Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
August-2018 Volume 16 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2018 Volume 16 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

A meta‑analysis of transcriptome datasets characterizes malignant transformation from melanocytes and nevi to melanoma

  • Authors:
    • Daniel Ortega‑Bernal
    • Claudia H. González‑De La Rosa
    • Elena Arechaga‑Ocampo
    • Miguel Angel Alvarez‑Avitia
    • Nora Sobrevilla Moreno
    • Claudia Rangel‑Escareño
  • View Affiliations / Copyright

    Affiliations: Natural Sciences Department, Universidad Autónoma Metropolitana, Mexico City 05300, Mexico, Medical Oncology Department, Instituto Nacional de Cancerología, Mexico City 14080, Mexico, Computational and Integrative Genomics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico
  • Pages: 1899-1911
    |
    Published online on: May 31, 2018
       https://doi.org/10.3892/ol.2018.8861
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Melanoma represents one of the most aggressive malignancies and has a high tendency to metastasize. The present study aims to investigate the molecular mechanisms of two pathways to cancer transformation with the purpose of identifying potential biomarkers. Our approach is based on a meta‑analysis of gene expression profiling contrasting two scenarios: A model that describes a transformation pathway from melanocyte to melanoma and a second model where transformation occurs through an intermediary nevus. Data consists of three independent, publicly available microarray datasets from the Gene Expression Omnibus (GEO) database comprising samples from melanocytes, nevi and melanoma. The present analysis identified 808 differentially expressed genes (528 upregulated and 360 downregulated) in melanoma compared with nevi, and 2,331 differentially expressed genes (946 upregulated and 1,385 downregulated) in melanoma compared with melanocytes. Further analysis narrowed down this list, since 682 differentially expressed genes were found in both models (417 upregulated and 265 downregulated). Enrichment analysis identified relevant dysregulated pathways. This article also presented a discussion on significant genes including ADAM like decysin 1, neudesin neurotrophic factor, MMP19, apolipoprotein L6, C‑X‑C motif chemokine ligand (CXCL)8, basic, immunoglobulin‑like variable motif containing and CXCL16. These are of particular interest because they encode secreted proteins hence represent potential blood biomarkers for the early detection of malignant transformation in both scenarios. Cytotoxic T‑lymphocyte associated protein 4, an important therapeutic target in melanoma treatment, was also upregulated in both comparisons indicating a potential involvement in immune tolerance, not only at advanced stages but also during the early transformation to melanoma. The results of the present study may provide a research direction for studying the mechanisms underlying the development of melanoma, depending on its origin.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Balch CM, Gershenwald JE, Soong SJ, Thompson JF, Atkins MB, Byrd DR, Buzaid AC, Cochran AJ, Coit DG, Ding S, et al: Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 27:6199–6206. 2009. View Article : Google Scholar : PubMed/NCBI

2 

Bray F, Jemal A, Grey N, Ferlay J and Forman D: Global cancer transitions according to the human development index (2008-2030): A population-based study. Lancet Oncol. 13:790–801. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Shain AH and Bastian BC: From melanocytes to melanomas. Nat Rev Cancer. 16:345–358. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Shitara D, Nascimento MM, Puig S, Yamada S, Enokihara MM, Michalany N and Bagatin E: Nevus-associated melanomas: Clinicopathologic features. Am J Clin Pathol. 142:485–491. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Bardeesy N, Bastian BC, Hezel A, Pinkel D, DePinho RA and Chin L: Dual inactivation of RB and p53 pathways in RAS-induced melanomas. Mol Cell Biol. 21:2144–2153. 2001. View Article : Google Scholar : PubMed/NCBI

6 

Vredeveld LC, Possik PA, Smit MA, Meissl K, Michaloglou C, Horlings HM, Ajouaou A, Kortman PC, Dankort D, McMahon M, et al: Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev. 26:1055–1069. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Costin GE and Hearing VJ: Human skin pigmentation: Melanocytes modulate skin color in response to stress. FASEB J. 21:976–994. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM, Moses TY, Hostetter G, Wagner U, Kakareka J, et al: High frequency of BRAF mutations in nevi. Nat Genet. 33:19–20. 2003. View Article : Google Scholar : PubMed/NCBI

