobiol Aging Age Relat
Dis. 3:227022013. View Article : Google Scholar
|
|
18
|
National Center for Biotechnology
Information: The p53 tumor suppressor proteinGenes and Disease
[Internet]. National Center for Biotechnology Information;
Bethesda, MD, USA:
|
|
19
|
Sionov RV, Hayon IL and Haupt Y: The
regulation of p53 growth suppression. Madame Curie Bioscience
Database [Internet]Landes Bioscience. Austin, TX: 2000–2013
|
|
20
|
Shi D and Gu W: Dual roles of MDM2 in the
regulation of p53. Ubiquitination dependent and ubiquitination
independent mechanisms of MDM2 repression of p53 activity. Genes
Cancer. 3:240–248. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Sakaguchi K, Herrera JE, Saito S, Miki T,
Bustin M, Vassilev A, Anderson CW and Appella E: DNA damage
activates p53 through a phosphorylation-acetylation cascade. Genes
Dev. 12:2831–2841. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Hill KA and Sommer SS: p53 as a mutagen
test in breast cancer. Environ Mol Mutagen. 39:216–227. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Pharoah PD, Day NE and Caldas C: Somatic
mutations in the p53 gene and prognosis in breast cancer: A
meta-analysis. Br J Cancer. 80:1968–1973. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Hainaut P and Hollstein M: p53 and human
cancer: The first ten thousand mutations. Adv Cancer Res.
77:81–137. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Malkin D, Li FP, Strong LC, Fraumeni JF
Jr, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA,
et al: Germ line p53 mutations in a familial syndrome of breast
cancer, sarcomas, and other neoplasms. Science. 250:1233–1238.
1990. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Achatz MI, Olivier M, Le Calvez F,
Martel-Planche G, Lopes A, Rossi BM, Ashton-Prolla P, Giugliani R,
Palmero EI, Vargas FR, et al: The TP53 mutation, R337H, is
associated with Li-Fraumeni and Li-Fraumeni-like syndromes in
Brazilian families. Cancer Lett. 245:96–102. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Campomenosi P, Monti P, Aprile A,
Abbondandolo A, Frebourg T, Gold B, Crook T, Inga A, Resnick MA,
Iggo R and Fronza G: p53 mutants can often transactivate promoters
containing a p21 but not Bax or PIG3 responsive elements. Oncogene.
20:3573–3579. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Gasco M, Yulug IG and Crook T: TP53
mutations in familial breast cancer: Functional aspects. Hum Mutat.
21:301–306. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Olivier M, Eeles R, Hollstein M, Khan MA,
Harris CC and Hainaut P: The IARC TP53 database: New online
mutation analysis and recommendations to users. Hum Mutat.
19:607–614. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Li FP and Fraumeni JF Jr: Soft-tissue
sarcomas, breast cancer, and other neoplasms: A familial syndrome?
Ann Intern Med. 71:747–752. 1969. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Li FP, Fraumeni JF Jr, Mulvihill JJ,
Blattner WA, Dreyfus MG, Tucker MA and Miller RW: A cancer family
syndrome in twenty-four kindreds. Cancer Res. 48:5358–5362.
1998.
|
|
32
|
Birch JM, Heighway J, Teare MD, Kelsey AM,
Hartley AL, Tricker KJ, Crowther D, Lane DP and Santibáñez-Koref
MF: Linkage studies in a Li-Fraumeni family with increased
expression of p53 protein but no germline mutation in p53. Br J
Cancer. 70:1176–1181. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Brugières L, Gardes M, Moutou C, Chompret
A, Meresse V, Matin A, Poisson N, Flamand F, Bonaïti-Pellié C,
Lemerie J, et al: Screening for germ line p53 mutations in children
with malignant tumors and a family history of cancer. Cancer Res.
53:452–455. 1993.PubMed/NCBI
|
|
34
|
Varley JM, Evans DG and Birch JM:
Li-Fraumeni syndrome-a molecular and clinical review. Br J Cancer.
