|
1
|
Grivennikov SI, Greten FR and Karin M:
Immunity, inflammation, and cancer. Cell. 140:883–899. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Colotta F, Allavena P, Sica A, Garlanda C
and Mantovani A: Cancer-related inflammation, the seventh hallmark
of cancer: Links to genetic instability. Carcinogenesis.
30:1073–1081. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Hanahan D and Weinberg R: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Wang L, Liu Z, Balivada S, Shrestha T,
Bossmann S, Pyle M, Pappan L, Shi J and Troyer D: Interleukin-1β
and transforming growth factor-β cooperate to induce neurosphere
formation and increase tumorigenicity of adherent LN-229 glioma
cells. Stem Cell Res Ther. 3:52012. View
Article : Google Scholar : PubMed/NCBI
|
|
5
|
Lin L, Liu A, Peng Z, Lin HJ, Li PK, Li C
and Lin J: STAT3 is necessary for proliferation and survival in
colon cancer-initiating cells. Cancer Res. 71:7226–7237. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Srivastava SK, Bhardwaj A, Arora S, Tyagi
N, Singh AP, Carter JE, Scammell JG, Fodstad Ø and Singh S:
Interleukin-8 is a key mediator of FKBP51-induced melanoma growth,
angiogenesis and metastasis. Br J Cancer. 112:1772–1781. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Tao H, Lu L, Xia Y, Dai F, Wang Y, Bao Y,
Lundy SK, Ito F, Pan Q, Zhang X, et al: Antitumor effector B cells
directly kill tumor cells via the Fas/FasL pathway and are
regulated by IL-10. Eur J Immunol. 45:999–1009. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Yoshimoto T, Chiba Y, Furusawa J, Xu M,
Tsunoda R, Higuchi K and Mizoguchi I: Potential clinical
application of interleukin-27 as an antitumor agent. Cancer Sci.
106:1103–1110. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kang YH, Park MY, Yoon DY, Han SR, Lee CI,
Ji NY, Myung PK, Lee HG, Kim JW, Yeom YI, et al: Dysregulation of
overexpressed IL-32α in hepatocellular carcinoma suppresses cell
growth and induces apoptosis through inactivation of NF-κB and
Bcl-2. Cancer Lett. 318:226–233. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Nishida A, Andoh A, Inatomi O and Fujiyama
Y: Interleukin-32 expression in the pancreas. J Biol Chem.
284:17868–17876. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Yousif NG, Al-Amran FG, Hadi N, Lee J and
Adrienne J: Expression of IL-32 modulates NF-κB and p38 MAP kinase
pathways in human esophageal cancer. Cytokine. 61:223–227. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zeng Q, Li S, Zhou Y, Ou W, Cai X, Zhang
L, Huang W, Huang L and Wang Q: Interleukin-32 contributes to
invasion and metastasis of primary lung adenocarcinoma via
NF-kappaB induced matrix metalloproteinases 2 and 9 expression.
Cytokine. 65:24–32. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Tsai CY, Wang CS, Tsai MM, Chi HC, Cheng
WL, Tseng YH, Chen CY, Lin CD, Wu JI, Wang LH and Lin KH:
Interleukin-32 increases human gastric cancer cell invasion
associated with tumor progression and metastasis. Clin Cancer Res.
20:2276–2288. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Yun HM, Park KR, Kim EC, Han SB, Yoon DY
and Hong JT: IL-32α suppresses colorectal cancer development via
TNFR1-mediated death signaling. Oncotarget. 6:9061–9072. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Park JS, Choi SY, Lee JH, Lee M, Nam ES,
Jeong AL, Lee S, Han S, Lee MS, Lim JS, et al: Interleukin-32β
stimulates migration of MDA-MB-231 and MCF-7cells via the
VEGF-STAT3 signaling pathway. Cell Oncol (Dordr). 36:493–503. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Suga H, Sugaya M, Miyagaki T, Kawaguchi M,
Fujita H, Asano Y, Tada Y, Kadono T and Sato S: The role of IL-32
in cutaneous T-cell lymphoma. J Invest Dermatol. 134:1428–1435.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Dahl CA, Schall RP, He HL and Cairns JS:
Identification of a novel gene expressed in activated natural
killer cells and T cells. J Immunol. 148:597–603. 1992.PubMed/NCBI
|
|
18
|
Kim SH, Han SY, Azam T, Yoon DY and
Dinarello CA: Interleukin-32: A cytokine and inducer of TNFalpha.