9 

Poynter JN, Elder JT, Fullen DR, Nair RP, Soengas MS, Johnson TM, Redman B, Thomas NE and Gruber SB: BRAF and NRAS mutations in melanoma and melanocytic nevi. Melanoma Res. 16:267–273. 2006. View Article : Google Scholar : PubMed/NCBI

10 

Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, Majoor DM, Shay JW, Mooi WJ and Peeper DS: BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 436:720–724. 2005. View Article : Google Scholar : PubMed/NCBI

11 

Johmura Y, Shimada M, Misaki T, Naiki-Ito A, Miyoshi H, Motoyama N, Ohtani N, Hara E, Nakamura M, Morita A, et al: Necessary and sufficient role for a mitosis skip in senescence induction. Mol Cell. 55:73–84. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Lin WM, Luo S, Muzikansky A, Lobo AZ, Tanabe KK, Sober AJ, Cosimi AB, Tsao H and Duncan LM: Outcome of patients with de novo versus nevus-associated melanoma. J Am Acad Dermatol. 72:54–58. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Smith AP, Hoek K and Becker D: Whole-genome expression profiling of the melanoma progression pathway reveals marked molecular differences between nevi/melanoma in situ and advanced-stage melanomas. Cancer Biol Ther. 4:1018–1029. 2005. View Article : Google Scholar : PubMed/NCBI

14 

Talantov D, Mazumder A, Yu JX, Briggs T, Jiang Y, Backus J, Atkins D and Wang Y: Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res. 11:7234–7242. 2005. View Article : Google Scholar : PubMed/NCBI

15 

Shepelin D, Korzinkin M, Vanyushina A, Aliper A, Borisov N, Vasilov R, Zhukov N, Sokov D, Prassolov V, Gaifullin N, et al: Molecular pathway activation features linked with transition from normal skin to primary and metastatic melanomas in human. Oncotarget. 7:656–670. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, et al: NCBI GEO: Archive for functional genomics data sets-update. Nucleic Acids Res. 41:D991–D995. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Tremante E, Ginebri A, Lo Monaco E, Benassi B, Frascione P, Grammatico P, Cappellacci S, Catricalà C, Arcelli D, Natali PG, et al: A melanoma immune response signature including Human Leukocyte Antigen-E. Pigment Cell Melanoma Res. 27:103–112. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Mitsui H, Kiecker F, Shemer A, Cannizzaro MV, Wang CQ, Gulati N, Ohmatsu H, Shah KR, Gilleaudeau P, Sullivan-Whalen M, et al: Discrimination of dysplastic nevi from common melanocytic nevi by cellular and molecular criteria. J Invest Dermatol. 136:2030–2040. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Raskin L, Fullen DR, Giordano TJ, Thomas DG, Frohm ML, Cha KB, Ahn J, Mukherjee B, Johnson TM and Gruber SB: Transcriptome profiling identifies HMGA2 as a biomarker of melanoma progression and prognosis. J Invest Dermatol. 133:2585–2592. 2013. View Article : Google Scholar : PubMed/NCBI

20 

R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. 2015.

21 

Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, et al: Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol. 5:R802004. View Article : Google Scholar : PubMed/NCBI

22 

Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U and Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 4:249–264. 2003. View Article : Google Scholar : PubMed/NCBI

23 

Bolstad BM, Irizarry RA, Astrand M and Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 19:185–193. 2003. View Article : Google Scholar : PubMed/NCBI

24 

Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 3:Article3. 2004. View Article : Google Scholar : PubMed/NCBI

25 

Hoaglin DC, Mosteller F and Tukey JW: Understanding robust and exploratory data analysis. John Wiley & Sons. 404–414. 1983.

