|
1
|
Balch CM, Gershenwald JE, Soong SJ,
Thompson JF, Atkins MB, Byrd DR, Buzaid AC, Cochran AJ, Coit DG,
Ding S, et al: Final version of 2009 AJCC melanoma staging and
classification. J Clin Oncol. 27:6199–6206. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Bray F, Jemal A, Grey N, Ferlay J and
Forman D: Global cancer transitions according to the human
development index (2008-2030): A population-based study. Lancet
Oncol. 13:790–801. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Shain AH and Bastian BC: From melanocytes
to melanomas. Nat Rev Cancer. 16:345–358. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Shitara D, Nascimento MM, Puig S, Yamada
S, Enokihara MM, Michalany N and Bagatin E: Nevus-associated
melanomas: Clinicopathologic features. Am J Clin Pathol.
142:485–491. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Bardeesy N, Bastian BC, Hezel A, Pinkel D,
DePinho RA and Chin L: Dual inactivation of RB and p53 pathways in
RAS-induced melanomas. Mol Cell Biol. 21:2144–2153. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Vredeveld LC, Possik PA, Smit MA, Meissl
K, Michaloglou C, Horlings HM, Ajouaou A, Kortman PC, Dankort D,
McMahon M, et al: Abrogation of BRAFV600E-induced senescence by
PI3K pathway activation contributes to melanomagenesis. Genes Dev.
26:1055–1069. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Costin GE and Hearing VJ: Human skin
pigmentation: Melanocytes modulate skin color in response to
stress. FASEB J. 21:976–994. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Pollock PM, Harper UL, Hansen KS, Yudt LM,
Stark M, Robbins CM, Moses TY, Hostetter G, Wagner U, Kakareka J,
et al: High frequency of BRAF mutations in nevi. Nat Genet.
33:19–20. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
9
|
Poynter JN, Elder JT, Fullen DR, Nair RP,
Soengas MS, Johnson TM, Redman B, Thomas NE and Gruber SB: BRAF and
NRAS mutations in melanoma and melanocytic nevi. Melanoma Res.
16:267–273. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Michaloglou C, Vredeveld LC, Soengas MS,
Denoyelle C, Kuilman T, van der Horst CM, Majoor DM, Shay JW, Mooi
WJ and Peeper DS: BRAFE600-associated senescence-like cell cycle
arrest of human naevi. Nature. 436:720–724. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Johmura Y, Shimada M, Misaki T, Naiki-Ito
A, Miyoshi H, Motoyama N, Ohtani N, Hara E, Nakamura M, Morita A,
et al: Necessary and sufficient role for a mitosis skip in
senescence induction. Mol Cell. 55:73–84. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Lin WM, Luo S, Muzikansky A, Lobo AZ,
Tanabe KK, Sober AJ, Cosimi AB, Tsao H and Duncan LM: Outcome of
patients with de novo versus nevus-associated melanoma. J Am Acad
Dermatol. 72:54–58. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Smith AP, Hoek K and Becker D:
Whole-genome expression profiling of the melanoma progression
pathway reveals marked molecular differences between nevi/melanoma
in situ and advanced-stage melanomas. Cancer Biol Ther.
4:1018–1029. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Talantov D, Mazumder A, Yu JX, Briggs T,
Jiang Y, Backus J, Atkins D and Wang Y: Novel genes associated with
malignant melanoma but not benign melanocytic lesions. Clin Cancer
Res. 11:7234–7242. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Shepelin D, Korzinkin M, Vanyushina A,
Aliper A, Borisov N, Vasilov R, Zhukov N, Sokov D, Prassolov V,
Gaifullin N, et al: Molecular pathway activation features linked
with transition from normal skin to primary and metastatic
melanomas in human. Oncotarget. 7:656–670. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Barrett T, Wilhite SE, Ledoux P,
Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH,
Sherman PM, Holko M, et al: NCBI GEO: Archive for functional
genomics data sets-update. Nucleic Acids Res. 41:D991–D995. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Tremante E, Ginebri A, Lo Monaco E,
Benassi B, Frascione P, Grammatico P, Cappellacci S, Catricalà C,
Arcelli D, Natali PG, et al: A melanoma immune response signature
including Human Leukocyte Antigen-E. Pigment Cell Melanoma Res.
