1
|
Goodenberger ML and Jenkins RB: Genetics
of adult glioma. Cancer Genet. 205:613–621. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yan Y and Jiang Y: RACK1 affects glioma
cell growth and differentiation through the CNTN2-mediated
RTK/Ras/MAPK pathway. Int J Mol Med. 37:251–257. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Marumoto T and Saya H: Molecular biology
of glioma. Adv Exp Med Biol. 746:2–11. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhang R, Wang R, Chen Q and Chang H:
Inhibition of autophagy using 3-methyladenine increases
cisplatininduced apoptosis by increasing endoplasmic reticulum
stress in U251 human glioma cells. Mol Med Rep. 12:1727–1732. 2015.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Zheng K, Liu W, Liu Y, Jiang C and Qian Q:
Microrna-133a suppresses colorectal cancer cell invasion by
targeting fascin1. Oncol Lett. 9:869–874. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Liang ML, Hsieh TH, Ng KH, Tsai YN, Tsai
CF, Chao ME, Liu DJ, Chu SS, Chen W, Liu YR, et al: Downregulation
of miR-137 and miR-6500-3p promotes cell proliferation in pediatric
high-grade gliomas. Oncotarget. 7:19723–19737. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Xu J, Xu W and Zhu J: Propofol suppresses
proliferation and invasion of glioma cells by upregulating
microRNA-218 expression. Mol Med Rep. 12:4815–4820. 2015.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Liu C, Liang S, Xiao S, Lin Q, Chen X, Wu
Y and Fu J: MicroRNA-27b inhibits Spry2 expression and promotes
cell invasion in glioma U251 cells. Oncol Lett. 9:1393–1397. 2015.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang H, Tao T, Yan W, Feng Y, Wang Y, Cai
J, You Y, Jiang T and Jiang C: Upregulation of miR-181s reverses
mesenchymal transition by targeting KPNA4 in glioblastoma. Sci Rep.
5:130722015. View Article : Google Scholar : PubMed/NCBI
|
12
|
McDaneld TG, Smith TP, Doumit ME, Miles
JR, Coutinho LL, Sonstegard TS, Matukumalli LK, Nonneman DJ and
Wiedmann RT: MicroRNA transcriptome profiles during swine skeletal
muscle development. BMC Genomics. 10:772009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Prats-Puig A, Ortega FJ, Mercader JM,
Moreno-Navarrete JM, Moreno M, Bonet N, Ricart W, López-Bermejo A
and Fernández-Real JM: Changes in circulating microRNAs are
associated with childhood obesity. J Clin Endocrinol Metab.
98:E1655–E1660. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kumarswamy R, Anker SD and Thum T:
MicroRNAs as circulating biomarkers for heart failure: Questions
about MiR-423-5p. Circ Res. 106:e82010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Oak SR, Murray L, Herath A, Sleeman M,
Anderson I, Joshi AD, Coelho AL, Flaherty KR, Toews GB, Knight D,
et al: A micro RNA processing defect in rapidly progressing
idiopathic pulmonary fibrosis. PLoS One. 6:e212532011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Xiao B, Wang Y, Li W, Baker M, Guo J,
Corbet K, Tsalik EL, Li QJ, Palmer SM, Woods CW, et al: Plasma
microRNA signature as a noninvasive biomarker for acute
graft-versus-host disease. Blood. 122:3365–3375. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hui AB, Lenarduzzi M, Krushel T, Waldron
L, Pintilie M, Shi W, Perez-Ordonez B, Jurisica I, O'Sullivan B,
Waldron J, et al: Comprehensive MicroRNA profiling for head and
neck squamous cell carcinomas. Clin Cancer Res. 16:1129–1139. 2010.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Lin J, Huang S, Wu S, Ding J, Zhao Y,
Liang L, Tian Q, Zha R, Zhan R and He X: MicroRNA-423 promotes cell
growth and regulates G(1)/S transition by targeting p21Cip1/Waf1 in
hepatocellular carcinoma. Carcinogenesis. 32:1641–1647. 2011.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhao H, Gao A, Zhang Z, Tian R, Luo A, Li
M, Zhao D, Fu L, Fu L, Dong JT and Zhu Z: Genetic analysis and
preliminary function study of miR-423 in breast cancer. Tumour
Biol. 36:4763–4771. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Li S, Zeng A, Hu Q, Yan W, Liu Y and You
Y: miR-423-5p contributes to a malignant phenotype and temozolomide
chemoresistance in glioblastomas. Neuro Oncol. 19:55–65. 2017.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Arocho A, Chen B, Ladanyi M and Pan Q:
Validation of the 2-DeltaDeltaCt calculation as an alternate method
of data analysis for quantitative PCR of BCR-ABL P210 transcripts.
Diagn Mol Pathol. 15:56–61. 2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lewis BP, Burge CB and Bartel DP:
Conserved seed pairing, often flanked by adenosines, indicates that
thousands of human genes are microRNA targets. Cell. 120:15–20.
2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Guan G, Zhang D, Zheng Y, Wen L, Yu D, Lu
Y and Zhao Y: microRNA-423-3p promotes tumor progression via
modulation of AdipoR2 in laryngeal carcinoma. Int J Clin Exp
Pathol. 7:5683–5691. 2014.PubMed/NCBI
|
24
|
Li HT, Zhang H, Chen Y, Liu XF and Qian J:
MiR-423-3p enhances cell growth through inhibition of p21Cip1/Waf1
in colorectal cancer. Cell Physiol Biochem. 37:1044–1054. 2015.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Tang W, Ahmad S, Shestopalov VI and Lin X:
Pannexins are new molecular candidates for assembling gap junctions
in the cochlea. Neuroreport. 19:1253–1257. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Swayne LA and Bennett SA: Connexins and
pannexins in neuronal development and adult neurogenesis. BMC Cell
Biol. 17 Suppl 1:S102016. View Article : Google Scholar
|
27
|
Swayne LA, Sorbara CD and Bennett SA:
Pannexin 2 is expressed by postnatal hippocampal neural progenitors
and modulates neuronal commitment. J Biol Chem. 285:24977–24986.
2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Penuela S, Harland L, Simek J and Laird
DW: Pannexin channels and their links to human disease. Biochem J.
461:371–381. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lai CP, Bechberger JF and Naus CC:
Pannexin2 as a novel growth regulator in C6 glioma cells. Oncogene.
28:4402–4408. 2009. View Article : Google Scholar : PubMed/NCBI
|