76:1–14. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Chompret A, Abel A, Stoppa-Lyonnet D,
Brugiéres L, Pagés S, Feunteun J and Bonaïti-Pellié C: Sensitivity
and predictive value of criteria for p53 germline mutation
screening. J Med Genet. 38:43–47. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Hu H, Liu J, Liao X, Zhang S, Li H, Lu R,
Li X, Lin W, Liu M, Xia Z, et al: Genetic and functional analysis
of a Li Fraumeni syndrome family in China. Sci Rep. 6:202212016.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Olivier M, Hollstein M and Hainaut P: TP53
mutations in human cancers: Origins, consequences, and clinical
use. Cold Spring Harb Perspect Biol. 2:a0010082010. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Olivier M, Goldgar DE, Sodha N, Ohgaki H,
Kleihues P, Hainaut P and Eeles RA: Li-Fraumeni and related
syndromes: Correlation between tumor type, family structure, and
TP53 genotype. Cancer Res. 63:6643–6650. 2003.PubMed/NCBI
|
|
39
|
Petitjean A, Mathe E, Kato S, Ishioka C,
Tavtigian SV, Hainaut P and Olivier M: Impact of mutant p53
functional properties on TP53 mutation patterns and tumor
phenotype: Lessons from recent developments in the IARC TP53
database. Hum Mutat. 28:622–629. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Leroy B, Fournier JL, Ishioka C, Monti P,
Inga A, Fronza G and Soussi T: The TP53 website: An integrative
resource center for the TP53 mutation database and TP53 mutant
analysis. Nucleic Acids Res. 41:(Database Issue). D962–D969. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Assumpção JG, Seidinger AL, Mastellato MJ,
Ribeiro RC, Zambetti GP, Ganti R, Srivastava K, Shurtleff S, Pei D,
Zeferino LC, et al: Association of the germline TP53 R337H mutation
with breast cancer in southern Brazil. BMC Cancer. 8:3572008.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Petitjean A, Achatz MI, Borresen-Dale AL,
Hainaut P and Olivier M: TP53 mutations in human cancers:
Functional selection and impact on cancer prognosis and outcomes.
Oncogene. 26:2157–2165. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Brachmann RK, Vidal M and Boeke JD:
Dominant-negative p53 mutations selected in yeast hit cancer hot
spots. Proc Natl Acad Sci USA. 93:4091–4095. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Soussi T: The p53 tumor suppressor gene:
From molecular biology to clinical investigation. Ann N Y Acad Sci.
910:121–139. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Bull SB, Ozcelik H, Pinnaduwage D,
Blackstein ME, Sutherland DAJ, Pritchard KI, Tzontcheva AT,
Sidlofsky S, Hanna WM, Qizilbash AH, et al: The combination of p53
mutation and neu/erbB-2 amplification is associated with poor
survival in node-negative breast cancer. J Clin Oncol. 22:86–96.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Overgaard J, Yilmaz M, Guldberg P, Hansen
LL and Alsner J: TP53 mutation is an independent prognostic marker
for poor outcome in both node-negative and node-positive breast
cancer. Acta Oncol. 39:327–333. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Miller LD, Smeds J, George J, Vega VB,
Vergara L, Ploner A, Pawitan Y, Hall P, Klaar S, Liu ET and Bergh
J: An expression signature for p53 status in human breast cancer
predicts mutation status, transcriptional effects, and patient
survival. Proc Natl Acad Sci USA. 102:13550–13555. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Andersson J, Larsson L, Klaar S, Holmberg
L, Nilsson J, Inganäs M, Carlsson G, Ohd J, Rudenstam CM,
Gustavsson B and Bergh J: Worse survival for TP53 (p53)-mutated
breast cancer patients receiving adjuvant CMF. Ann Oncol.
16:743–748. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Knoop AS, Bentzen SM, Nielsen MM,
Rasmussen BB and Rose C: Value of epidermal growth factor receptor,
HER2, p53, and steroid receptors in predicting the efficacy of
tamoxifen in high-risk postmenopausal breast cancer patients. J
Clin Oncol. 19:3376–3384. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Berry DA, Muss HB, Thor AD, Dressler L,
Liu ET, Broadwater G, Budman DR, Henderson C, Barcos M, Hayes D and
Norton L: HER-2/neu and p53 expression versus tamoxifen resistance
in estrogen receptor-positive, node-positive breast cancer. J Clin
Oncol. 18:3471–3479. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Bergh J, Norberg T, Sjögren S, Lindgren A
and Holmberg L: Complete sequencing of the p53 gene provides
prognostic information in breast cancer patients, particularly in
relation to adjuvant systemic therapy and radiotherapy. Nat Med.
1:1029–1034. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Berns EM, Foekens JA, Vossen R, Look MP,
Devilee P, Henzen-Logmans SC, van Staveren IL, van Putten WL,
Inganäs M, Meijer-van Gelder ME, et al: Complete sequencing of TP53
predicts poor response to systemic therapy of advanced breast
cancer. Cancer Res. 60:2155–2162. 2000.PubMed/NCBI
|
|
53
|
Powell BL, Bydder S, Grieu F,
Gnanasampanthan G, Elsaleh H, Seshadri R, Berns EMJJ and Iacopetta
B: Prognostic value of TP53 gene mutation in adjuvant treated
breast cancer patients. Breast Cancer Res Treat. 69:65–68. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Clahsen PC, van de Velde CJ, Duval C,
Pallud C, Mandarad AM, Delobelle-Deroide A, van den Broek L,
Sahmoud TM and van den Vijver: p53 protein accumulation and
response to adjuvant chemotherapy in premenopausal women with
node-negative early breast cancer. J Clin Oncol. 16:470–479. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Cuny M, Kramar A, Courjal F, Johannsdottir
V, Iacopetta B, Fontaine H, Grenier J, Culine S and Theillet C:
Relating genotype and phenotype in breast cancer: An analysis of
the prognostic significance of amplification at eight different
genes or loci and of p53 mutations. Cancer Res. 60:1077–1083.