Immunity. 22:131–142. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kang JW, Park YS, Lee DH, Kim MS, Bak Y,
Ham SY, Park SH, Kim H, Ahn JH, Hong JT and Yoon DY: Interaction
network mapping among IL-32 isoforms. Biochimie. 101:248–251. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Goda C, Kanaji T, Kanaji S, Tanaka G,
Arima K, Ohno S and Izuhara K: Involvement of IL-32 in
activation-induced cell death in T cells. Int Immunol. 18:233–240.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Choi JD, Bae SY, Hong JW, Azam T,
Dinarello CA, Her E, Choi WS, Kim BK, Lee CK, Yoon DY, et al:
Identification of the most active interleukin-32 isoform.
Immunology. 126:535–542. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Heinhuis B, Koenders MI, van de Loo FA,
Netea MG, van den Berg WB and Joosten LA: Inflammation-dependent
secretion and splicing of IL-32{gamma} in rheumatoid arthritis.
Proc Natl Acad Sci USA. 108:4962–4967. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Heinhuis B, Plantinga TS, Semango G,
Küsters B, Netea MG, Dinarello CA, Smit JWA, Netea-Maier RT and
Joosten LAB: Alternatively spliced isoforms of IL-32 differentially
influence cell death pathways in cancer cell lines. Carcinogenesis.
37:197–205. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Jung MY, Son MH, Kim SH, Cho D and Kim TS:
IL-32gamma induces the maturation of dendritic cells with Th1- and
Th17-polarizing ability through enhanced IL-12 and IL-6 production.
J Immunol. 186:6848–6859. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yun HM, Kim JA, Hwang CJ, Jin P, Baek MK,
Lee JM, Hong JE, Lee SM, Han SB, Oh KW, et al: Neuroinflammatory
and amyloidogenic activities of IL-32β in Alzheimer's disease. Mol
Neurobiol. 52:341–352. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Hong JT, Son DJ, Lee CK, Yoon DY, Lee DH
and Park MH: Interleukin 32, Inflammation and Cancer. Pharmacol
Ther. 174:127–137. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Kang JW, Park YS, Lee DH, Kim JH, Kim MS,
Bak Y, Hong J and Yoon DY: Intracellular interaction of interleukin
(IL)-32α with protein kinase Cε (PKCε) and STAT3 protein augments
IL-6 production in THP-1 promonocytic cells. J Biol Chem.
287:35556–35564. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Park YS, Kang JW, Lee DH, Kim MS, Bak Y,
Yang Y, Lee HG, Hong J and Yoon DY: Interleukin-32α downregulates
the activity of the B-cell CLL/lymphoma 6 protein by inhibiting
protein kinase Cε-dependent SUMO-2 modification. Oncotarget.
5:8765–8777. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Bak Y, Kang JW, Kim MS, Park YS, Kwon T,
Kim S, Hong J and Yoon DY: IL-32θ downregulates CCL5 expression
through its interaction with PKCδ and STAT3. Cell Signal.
26:3007–3015. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kang JW, Park YS, Lee DH, Kim MS, Bak Y,
Park SH, Ham SY, Yang Y, Hong JT and Yoon DY: Interleukin-32δ
interacts with IL-32β and inhibits IL-32β-mediated IL-10
production. FEBS Lett. Oct 25–2013.(Epub ahead of print).
View Article : Google Scholar
|
|
31
|
Hasegawa H, Thomas HJ, Schooley K and Born
TL: Native IL-32 is released from intestinal epithelial cells via a
non-classical secretory pathway as a membrane-associated protein.
Cytokine. 53:74–83. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Novick D, Rubinstein M, Azam T, Rabinkov
A, Dinarello CA and Kim SH: Proteinase 3 is an IL-32 binding
protein. Proc Natl Acad Sci USA. 103:3316–3321. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Heinhuis B, Koenders MI, van den Berg WB,
Netea MG, Dinarello CA and Joosten LA: Interleukin 32 (IL-32)
contains a typical α-helix bundle structure that resembles focal
adhesion targeting region of focal adhesion kinase-1. J Biol Chem.
287:5733–5743. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Netea MG, Lewis EC, Azam T, Joosten LA,
Jaekal J, Bae SY, Dinarello CA and Kim SH: Interleukin-32 induces
the differentiation of monocytes into macrophage-like cells. Proc
Natl Acad Sci USA. 105:3515–3520. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Ohmatsu H, Humme D, Gonzalez J, Gulati N,
Möbs M, Sterry W and Krueger JG: IL-32 induces indoleamine
2,3-dioxygenase+CD1c+ dendritic cells and
indoleamine 2,3-dioxygenase+CD163+
macrophages: Relevance to mycosis fungoides progression.
