|
1
|
Zaballos A, Gutiérrez J, Varona R, Ardavín
C and Márquez G: Cutting edge: Identification of the orphan
chemokine receptor GPR-9-6 as CCR9, the receptor for the chemokine
TECK. J Immunol. 162:5671–5675. 1999.PubMed/NCBI
|
|
2
|
Vicari AP, Figueroa DJ, Hedrick JA, Foster
JS, Singh KP, Menon S, Copeland NG, Gilbert DJ, Jenkins NA, Bacon
KB and Zlotnik A: TECK: A novel CC chemokine specifically expressed
by thymic dendritic cells and potentially involved in T cell
development. Immunity. 7:291–301. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Yu CR, Peden KW, Zaitseva MB, Golding H
and Farber JM: CCR9A and CCR9B: Two receptors for the chemokine
CCL25/TECK/Ck beta-15 that differ in their sensitivities to ligand.
J Immunol. 164:1293–1305. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Wendland M, Czeloth N, Mach N, Malissen B,
Kremmer E, Pabst O and Förster R: CCR9 is a homing receptor for
plasmacytoid dendritic cells to the small intestine. Proc Natl Acad
Sci USA. 104:6347–6352. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Mizuno S, Kanai T, Mikami Y, Sujino T, Ono
Y, Hayashi A, Handa T, Matsumoto A, Nakamoto N, Matsuoka K, et al:
CCR9+ plasmacytoid dendritic cells in the small intestine suppress
development of intestinal inflammation in mice. Immunol Lett.
146:64–69. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wurbel MA, McIntire MG, Dwyer P and
Fiebiger E: CCL25/CCR9 interactions regulate large intestinal
inflammation in a murine model of acute colitis. PLoS One.
6:e164422011. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Wurbel MA, Philippe JM, Nguyen C,
Victorero G, Freeman T, Wooding P, Miazek A, Mattei MG, Malissen M,
Jordan BR, et al: The chemokine TECK is expressed by thymic and
intestinal epithelial cells and attracts double- and
single-positive thymocytes expressing the TECK receptor CCR9. Eur J
Immunol. 30:262–271. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Schmutz C, Cartwright A, Williams H,
Haworth O, Williams JH, Filer A, Salmon M, Buckley CD and Middleton
J: Monocytes/macrophages express chemokine receptor CCR9 in
rheumatoid arthritis and CCL25 stimulates their differentiation.
Arthritis Res Ther. 12:R1612010. View
Article : Google Scholar : PubMed/NCBI
|
|
9
|
Dursun E, Endele M, Musumeci A, Failmezger
H, Wang SH, Tresch A, Schroeder T and Krug AB: Continuous single
cell imaging reveals sequential steps of plasmacytoid dendritic
cell development from common dendritic cell progenitors. Sci Rep.
6:374622016. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Eberhardson M, Marits P, Jones M, Jones P,
Karlen P, Karlsson M, Cotton G, Woznica K, Maltman B, Glise H and
Winqvist O: Treatment of inflammatory bowel disease by chemokine
receptor-targeted leukapheresis. Clin Immunol. 149:73–82. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Alvarez C, Benítez A, Rojas L, Pujol M,
Carvajal P, Díaz-Zúñiga J and Vernal R: Differential expression of
CC chemokines (CCLs) and receptors (CCRs) by human T lymphocytes in
response to different Aggregatibacter actinomycetemcomitans
serotypes. J Appl Oral Sci. 23:536–546. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Li J, Xiong T, Xiao R, Xiong A, Chen J,
Altaf E, Zheng Y, Zhu G, He Y and Tan J: Anti-CCL25 antibody
prolongs skin allograft survival by blocking CCR9 expression and
impairing splenic T-cell function. Arch Immunol Ther Exp (Warsz).