26 

Wickham H: ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag; New York, NY: 2009, View Article : Google Scholar

27 

Xu J, Liu L, Zheng X, You C and Li Q: Expression and inhibition of ADAMDEC1 in craniopharyngioma cells. Neurol Res. 34:701–706. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Willers J, Häffner A, Zepter K, Storz M, Urosevic M, Burg G and Dummer R: The interferon inhibiting cytokine IK is overexpressed in cutaneous T cell lymphoma derived tumor cells that fail to upregulate major histocompatibility complex class II upon interferon-gamma stimulation. J Invest Dermatol. 116:874–879. 2001. View Article : Google Scholar : PubMed/NCBI

29 

Han KH, Lee SH, Ha SA, Kim HK, Lee C, Kim DH, Gong KH, Yoo J, Kim S and Kim JW: The functional and structural characterization of a novel oncogene GIG47 involved in the breast tumorigenesis. BMC Cancer. 12:2742012. View Article : Google Scholar : PubMed/NCBI

30 

Stefanska B, Cheishvili D, Suderman M, Arakelian A, Huang J, Hallett M, Han ZG, Al-Mahtab M, Akbar SM, Khan WA, et al: Genome-wide study of hypomethylated and induced genes in patients with liver cancer unravels novel anticancer targets. Clin Cancer Res. 20:3118–3132. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Müller M, Beck IM, Gadesmann J, Karschuk N, Paschen A, Proksch E, Djonov V, Reiss K and Sedlacek R: MMP19 is upregulated during melanoma progression and increases invasion of melanoma cells. Mod Pathol. 23:511–521. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Planelles L, Medema JP, Hahne M and Hardenberg G: The expanding role of APRIL in cancer and immunity. Curr Mol Med. 8:829–844. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Liu Z, Lu H, Jiang Z, Pastuszyn A and Hu CA: Apolipoprotein 16, a novel proapoptotic Bcl-2 homology 3-only protein, induces mitochondria-mediated apoptosis in cancer cells. Mol Cancer Res. 3:21–31. 2005.PubMed/NCBI

34 

Tang Y, Yan G, Song X, Wu K, Li Z, Yang C, Deng T, Sun Y, Hu X, Yang C, et al: STIP overexpression confers oncogenic potential to human non-small cell lung cancer cells by regulating cell cycle and apoptosis. J Cell Mol Med. 19:2806–2817. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Park UH, Kang MR, Kim EJ, Kwon YS, Hur W, Yoon SK, Song BJ, Park JH, Hwang JT, Jeong JC, et al: ASXL2 promotes proliferation of breast cancer cells by linking ERα to histone methylation. Oncogene. 14:3742–3752. 2016. View Article : Google Scholar

36 

Kraya AA, Piao S, Xu X, Zhang G, Herlyn M, Gimotty P, Levine B, Amaravadi RK and Speicher DW: Identification of secreted proteins that reflect autophagy dynamics within tumor cells. Autophagy. 11:60–74. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Singh S, Singh AP, Sharma B, Owen LB and Singh RK: CXCL8 and its cognate receptors in melanoma progression and metastasis. Future Oncol. 6:111–116. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Cano-Rodríguez D, Campagnoli S, Grandi A, Parri M, Camilli E, Song C, Jin B, Lacombe A, Pierleoni A, Bombaci M, et al: TCTN2: A novel tumor marker with oncogenic properties. Oncotarget. 8:95256–95269. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Tomita T, Ieguchi K, Coin F, Kato Y, Kikuchi H, Oshima Y, Kurata S and Maru Y: ZFC3H1, a zinc finger protein, modulates IL-8 transcription by binding with celastramycin A, a potential immune suppressor. PLoS One. 30:e1089572014. View Article : Google Scholar

40 

Singh R, Kapur N, Mir H, Singh N, Lillard JW Jr and Singh S: CXCR6-CXCL16 axis promotes prostate cancer by mediating cytoskeleton rearrangement via Ezrin activation and αvβ3 integrin clustering. Oncotarget. 9:7343–7353. 2016.