27:103–112. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Mitsui H, Kiecker F, Shemer A, Cannizzaro
MV, Wang CQ, Gulati N, Ohmatsu H, Shah KR, Gilleaudeau P,
Sullivan-Whalen M, et al: Discrimination of dysplastic nevi from
common melanocytic nevi by cellular and molecular criteria. J
Invest Dermatol. 136:2030–2040. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Raskin L, Fullen DR, Giordano TJ, Thomas
DG, Frohm ML, Cha KB, Ahn J, Mukherjee B, Johnson TM and Gruber SB:
Transcriptome profiling identifies HMGA2 as a biomarker of melanoma
progression and prognosis. J Invest Dermatol. 133:2585–2592. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
R Core Team: R: A language and environment
for statistical computing. R Foundation for Statistical Computing.
Vienna, Austria. 2015.
|
|
21
|
Gentleman RC, Carey VJ, Bates DM, Bolstad
B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, et al:
Bioconductor: Open software development for computational biology
and bioinformatics. Genome Biol. 5:R802004. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Irizarry RA, Hobbs B, Collin F,
Beazer-Barclay YD, Antonellis KJ, Scherf U and Speed TP:
Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics. 4:249–264.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Bolstad BM, Irizarry RA, Astrand M and
Speed TP: A comparison of normalization methods for high density
oligonucleotide array data based on variance and bias.
Bioinformatics. 19:185–193. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Smyth GK: Linear models and empirical
bayes methods for assessing differential expression in microarray
experiments. Stat Appl Genet Mol Biol. 3:Article3. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Hoaglin DC, Mosteller F and Tukey JW:
Understanding robust and exploratory data analysis. John Wiley
& Sons. 404–414. 1983.
|
|
26
|
Wickham H: ggplot2: Elegant Graphics for
Data Analysis. Springer-Verlag; New York, NY: 2009, View Article : Google Scholar
|
|
27
|
Xu J, Liu L, Zheng X, You C and Li Q:
Expression and inhibition of ADAMDEC1 in craniopharyngioma cells.
Neurol Res. 34:701–706. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Willers J, Häffner A, Zepter K, Storz M,
Urosevic M, Burg G and Dummer R: The interferon inhibiting cytokine
IK is overexpressed in cutaneous T cell lymphoma derived tumor
cells that fail to upregulate major histocompatibility complex
class II upon interferon-gamma stimulation. J Invest Dermatol.
116:874–879. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Han KH, Lee SH, Ha SA, Kim HK, Lee C, Kim
DH, Gong KH, Yoo J, Kim S and Kim JW: The functional and structural
characterization of a novel oncogene GIG47 involved in the breast
tumorigenesis. BMC Cancer. 12:2742012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Stefanska B, Cheishvili D, Suderman M,
Arakelian A, Huang J, Hallett M, Han ZG, Al-Mahtab M, Akbar SM,
Khan WA, et al: Genome-wide study of hypomethylated and induced
genes in patients with liver cancer unravels novel anticancer
targets. Clin Cancer Res. 20:3118–3132. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Müller M, Beck IM, Gadesmann J, Karschuk
N, Paschen A, Proksch E, Djonov V, Reiss K and Sedlacek R: MMP19 is
upregulated during melanoma progression and increases invasion of
melanoma cells. Mod Pathol. 23:511–521. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Planelles L, Medema JP, Hahne M and
Hardenberg G: The expanding role of APRIL in cancer and immunity.
Curr Mol Med. 8:829–844. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Liu Z, Lu H, Jiang Z, Pastuszyn A and Hu
CA: Apolipoprotein 16, a novel proapoptotic Bcl-2 homology 3-only
protein, induces mitochondria-mediated apoptosis in cancer cells.