2000.PubMed/NCBI
|
|
56
|
Thorlacius S, Börresen AL and Eyfjörd JE:
Somatic p53 mutations in human breast carcinomas in an Icelandic
population: A prognostic factor. Cancer Res. 53:1637–1641.
1993.PubMed/NCBI
|
|
57
|
Bueno Martinez A, Molina MA, Fielding A,
Bertran-Alamillo J, Dougherty BA, Lai Z, Hodgson D, de las Casas
Mayo C, Rowe P, Gil M, et al: LBA42-Disruptive mutations in TP53
associate with survival benefit in a PARPi trial in ovarian cancer.
ESMO. 2017.
|
|
58
|
Dahabreh IJ, Schmid CH, Lau J, Varvarigou
V, Murray S and Trikalinos TA: Genotype misclassification in
genetic association studies of the rs1042522 TP53 (Arg72Pro)
polymorphism: A systematic review of studies of breast, lung,
colorectal, ovarian, and endometrial cancer. Am J Epidemiol.
177:1317–1325. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Beckman G, Birgander R, Själander A, Saha
N, Holmberg PA, Kivelä A and Beckman L: Is p53 polymorphism
maintained by natural selection? Hum Hered. 44:266–270. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Langerod A, Burdette L, Yeager M,
Presswalla S, et al: Pattern of genetic variation in the tp53 locus
indicates linkage disequilibrium extends across the flanking genes,
ATP1B2 and WDR79. Hum Mutat (in press). 2006.
|
|
61
|
Pim D and Banks L: p53 Polymorphic
variants at codon 72 exert different effects on cell cycle
progression. Int J Cancer. 108:196–199. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Siddique M and Sabapathy K:
Trp53-dependent DNA-repair is affected by the codon 72
polymorphism. Oncogene. 25:3489–3500. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Dumont P, Leu JI, Della Pietra AC III,
George DL and Murphy M: The codon 72 polymorphic variants of p53
have markedly different apoptotic potential. Nat Genet. 33:357–365.
2003. View
Article : Google Scholar : PubMed/NCBI
|
|
64
|
Bond GL, Hu W, Bond EE, Robins H, Lutzker
SG, Arva NC, Bargonetti J, Bartel F, Taubert H, Wuerl P, et al: A
single nucleotide polymorphism in the MDM2 promoter attenuates the
p53 tumor suppressor pathway and accelerates tumor formation in
humans. Cell. 119:591–602. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Harris SL, Gil G, Hu W, Robins H, Bond E,
Hirshfield K, Feng Z, Yu X, Teresky AK, Bond G and Levine AJ:
Single-nucleotide polymorphisms in the p53 pathway. Cold Spring
Harb Symp Quant Biol. 70:111–119. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Toyama T, Zhang Z, Nishio M, Hamaguchi M,
Kondo N, Iwase H, Iwata H, Takahashi S, Yamashita H and Fujii Y:
Association of TP53 codon 72 polymorphism and the outcome of
adjuvant therapy in breast cancer patients. Breast Cancer Res.
9:R342007. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Paulin FE, O'Neill M, McGregor G, Cassidy
A, Ashfield A, Ali CW, Munro AJ, Baker L, Purdie CA, Lane DP and
Thompson AM: MDM2 SNP309 is associated with high grade node
positive breast tumours and is in linkage disequilibrium with a
novel MDM2 intron 1 polymorphism. BMC Cancer. 8:2812008. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
NCCN Clinical Practice Guidelines in
Oncology (NCCN Guidelines®): Genetic/Familial High-Risk
Assessment: Breast and Ovarian. Version I. simpleNCCN.orgFort Washington, DC: 2015
|
|
69
|
Hu Z, Li X, Qu X, He Y, Ring BZ, Song E
and Su L: Intron 3 16 bp duplication polymorphism of TP53
contributes to cancer susceptibility: A meta-analysis.
Carcinogenesis. 31:643–647. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Bellini I, Pitto L, Marini MG, Porcu L,
Moi P, Garritano S, Boldrini L, Rainaldi G, Fontanini G, Chiarugi
M, et al: DeltaN133p53 expression levels in relation to haplotypes
of the TP53 internal promoter region. Hum Mutat. 31:456–465. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Li X, Dumont P, Della Pietra A, Shetler C
and Murphy ME: The codon 47 polymorphism in p53 is functionally
significant. J Biol Chem. 280:24245–24251. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
National Institute for Health and Care
Excellence (NICE): Familial breast cancer: classification, care and
managing breast cancer and related risks in people with a family
history of breast cancerClinical guideline [CG164]. NICE; London:
2013, https://www.nice.org.uk/guidance/cg164June. 2013
|
|
73
|
The Institute of Cancer Research (ICR):
Division of Genetics and EpidemiologyICR; London: https://www.icr.ac.uk/our-research/research-divisions/division-of-genetics-and-epidemiologyCancer
Genetic Clinical Protocols.
|