41 

Noguchi K, Dalton AC, Howley BV, McCall BJ, Yoshida A, Diehl JA and Howe PH: Interleukin-like EMT inducer regulates partial phenotype switching in MITF-low melanoma cell lines. PLoS One. 17:e01778302017. View Article : Google Scholar

42 

Kawahara R, Bollinger JG, Rivera C, Ribeiro AC, Brandão TB, Paes Leme AF and MacCoss MJ: A targeted proteomic strategy for the measurement of oral cancer candidate biomarkers in human saliva. Proteomics. 16:159–173. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Metz C, Döger R, Riquelme E, Cortés P, Holmes C, Shaughnessy R, Oyanadel C, Grabowski C, González A and Soza A: Galectin-8 promotes migration and proliferation and prevents apoptosis in U87 glioblastoma cells. Biol Res. 49:332016. View Article : Google Scholar : PubMed/NCBI

44 

Mashidori T, Shirataki H, Kamai T, Nakamura F and Yoshida K: Increased alpha-taxilin protein expression is associated with the metastatic and invasive potential of renal cell cancer. Biomed Res. 32:103–110. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Dong W, Gong H, Zhang G, Vuletic S, Albers J, Zhang J, Liang H, Sui Y and Zheng J: Lipoprotein lipase and phospholipid transfer protein overexpression in human glioma cells and their effect on cell growth, apoptosis, and migration. Acta Biochim Biophys Sin (Shanghai). 49:62–73. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Petroziello J, Yamane A, Westendorf L, Thompson M, McDonagh C, Cerveny C, Law CL, Wahl A and Carter P: Suppression subtractive hybridization and expression profiling identifies a unique set of genes overexpressed in non-small-cell lung cancer. Oncogene. 23:7734–7745. 2004. View Article : Google Scholar : PubMed/NCBI

47 

Li S, Sheng B, Zhao M, Shen Q, Zhu H and Zhu X: The prognostic values of signal transducers activators of transcription family in ovarian cancer. Biosci Rep. 37:BSR20170650. 2017. View Article : Google Scholar

48 

Kim KW, Paul P, Qiao J, Lee S and Chung DH: Enhanced autophagy blocks angiogenesis via degradation of gastrin-releasing peptide in neuroblastoma cells. Autophagy. 9:1579–1590. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Chaudhary A, Hilton MB, Seaman S, Haines DC, Stevenson S, Lemotte PK, Tschantz WR, Zhang XM, Saha S, Fleming T and St Croix B: TEM8/ANTXR1 blockade inhibits pathological angiogenesis and potentiates tumoricidal responses against multiple cancer types. Cancer Cell. 14:212–226. 2012. View Article : Google Scholar

50 

Phan NN, Wang CY, Chen CF, Sun Z, Lai MD and Lin YC: Voltage-gated calcium channels: Novel targets for cancer therapy. Oncol Lett. 14:2059–2074. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Arozarena I, Sanchez-Laorden B, Packer L, Hidalgo-Carcedo C, Hayward R, Viros A, Sahai E and Marais R: Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP-specific phosphodiesterase PDE5A. Cancer Cell. 19:45–57. 2011. View Article : Google Scholar : PubMed/NCBI

52 

Li Q, Qi B, Oka K, Shimakage M, Yoshioka N, Inoue H, Hakura A, Kodama K, Stanbridge EJ and Yutsudo M: Link of a new type of apoptosis-inducing gene ASY/Nogo-B to human cancer. Oncogene. 5:3929–3936. 2001. View Article : Google Scholar

53 

Safe S, Jin UH, Hedrick E, Reeder A and Lee SO: Minireview: Role of orphan nuclear receptors in cancer and potential as drug targets. Mol Endocrinol. 28:157–172. 2014. View Article : Google Scholar : PubMed/NCBI

54 

Ku AT, Shaver TM, Rao AS, Howard JM, Rodriguez CN, Miao Q, Garcia G, Le D, Yang D, Borowiak M, et al: TCF7L1 promotes skin tumorigenesis independently of β-catenin through induction of LCN2. Elife. 6:e232422017. View Article : Google Scholar : PubMed/NCBI