Mol Cancer Res. 3:21–31. 2005.PubMed/NCBI
|
|
34
|
Tang Y, Yan G, Song X, Wu K, Li Z, Yang C,
Deng T, Sun Y, Hu X, Yang C, et al: STIP overexpression confers
oncogenic potential to human non-small cell lung cancer cells by
regulating cell cycle and apoptosis. J Cell Mol Med. 19:2806–2817.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Park UH, Kang MR, Kim EJ, Kwon YS, Hur W,
Yoon SK, Song BJ, Park JH, Hwang JT, Jeong JC, et al: ASXL2
promotes proliferation of breast cancer cells by linking ERα to
histone methylation. Oncogene. 14:3742–3752. 2016. View Article : Google Scholar
|
|
36
|
Kraya AA, Piao S, Xu X, Zhang G, Herlyn M,
Gimotty P, Levine B, Amaravadi RK and Speicher DW: Identification
of secreted proteins that reflect autophagy dynamics within tumor
cells. Autophagy. 11:60–74. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Singh S, Singh AP, Sharma B, Owen LB and
Singh RK: CXCL8 and its cognate receptors in melanoma progression
and metastasis. Future Oncol. 6:111–116. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Cano-Rodríguez D, Campagnoli S, Grandi A,
Parri M, Camilli E, Song C, Jin B, Lacombe A, Pierleoni A, Bombaci
M, et al: TCTN2: A novel tumor marker with oncogenic properties.
Oncotarget. 8:95256–95269. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Tomita T, Ieguchi K, Coin F, Kato Y,
Kikuchi H, Oshima Y, Kurata S and Maru Y: ZFC3H1, a zinc finger
protein, modulates IL-8 transcription by binding with celastramycin
A, a potential immune suppressor. PLoS One. 30:e1089572014.
View Article : Google Scholar
|
|
40
|
Singh R, Kapur N, Mir H, Singh N, Lillard
JW Jr and Singh S: CXCR6-CXCL16 axis promotes prostate cancer by
mediating cytoskeleton rearrangement via Ezrin activation and αvβ3
integrin clustering. Oncotarget. 9:7343–7353. 2016.
|
|
41
|
Noguchi K, Dalton AC, Howley BV, McCall
BJ, Yoshida A, Diehl JA and Howe PH: Interleukin-like EMT inducer
regulates partial phenotype switching in MITF-low melanoma cell
lines. PLoS One. 17:e01778302017. View Article : Google Scholar
|
|
42
|
Kawahara R, Bollinger JG, Rivera C,
Ribeiro AC, Brandão TB, Paes Leme AF and MacCoss MJ: A targeted
proteomic strategy for the measurement of oral cancer candidate
biomarkers in human saliva. Proteomics. 16:159–173. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Metz C, Döger R, Riquelme E, Cortés P,
Holmes C, Shaughnessy R, Oyanadel C, Grabowski C, González A and
Soza A: Galectin-8 promotes migration and proliferation and
prevents apoptosis in U87 glioblastoma cells. Biol Res. 49:332016.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Mashidori T, Shirataki H, Kamai T,
Nakamura F and Yoshida K: Increased alpha-taxilin protein
expression is associated with the metastatic and invasive potential
of renal cell cancer. Biomed Res. 32:103–110. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Dong W, Gong H, Zhang G, Vuletic S, Albers
J, Zhang J, Liang H, Sui Y and Zheng J: Lipoprotein lipase and
phospholipid transfer protein overexpression in human glioma cells
and their effect on cell growth, apoptosis, and migration. Acta
Biochim Biophys Sin (Shanghai). 49:62–73. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Petroziello J, Yamane A, Westendorf L,
Thompson M, McDonagh C, Cerveny C, Law CL, Wahl A and Carter P:
Suppression subtractive hybridization and expression profiling
identifies a unique set of genes overexpressed in non-small-cell
lung cancer. Oncogene. 23:7734–7745. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Li S, Sheng B, Zhao M, Shen Q, Zhu H and
Zhu X: The prognostic values of signal transducers activators of
transcription family in ovarian cancer. Biosci Rep. 37:BSR20170650.
2017. View Article : Google Scholar
|
|
48
|
Kim KW, Paul P, Qiao J, Lee S and Chung
DH: Enhanced autophagy blocks angiogenesis via degradation of
gastrin-releasing peptide in neuroblastoma cells. Autophagy.