OncoImmunology. 6:e11812372016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Joosten LA, Netea MG, Kim SH, Yoon DY,
Oppers-Walgreen B, Radstake TR, Barrera P, van de Loo FA, Dinarello
CA and van den Berg WB: IL-32, a proinflammatory cytokine in
rheumatoid arthritis. Proc Natl Acad Sci USA. 103:3298–3303. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Calabrese F, Baraldo S, Bazzan E, Lunardi
F, Rea F, Maestrelli P, Turato G, Lokar-Oliani K, Papi A, Zuin R,
et al: IL-32, a novel proinflammatory cytokine in chronic
obstructive pulmonary disease. Am J Respir Crit Care Med.
178:894–901. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Choi J, Bae S, Hong J, Ryoo S, Jhun H,
Hong K, Yoon D, Lee S, Her E, Choi W, et al: Paradoxical effects of
constitutive human IL-32{gamma} in transgenic mice during
experimental colitis. Proc Natl Acad Sci USA. 107:21082–21086.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Bai X, Kim SH, Azam T, McGibney MT, Huang
H, Dinarello CA and Chan ED: IL-32 is a host protective cytokine
against Mycobacterium tuberculosis in differentiated THP-1 human
macrophages. J Immunol. 184:3830–3840. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Sorrentino C and Di Carlo E: Expression of
IL-32 in human lung cancer is related to the histotype and
metastatic phenotype. Am J Respir Crit Care Med. 180:769–779. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lee S, Kim JH, Kim H, Kang JW, Kim SH,
Yang Y, Kim J, Park J, Park S, Hong J and Yoon DY: Activation of
the interleukin-32 pro-inflammatory pathway in response to human
papillomavirus infection and over-expressionof interleukin-32
controls the expression of the humanpapillomavirus oncogene.
Immunology. 132:410–420. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Marcondes AM, Mhyre AJ, Stirewalt DL, Kim
SH, Dinarello CA and Deeg HJ: Dysregulation of IL-32 in
myelodysplastic syndrome and chronic myelomonocytic leukemia
modulates apoptosis and impairs NK function. Proc Natl Acad Sci
USA. 105:2865–2870. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wang S, Chen F and Tang L: IL-32 promotes
breast cancer cell growth and invasiveness. Oncol Lett. 9:305–307.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lin X, Yang L, Wang G, Zi F, Yan H, Guo X,
Chen J, Chen Q, Huang X, Li Y, et al: Interleukin-32α promotes the
proliferation of multiple myeloma cells by inducing production of
IL-6 in bone marrow stromal cells. Oncotarget. 8:92841–92854. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Oh JH, Cho MC, Kim JH, Lee SY, Kim HJ,
Park ES, Ban JO, Kang JW, Lee DH, Shim JH, et al: IL-32γ inhibits
cancer cell growth through inactivation of NF-κB and STAT3 signals.
Oncogene. 30:3345–3359. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Yun HM, Oh JH, Shim JH, Ban JO, Park KR,
Kim JH, Lee DH, Kang JW, Park YH, Yu D, et al: Antitumor activity
of IL-32β through the activation of lymphocytes, and the
inactivation of NF-κB and STAT3 signals. Cell Death Dis.
4:e6402013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Cheon S, Lee JH, Park S, Bang SI, Lee WJ,
Yoon DY, Yoon SS, Kim T, Min H, Cho BJ, et al: Overexpression of
IL-32alpha increases natural killer cell-mediated killing through
up-regulation of Fas and UL16-binding protein 2 (ULBP2) expression
in human chronic myeloid leukemia cells. J Biol Chem.
286:12049–12055. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Park ES, Yoo JM, Yoo HS, Yoon DY, Yun YP
and Hong J: IL-32γ enhances TNF-α-induced cell death in colon
cancer. Mol Carcinog. 53 Suppl 1:E23–E35. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Qu Y, Taylor JL, Bose A and Storkus WJ:
Therapeutic effectiveness of intratumorally delivered dendritic
cells engineered to express the pro-inflammatory cytokine,
interleukin (IL)-32. Cancer Gene Ther. 18:663–673. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Alberti L, Bachelot T, Duc A, Biota C and
Blay JY: A spliced isoform of interleukin 6 mRNA produced by renal
cell carcinoma encodes for an interleukin 6 inhibitor. Cancer Res.