55 

Girgis AH, Iakovlev VV, Beheshti B, Bayani J, Squire JA, Bui A, Mankaruos M, Youssef Y, Khalil B, Khella H, et al: Multilevel whole-genome analysis reveals candidate biomarkers in clear cell renal cell carcinoma. Cancer Res. 15:5273–5284. 2012. View Article : Google Scholar

56 

Rasmussen SL, Krarup HB, Sunesen KG, Johansen MB, Stender MT, Pedersen IS, Madsen PH and Thorlacius-Ussing O: Hypermethylated DNA, a circulating biomarker for colorectal cancer detection. PLoS One. 12:e01808092017. View Article : Google Scholar : PubMed/NCBI

57 

Goeppert B, Ernst C, Baer C, Roessler S, Renner M, Mehrabi A, Hafezi M, Pathil A, Warth A, Stenzinger A, et al: Cadherin-6 is a putative tumor suppressor and target of epigenetically dysregulated miR-429 in cholangiocarcinoma. Epigenetics. 11:780–790. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Zhao L, Liu Y, Tong D, Qin Y, Yang J, Xue M, Du N, Liu L, Guo B, Hou N, et al: MeCP2 promotes gastric cancer progression through regulating FOXF1/Wnt5a/β-Catenin and MYOD1/Caspase-3 signaling pathways. EBioMedicine. 16:87–100. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Du HQ, Wang Y, Jiang Y, Wang CH, Zhou T, Liu HY and Xiao H: Silencing of the TPM1 gene induces radioresistance of glioma U251 cells. Oncol Rep. 33:2807–2814. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Camacho Leal Mdel P, Sciortino M, Tornillo G, Colombo S, Defilippi P and Cabodi S: p130Cas/BCAR1 scaffold protein in tissue homeostasis and pathogenesis. Gene. 562:1–7. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Gao D, Herman JG and Guo M: The clinical value of aberrant epigenetic changes of DNA damage repair genes in human cancer. Oncotarget. 7:37331–37346. 2016.PubMed/NCBI

62 

Zhang Y, Yuan Y, Liang P, Zhang Z, Guo X, Xia L, Zhao Y, Shu XS, Sun S, Ying Y and Cheng Y: Overexpression of a novel candidate oncogene KIF14 correlates with tumor progression and poor prognosis in prostate cancer. Oncotarget. 11:45459–45469. 2017.

63 

Yin Y, Liu W and Dai Y: SOCS3 and its role in associated diseases. Hum Immunol. 76:775–780. 2015. View Article : Google Scholar : PubMed/NCBI

64 

Liu G, Xiong D, Xiao R and Huang Z: Prognostic role of fibroblast growth factor receptor 2 in human solid tumors: A systematic review and meta-analysis. Tumour Biol. 39:10104283177074242017. View Article : Google Scholar : PubMed/NCBI

65 

Chakravarti N, Ivan D, Trinh VA, Glitza IC, Curry JL, Torres-Cabala C, Tetzlaff MT, Bassett RL, Prieto VG and Hwu WJ: High cytotoxic T-lymphocyte-associated antigen 4 and phospho-Akt expression in tumor samples predicts poor clinical outcomes in ipilimumab-treated melanoma patients. Melanoma Res. 27:24–31. 2017. View Article : Google Scholar : PubMed/NCBI

66 

McConnell AT, Ellis R, Pathy B, Plummer R, Lovat PE and O'Boyle G: The prognostic significance and impact of the CXCR4-CXCR7-CXCL12 axis in primary cutaneous melanoma. Br J Dermatol. 175:1210–1220. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Houben R, Hesbacher S, Schmid CP, Kauczok CS, Flohr U, Haferkamp S, Müller CS, Schrama D, Wischhusen J and Becker JC: High-level expression of wild-type p53 in melanoma cells is frequently associated with inactivity in p53 reporter gene assays. PLoS One. 6:e220962011. View Article : Google Scholar : PubMed/NCBI