9:1579–1590. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Chaudhary A, Hilton MB, Seaman S, Haines
DC, Stevenson S, Lemotte PK, Tschantz WR, Zhang XM, Saha S, Fleming
T and St Croix B: TEM8/ANTXR1 blockade inhibits pathological
angiogenesis and potentiates tumoricidal responses against multiple
cancer types. Cancer Cell. 14:212–226. 2012. View Article : Google Scholar
|
|
50
|
Phan NN, Wang CY, Chen CF, Sun Z, Lai MD
and Lin YC: Voltage-gated calcium channels: Novel targets for
cancer therapy. Oncol Lett. 14:2059–2074. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Arozarena I, Sanchez-Laorden B, Packer L,
Hidalgo-Carcedo C, Hayward R, Viros A, Sahai E and Marais R:
Oncogenic BRAF induces melanoma cell invasion by downregulating the
cGMP-specific phosphodiesterase PDE5A. Cancer Cell. 19:45–57. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Li Q, Qi B, Oka K, Shimakage M, Yoshioka
N, Inoue H, Hakura A, Kodama K, Stanbridge EJ and Yutsudo M: Link
of a new type of apoptosis-inducing gene ASY/Nogo-B to human
cancer. Oncogene. 5:3929–3936. 2001. View Article : Google Scholar
|
|
53
|
Safe S, Jin UH, Hedrick E, Reeder A and
Lee SO: Minireview: Role of orphan nuclear receptors in cancer and
potential as drug targets. Mol Endocrinol. 28:157–172. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ku AT, Shaver TM, Rao AS, Howard JM,
Rodriguez CN, Miao Q, Garcia G, Le D, Yang D, Borowiak M, et al:
TCF7L1 promotes skin tumorigenesis independently of β-catenin
through induction of LCN2. Elife. 6:e232422017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Girgis AH, Iakovlev VV, Beheshti B, Bayani
J, Squire JA, Bui A, Mankaruos M, Youssef Y, Khalil B, Khella H, et
al: Multilevel whole-genome analysis reveals candidate biomarkers
in clear cell renal cell carcinoma. Cancer Res. 15:5273–5284. 2012.
View Article : Google Scholar
|
|
56
|
Rasmussen SL, Krarup HB, Sunesen KG,
Johansen MB, Stender MT, Pedersen IS, Madsen PH and
Thorlacius-Ussing O: Hypermethylated DNA, a circulating biomarker
for colorectal cancer detection. PLoS One. 12:e01808092017.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Goeppert B, Ernst C, Baer C, Roessler S,
Renner M, Mehrabi A, Hafezi M, Pathil A, Warth A, Stenzinger A, et
al: Cadherin-6 is a putative tumor suppressor and target of
epigenetically dysregulated miR-429 in cholangiocarcinoma.
Epigenetics. 11:780–790. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhao L, Liu Y, Tong D, Qin Y, Yang J, Xue
M, Du N, Liu L, Guo B, Hou N, et al: MeCP2 promotes gastric cancer
progression through regulating FOXF1/Wnt5a/β-Catenin and
MYOD1/Caspase-3 signaling pathways. EBioMedicine. 16:87–100. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Du HQ, Wang Y, Jiang Y, Wang CH, Zhou T,
Liu HY and Xiao H: Silencing of the TPM1 gene induces
radioresistance of glioma U251 cells. Oncol Rep. 33:2807–2814.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Camacho Leal Mdel P, Sciortino M, Tornillo
G, Colombo S, Defilippi P and Cabodi S: p130Cas/BCAR1 scaffold
protein in tissue homeostasis and pathogenesis. Gene. 562:1–7.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Gao D, Herman JG and Guo M: The clinical
value of aberrant epigenetic changes of DNA damage repair genes in
human cancer. Oncotarget. 7:37331–37346. 2016.PubMed/NCBI
|
|
62
|
Zhang Y, Yuan Y, Liang P, Zhang Z, Guo X,
Xia L, Zhao Y, Shu XS, Sun S, Ying Y and Cheng Y: Overexpression of
a novel candidate oncogene KIF14 correlates with tumor progression
and poor prognosis in prostate cancer. Oncotarget. 11:45459–45469.
2017.
|
|
63
|
Yin Y, Liu W and Dai Y: SOCS3 and its role
in associated diseases. Hum Immunol. 76:775–780. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Liu G, Xiong D, Xiao R and Huang Z:
Prognostic role of fibroblast growth factor receptor 2 in human
solid tumors: A systematic review and meta-analysis. Tumour Biol.
39:10104283177074242017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Chakravarti N, Ivan D, Trinh VA, Glitza
IC, Curry JL, Torres-Cabala C, Tetzlaff MT, Bassett RL, Prieto VG
and Hwu WJ: High cytotoxic T-lymphocyte-associated antigen 4 and
phospho-Akt expression in tumor samples predicts poor clinical
outcomes in ipilimumab-treated melanoma patients. Melanoma Res.