65:2–5. 2005.PubMed/NCBI
|
|
51
|
Sahoo A, Jung YM, Kwon HK, Yi HJ, Lee S,
Chang S, Park ZY, Hwang KC and Im SH: A novel splicing variant of
mouse interleukin (IL)-24 antagonizes IL-24-induced apoptosis. J
Biol Chem. 283:28860–28872. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Guenin S, Mouallif M, Hubert P, Jacobs N,
Krusy N, Duray A, Ennaji MM, Saussez S and Delvenne P:
Interleukin-32 expression is associated with a poorer prognosis in
head and neck squamous cell carcinoma. Mol Carcinog. 53:667–673.
2014.PubMed/NCBI
|
|
53
|
Lee J, Kim KE, Cheon S, Song JH, Houh Y,
Kim TS, Gil M, Lee KJ, Kim S, Kim D, et al: Interleukin-32α induces
migration of human melanoma cells through downregulation of
E-cadherin. Oncotarget. 7:65825–65836. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhou Y, Hu Z, Li N and Jiang R:
Interleukin-32 stimulates osteosarcoma cell invasion and motility
via AKT pathway-mediated MMP-13 expression. Int J Mol Med.
35:1729–1733. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Bak Y, Kwon T, Bak IS, Hong J, Yu DY and
Yoon DY: IL-32θ inhibits stemness and epithelial-mesenchymal
transition of cancer stem cells via the STAT3 pathway in colon
cancer. Oncotarget. 7:7307–7317. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Nold-Petry CA, Rudloff I, Baumer Y, Ruvo
M, Marasco D, Botti P, Farkas L, Cho SX, Zepp JA, Azam T, et al:
IL-32 promotes angiogenesis. J Immunol. 192:589–602. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Mabilleau G and Sabokbar A: Interleukin-32
promotes osteoclast differentiation but not osteoclast activation.
PLoS One. 4:e41732009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Netea MG, Azam T, Ferwerda G, Girardin SE,
Walsh M, Park JS, Abraham E, Kim JM, Yoon DY, Dinarello CA and Kim
SH: IL-32 synergizes with nucleotide oligomerization domain (NOD) 1
and NOD2 ligands for IL-1beta and IL-6 production through a caspase
1-dependent mechanism. Proc Natl Acad Sci USA. 102:16309–16314.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Joosten LA, Heinhuis B, Netea MG and
Dinarello CA: Novel insights into the biology of interleukin-32.
Cell Mol Life Sci. 70:3883–3892. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Plantinga TS, Costantini I, Heinhuis B,
Huijbers A, Semango G, Kusters B, Netea MG, Hermus AR, Smit JW,
Dinarello CA, et al: A promoter polymorphism in human
interleukin-32 modulates its expression and influences the risk and
the outcome of epithelial cell-derived thyroid carcinoma.
Carcinogenesis. 34:1529–1535. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Chang CJ, Chien Y, Lu KH, Chang SC, Chou
YC, Huang CS, Chang CH, Chen KH, Chang YL, Tseng LM, et al:
Oct4-related cytokine effects regulate tumorigenic properties of
colorectal cancer cells. Biochem Biophys Res Commun. 415:245–251.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Majid S, Dar AA, Saini S, Yamamura S,
Hirata H, Tanaka Y, Deng G and Dahiya R: MicroRNA-205-directed
transcriptional activation of tumor suppressor genes in prostate
cancer. Cancer. 116:5637–5649. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zaman MS, Thamminana S, Shahryari V,
Chiyomaru T, Deng G, Saini S, Majid S, Fukuhara S, Chang I, Arora
S, et al: Inhibition of PTEN gene expression by oncogenic
miR-23b-3p in renal cancer. PLoS One. 7:e502032012. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Park JS, Lee S, Jeong AL, Han S, Ka HI,
Lim JS, Lee MS, Yoon DY, Lee JH and Yang Y: Hypoxia-induced IL-32β
increases glycolysis in breast cancer cells. Cancer Lett.
356:800–808. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zahoor M, Westhrin M, Aass KR, Moen SH,
Misund K, Psonka-Antonczyk KM, Giliberto M, Buene G, Sundan A,
Waage A, et al: Hypoxia promotes IL-32 expression in myeloma cells,
and high expression is associated with poor survival and bone loss.
Blood Adv. 1:2656–2666. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Fukamachi T, Ikeda S, Wang X, Saito H,
Tagawa M and Kobayashi H: Gene expressions for signal transduction
under acidic conditions. Genes (Basel). 4:65–85. 2013. View Article : Google Scholar : PubMed/NCBI
|