68 

Chang CY, Lin SC, Su WH, Ho CM and Jou YS: Somatic LMCD1 mutations promoted cell migration and tumor metastasis in hepatocellular carcinoma. Oncogene. 24:2640–2652. 2012. View Article : Google Scholar

69 

Zhou H, Ma H, Wei W, Ji D, Song X, Sun J, Zhang J and Jia L: B4GALT family mediates the multidrug resistance of human leukemia cells by regulating the hedgehog pathway and the expression of p-glycoprotein and multidrug resistance-associated protein 1. Cell Death Dis. 4:e6542013. View Article : Google Scholar : PubMed/NCBI

70 

Joyce CE, Yanez AG, Mori A, Yoda A, Carroll JS and Novina CD: Differential regulation of the melanoma proteome by eIF4A1 and eIF4E. Cancer Res. 1:613–622. 2017. View Article : Google Scholar

71 

Huber O and Weiske J: Beta-catenin takes a HIT. Cell Cycle. 7:1326–1331. 2008. View Article : Google Scholar : PubMed/NCBI

72 

Udayappan UK and Casey PJ: c-Jun contributes to transcriptional control of GNA12 expression in prostate cancer cells. Molecules. 22:E6122017. View Article : Google Scholar : PubMed/NCBI

73 

Li N, Huang D, Lu N and Luo L: Role of the LKB1/AMPK pathway in tumor invasion and metastasis of cancer cells (Review). Oncol Rep. 34:2821–2826. 2015. View Article : Google Scholar : PubMed/NCBI

74 

Liu J, Fukunaga-Kalabis M, Li L and Herlyn M: Developmental pathways activated in melanocytes and melanoma. Arch Biochem Biophys. 1:13–21. 2014. View Article : Google Scholar

75 

Mendez P and Ramirez JL: Copy number gains of FGFR1 and 3q chromosome in squamous cell carcinoma of the lung. Transl Lung Cancer Res. 2:101–111. 2013.PubMed/NCBI

76 

Shahi MH, Lorente A and Castresana JS: Hedgehog signalling in medulloblastoma, glioblastoma and neuroblastoma. Oncol Rep. 19:681–688. 2008.PubMed/NCBI

77 

Louie MC, Revenko AS, Zou JX, Yao J and Chen HW: Direct control of cell cycle gene expression by proto-oncogene product ACTR, and its autoregulation underlies its transforming activity. Mol Cell Biol. 26:3810–3823. 2006. View Article : Google Scholar : PubMed/NCBI

78 

Yang B, Zhang S, Wang Z, Yang C, Ouyang W, Zhou F, Zhou Y and Xie C: Deubiquitinase USP9X deubiquitinates β-catenin and promotes high grade glioma cell growth. Oncotarget. 7:79515–79525. 2016. View Article : Google Scholar : PubMed/NCBI

79 

McDonald SL, Edington HD, Kirkwood JM and Becker D: Expression analysis of genes identified by molecular profiling of VGP melanomas and MGP melanoma-positive lymph nodes. Cancer Biol Ther. 3:110–120. 2004. View Article : Google Scholar : PubMed/NCBI

80 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

81 

Ma XH, Piao S, Wang D, McAfee QW, Nathanson KL, Lum JJ, Li LZ and Amaravadi RK: Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma. Clin Cancer Res. 17:3478–3489. 2011. View Article : Google Scholar : PubMed/NCBI

82 

Kang HY, Chung E, Lee M, Cho Y and Kang WH: Expression and function of peroxisome proliferator-activated receptors in human melanocytes. Br J Dermatol. 150:462–468. 2004. View Article : Google Scholar : PubMed/NCBI

83 

Botton T, Puissant A, Bahadoran P, Annicotte JS, Fajas L, Ortonne JP, Gozzerino G, Zamoum T, Tartare-Deckert S, Bertolotto C, et al: In vitro and in vivo anti-melanoma effects of ciglitazone. J Invest Dermatol. 129:1208–1218. 2009. View Article : Google Scholar : PubMed/NCBI