27:24–31. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
McConnell AT, Ellis R, Pathy B, Plummer R,
Lovat PE and O'Boyle G: The prognostic significance and impact of
the CXCR4-CXCR7-CXCL12 axis in primary cutaneous melanoma. Br J
Dermatol. 175:1210–1220. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Houben R, Hesbacher S, Schmid CP, Kauczok
CS, Flohr U, Haferkamp S, Müller CS, Schrama D, Wischhusen J and
Becker JC: High-level expression of wild-type p53 in melanoma cells
is frequently associated with inactivity in p53 reporter gene
assays. PLoS One. 6:e220962011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Chang CY, Lin SC, Su WH, Ho CM and Jou YS:
Somatic LMCD1 mutations promoted cell migration and tumor
metastasis in hepatocellular carcinoma. Oncogene. 24:2640–2652.
2012. View Article : Google Scholar
|
|
69
|
Zhou H, Ma H, Wei W, Ji D, Song X, Sun J,
Zhang J and Jia L: B4GALT family mediates the multidrug resistance
of human leukemia cells by regulating the hedgehog pathway and the
expression of p-glycoprotein and multidrug resistance-associated
protein 1. Cell Death Dis. 4:e6542013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Joyce CE, Yanez AG, Mori A, Yoda A,
Carroll JS and Novina CD: Differential regulation of the melanoma
proteome by eIF4A1 and eIF4E. Cancer Res. 1:613–622. 2017.
View Article : Google Scholar
|
|
71
|
Huber O and Weiske J: Beta-catenin takes a
HIT. Cell Cycle. 7:1326–1331. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Udayappan UK and Casey PJ: c-Jun
contributes to transcriptional control of GNA12 expression in
prostate cancer cells. Molecules. 22:E6122017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Li N, Huang D, Lu N and Luo L: Role of the
LKB1/AMPK pathway in tumor invasion and metastasis of cancer cells
(Review). Oncol Rep. 34:2821–2826. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Liu J, Fukunaga-Kalabis M, Li L and Herlyn
M: Developmental pathways activated in melanocytes and melanoma.
Arch Biochem Biophys. 1:13–21. 2014. View Article : Google Scholar
|
|
75
|
Mendez P and Ramirez JL: Copy number gains
of FGFR1 and 3q chromosome in squamous cell carcinoma of the lung.
Transl Lung Cancer Res. 2:101–111. 2013.PubMed/NCBI
|
|
76
|
Shahi MH, Lorente A and Castresana JS:
Hedgehog signalling in medulloblastoma, glioblastoma and
neuroblastoma. Oncol Rep. 19:681–688. 2008.PubMed/NCBI
|
|
77
|
Louie MC, Revenko AS, Zou JX, Yao J and
Chen HW: Direct control of cell cycle gene expression by
proto-oncogene product ACTR, and its autoregulation underlies its
transforming activity. Mol Cell Biol. 26:3810–3823. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Yang B, Zhang S, Wang Z, Yang C, Ouyang W,
Zhou F, Zhou Y and Xie C: Deubiquitinase USP9X deubiquitinates
β-catenin and promotes high grade glioma cell growth. Oncotarget.
7:79515–79525. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
McDonald SL, Edington HD, Kirkwood JM and
Becker D: Expression analysis of genes identified by molecular
profiling of VGP melanomas and MGP melanoma-positive lymph nodes.
Cancer Biol Ther. 3:110–120. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ma XH, Piao S, Wang D, McAfee QW,
Nathanson KL, Lum JJ, Li LZ and Amaravadi RK: Measurements of tumor
cell autophagy predict invasiveness, resistance to chemotherapy,
and survival in melanoma. Clin Cancer Res. 17:3478–3489. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kang HY, Chung E, Lee M, Cho Y and Kang
WH: Expression and function of peroxisome proliferator-activated
receptors in human melanocytes. Br J Dermatol. 150:462–468. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Botton T, Puissant A, Bahadoran P,
Annicotte JS, Fajas L, Ortonne JP, Gozzerino G, Zamoum T,
Tartare-Deckert S, Bertolotto C, et al: In vitro and in vivo
anti-melanoma effects of ciglitazone. J Invest Dermatol.