84 

Haass NK and Herlyn M: Normal human melanocyte homeostasis as a paradigm for understanding melanoma. J Investig Dermatol Symp Proc. 10:153–163. 2005. View Article : Google Scholar : PubMed/NCBI

85 

Lyons J, Bastian BC and McCormick F: MC1R and cAMP signaling inhibit cdc25B activity and delay cell cycle progression in melanoma cells. Proc Natl Acad Sci USA. 110:13845–13850. 2013. View Article : Google Scholar : PubMed/NCBI

86 

Pierrat MJ, Marsaud V, Mauviel A and Javelaud D: Expression of microphthalmia-associated transcription factor (MITF), which is critical for melanoma progression, is inhibited by both transcription factor GLI2 and transforming growth factor-β. J Biol Chem. 287:17996–18004. 2012. View Article : Google Scholar : PubMed/NCBI

87 

Nakase H, Uza N, Matsuura M and Chiba T: Importance of CXCL16 as a biomarker for granulocytapheresis in patients with Crohn's disease. Inflamm Bowel Dis. 17:2211–2212. 2011. View Article : Google Scholar : PubMed/NCBI

88 

Shahzad A, Knapp M, Lang I and Köhler G: Interleukin 8 (IL-8)-a universal biomarker? Int Arch Med. 3:112010. View Article : Google Scholar : PubMed/NCBI

89 

Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, et al: Proteomics. Tissue-based map of the human proteome. Science. 347:12604192015.

90 

Morse MA: Technology evaluation: Ipilimumab, Medarex/Bristol-Myers Squibb. Curr Opin Mol Ther. 7:588–597. 2005.PubMed/NCBI

91 

Hathcock KS, Laszlo G, Dickler HB, Bradshaw J, Linsley P and Hodes RJ: Identification of an alternative CTLA-4 ligand costimulatory for T cell activation. Science. 262:905–907. 1993. View Article : Google Scholar : PubMed/NCBI

92 

Contardi E, Palmisano GL, Tazzari PL, Martelli AM, Falà F, Fabbi M, Kato T, Lucarelli E, Donati D, Polito L, et al: CTLA-4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. Int J Cancer. 117:538–550. 2005. View Article : Google Scholar : PubMed/NCBI

93 

Chen X, Shao Q, Hao S, Zhao Z, Wang Y, Guo X, He Y, Gao W and Mao H: CTLA-4 positive breast cancer cells suppress dendritic cells maturation and function. Oncotarget. 8:13703–13715. 2017.PubMed/NCBI

94 

Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, Baker J, Jeffery LE, Kaur S, Briggs Z, et al: Trans-endocytosis of CD80 and CD86: A molecular basis for the cell-extrinsic function of CTLA-4. Science. 332:600–603. 2011. View Article : Google Scholar : PubMed/NCBI

95 

Li F, Zhang R, Li S and Liu J: IDO1: An important immunotherapy target in cancer treatment. Int Immunopharmacol. 47:70–77. 2017. View Article : Google Scholar : PubMed/NCBI

96 

Huang PY, Guo SS, Zhang Y, Lu JB, Chen QY, Tang LQ, Zhang L, Liu LT, Zhang L and Mai HQ: Tumor CTLA-4 overexpression predicts poor survival in patients with nasopharyngeal carcinoma. Oncotarget. 7:13060–13068. 2016.PubMed/NCBI

97 

Zhang XF, Pan K, Weng DS, Chen CL, Wang QJ, Zhao JJ, Pan QZ, Liu Q, Jiang SS, Li YQ, et al: Cytotoxic T lymphocyte antigen-4 expression in esophageal carcinoma: Implications for prognosis. Oncotarget. 7:26670–26679. 2016.PubMed/NCBI

98 

Mao H1, Zhang L, Yang Y, Zuo W, Bi Y, Gao W, Deng B, Sun J, Shao Q and Qu X: New insights of CTLA-4 into its biological function in breast cancer. Curr Cancer Drug Targets. 10:728–736. 2010. View Article : Google Scholar : PubMed/NCBI

99 

Ward FJ, Dahal LN, Wijesekera SK, Abdul-Jawad SK, Kaewarpai T, Xu H, Vickers MA and Barker RN: The soluble isoform of CTLA-4 as a regulator of T-cell responses. Eur J Immunol. 43:1274–1285. 2013. View Article : Google Scholar : PubMed/NCBI

100 

Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R, Belladonna ML, Fioretti MC, Alegre ML and Puccetti P: Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol. 4:1206–1212. 2003. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ortega‑Bernal D, González‑De La Rosa CH, Arechaga‑Ocampo E, Alvarez‑Avitia MA, Moreno NS and Rangel‑Escareño C: A meta‑analysis of transcriptome datasets characterizes malignant transformation from melanocytes and nevi to melanoma. Oncol Lett 16: 1899-1911, 2018.
APA
Ortega‑Bernal, D., González‑De La Rosa, C.H., Arechaga‑Ocampo, E., Alvarez‑Avitia, M.A., Moreno, N.S., & Rangel‑Escareño, C. (2018). A meta‑analysis of transcriptome datasets characterizes malignant transformation from melanocytes and nevi to melanoma. Oncology Letters, 16, 1899-1911. https://doi.org/10.3892/ol.2018.8861
MLA
Ortega‑Bernal, D., González‑De La Rosa, C. H., Arechaga‑Ocampo, E., Alvarez‑Avitia, M. A., Moreno, N. S., Rangel‑Escareño, C."A meta‑analysis of transcriptome datasets characterizes malignant transformation from melanocytes and nevi to melanoma". Oncology Letters 16.2 (2018): 1899-1911.
Chicago
Ortega‑Bernal, D., González‑De La Rosa, C. H., Arechaga‑Ocampo, E., Alvarez‑Avitia, M. A., Moreno, N. S., Rangel‑Escareño, C."A meta‑analysis of transcriptome datasets characterizes malignant transformation from melanocytes and nevi to melanoma". Oncology Letters 16, no. 2 (2018): 1899-1911. https://doi.org/10.3892/ol.2018.8861
Copy and paste a formatted citation
x
Spandidos Publications style
Ortega‑Bernal D, González‑De La Rosa CH, Arechaga‑Ocampo E, Alvarez‑Avitia MA, Moreno NS and Rangel‑Escareño C: A meta‑analysis of transcriptome datasets characterizes malignant transformation from melanocytes and nevi to melanoma. Oncol Lett 16: 1899-1911, 2018.
APA
Ortega‑Bernal, D., González‑De La Rosa, C.H., Arechaga‑Ocampo, E., Alvarez‑Avitia, M.A., Moreno, N.S., & Rangel‑Escareño, C. (2018). A meta‑analysis of transcriptome datasets characterizes malignant transformation from melanocytes and nevi to melanoma. Oncology Letters, 16, 1899-1911. https://doi.org/10.3892/ol.2018.8861
MLA
Ortega‑Bernal, D., González‑De La Rosa, C. H., Arechaga‑Ocampo, E., Alvarez‑Avitia, M. A., Moreno, N. S., Rangel‑Escareño, C."A meta‑analysis of transcriptome datasets characterizes malignant transformation from melanocytes and nevi to melanoma". Oncology Letters 16.2 (2018): 1899-1911.
Chicago
Ortega‑Bernal, D., González‑De La Rosa, C. H., Arechaga‑Ocampo, E., Alvarez‑Avitia, M. A., Moreno, N. S., Rangel‑Escareño, C."A meta‑analysis of transcriptome datasets characterizes malignant transformation from melanocytes and nevi to melanoma". Oncology Letters 16, no. 2 (2018): 1899-1911. https://doi.org/10.3892/ol.2018.8861
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team