129:1208–1218. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Haass NK and Herlyn M: Normal human
melanocyte homeostasis as a paradigm for understanding melanoma. J
Investig Dermatol Symp Proc. 10:153–163. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Lyons J, Bastian BC and McCormick F: MC1R
and cAMP signaling inhibit cdc25B activity and delay cell cycle
progression in melanoma cells. Proc Natl Acad Sci USA.
110:13845–13850. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Pierrat MJ, Marsaud V, Mauviel A and
Javelaud D: Expression of microphthalmia-associated transcription
factor (MITF), which is critical for melanoma progression, is
inhibited by both transcription factor GLI2 and transforming growth
factor-β. J Biol Chem. 287:17996–18004. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Nakase H, Uza N, Matsuura M and Chiba T:
Importance of CXCL16 as a biomarker for granulocytapheresis in
patients with Crohn's disease. Inflamm Bowel Dis. 17:2211–2212.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Shahzad A, Knapp M, Lang I and Köhler G:
Interleukin 8 (IL-8)-a universal biomarker? Int Arch Med. 3:112010.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Uhlén M, Fagerberg L, Hallström BM,
Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C,
Sjöstedt E, Asplund A, et al: Proteomics. Tissue-based map of the
human proteome. Science. 347:12604192015.
|
|
90
|
Morse MA: Technology evaluation:
Ipilimumab, Medarex/Bristol-Myers Squibb. Curr Opin Mol Ther.
7:588–597. 2005.PubMed/NCBI
|
|
91
|
Hathcock KS, Laszlo G, Dickler HB,
Bradshaw J, Linsley P and Hodes RJ: Identification of an
alternative CTLA-4 ligand costimulatory for T cell activation.
Science. 262:905–907. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Contardi E, Palmisano GL, Tazzari PL,
Martelli AM, Falà F, Fabbi M, Kato T, Lucarelli E, Donati D, Polito
L, et al: CTLA-4 is constitutively expressed on tumor cells and can
trigger apoptosis upon ligand interaction. Int J Cancer.
117:538–550. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Chen X, Shao Q, Hao S, Zhao Z, Wang Y, Guo
X, He Y, Gao W and Mao H: CTLA-4 positive breast cancer cells
suppress dendritic cells maturation and function. Oncotarget.
8:13703–13715. 2017.PubMed/NCBI
|
|
94
|
Qureshi OS, Zheng Y, Nakamura K, Attridge
K, Manzotti C, Schmidt EM, Baker J, Jeffery LE, Kaur S, Briggs Z,
et al: Trans-endocytosis of CD80 and CD86: A molecular basis for
the cell-extrinsic function of CTLA-4. Science. 332:600–603. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Li F, Zhang R, Li S and Liu J: IDO1: An
important immunotherapy target in cancer treatment. Int
Immunopharmacol. 47:70–77. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Huang PY, Guo SS, Zhang Y, Lu JB, Chen QY,
Tang LQ, Zhang L, Liu LT, Zhang L and Mai HQ: Tumor CTLA-4
overexpression predicts poor survival in patients with
nasopharyngeal carcinoma. Oncotarget. 7:13060–13068.
2016.PubMed/NCBI
|
|
97
|
Zhang XF, Pan K, Weng DS, Chen CL, Wang
QJ, Zhao JJ, Pan QZ, Liu Q, Jiang SS, Li YQ, et al: Cytotoxic T
lymphocyte antigen-4 expression in esophageal carcinoma:
Implications for prognosis. Oncotarget. 7:26670–26679.
2016.PubMed/NCBI
|
|
98
|
Mao H1, Zhang L, Yang Y, Zuo W, Bi Y, Gao
W, Deng B, Sun J, Shao Q and Qu X: New insights of CTLA-4 into its
biological function in breast cancer. Curr Cancer Drug Targets.
10:728–736. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Ward FJ, Dahal LN, Wijesekera SK,
Abdul-Jawad SK, Kaewarpai T, Xu H, Vickers MA and Barker RN: The
soluble isoform of CTLA-4 as a regulator of T-cell responses. Eur J
Immunol. 43:1274–1285. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Fallarino F, Grohmann U, Hwang KW, Orabona
C, Vacca C, Bianchi R, Belladonna ML, Fioretti MC, Alegre ML and
Puccetti P: Modulation of tryptophan catabolism by regulatory T
cells. Nat Immunol. 4:1206–1212. 2003. View
Article : Google Scholar : PubMed/NCBI
|