61:237–244. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Chen HJ, Edwards R, Tucci S, Bu P, Milsom
J, Lee S, Edelmann W, Gümüs ZH, Shen X and Lipkin S: Chemokine
25-induced signaling suppresses colon cancer invasion and
metastasis. J Clin Invest. 122:3184–3196. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Lee S, Heinrich EL, Li L, Lu J, Choi AH,
Levy RA, Wagner JE, Yip ML, Vaidehi N and Kim J: CCR9-mediated
signaling through β-catenin and identification of a novel CCR9
antagonist. Mol Oncol. 9:1599–1611. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhang L, Xiao R, Xiong J, Leng J, Ehtisham
A, Hu Y, Ding Q, Xu H, Liu S, Wang J, et al: Activated ERM protein
plays a critical role in drug resistance of MOLT4 cells induced by
CCL25. PLoS One. 8:e523842013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Krueger A, Willenzon S, Lyszkiewicz M,
Kremmer E and Forster R: CC chemokine receptor 7 and 9
double-deficient hematopoietic progenitors are severely impaired in
seeding the adult thymus. Blood. 115:1906–1912. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zlotoff DA, Sambandam A, Logan TD, Bell
JJ, Schwarz BA and Bhandoola A: CCR7 and CCR9 together recruit
hematopoietic progenitors to the adult thymus. Blood.
115:1897–1905. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Liu C, Saito F, Liu Z, Lei Y, Uehara S,
Love P, Lipp M, Kondo S, Manley N and Takahama Y: Coordination
between CCR7- and CCR9-mediated chemokine signals in prevascular
fetal thymus colonization. Blood. 108:2531–2539. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Uehara S, Grinberg A, Farber JM and Love
PE: A role for CCR9 in T lymphocyte development and migration. J
Immunol. 168:2811–2819. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Evans-Marin HL, Cao AT, Yao S, Chen F, He
C, Liu H, Wu W, Gonzalez MG, Dann SM and Cong Y: Unexpected
regulatory role of CCR9 in regulatory T cell development. PLoS One.
10:e01341002015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
McGuire HM, Vogelzang A, Ma CS, Hughes WE,
Silveira PA, Tangye SG, Christ D, Fulcher D, Falcone M and King C:
A subset of interleukin-21+ chemokine receptor CCR9+ T helper cells
target accessory organs of the digestive system in autoimmunity.
Immunity. 34:602–615. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Tubo NJ, Wurbel MA, Charvat TT, Schall TJ,
Walters MJ and Campbell JJ: A systemically-administered small
molecule antagonist of CCR9 acts as a tissue-selective inhibitor of
lymphocyte trafficking. PLoS One. 7:e504982012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Greis C, Rasuly Z, Janosi RA, Kordelas L,
Beelen DW and Liebregts T: Intestinal T lymphocyte homing is
associated with gastric emptying and epithelial barrier function in
critically ill: A prospective observational study. Crit Care.
21:702017. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Drakes ML, Stiff PJ and Blanchard TG:
Inverse relationship between dendritic cell CCR9 expression and
maturation state. Immunology. 127:466–476. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Stock A, Booth S and Cerundolo V:
Prostaglandin E2 suppresses the differentiation of retinoic
acid-producing dendritic cells in mice and humans. J Exp Med.
208:761–773. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Bakdash G, Vogelpoel LT, van Capel TM,
Kapsenberg ML and de Jong EC: Retinoic acid primes human dendritic
cells to induce gut-homing, IL-10-producing regulatory T cells.
Mucosal Immunol. 8:265–278. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Chen X, Dodge J, Komorowski R and Drobyski
WR: A critical role for the retinoic acid signaling pathway in the
pathophysiology of gastrointestinal graft-versus-host disease.
Blood. 121:3970–3980. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Duurland CL, Brown CC, O'Shaughnessy RF
and Wedderburn LR: CD161+Tconv and CD161+Treg
share a transcriptional and functional phenotype despite limited
overlap in TCRβ repertoire. Front Immunol. 8:1032017. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Aoyama K, Saha A, Tolar J, Riddle MJ,
Veenstra RG, Taylor PA, Blomhoff R, Panoskaltsis-Mortari A,
Klebanoff CA, Socié G, et al: Inhibiting retinoic acid signaling
ameliorates graft-versus-host disease by modifying T-cell
differentiation and intestinal migration. Blood. 122:2125–2134.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wurbel MA, Malissen M, Guy-Grand D, Meffre
E, Nussenzweig MC, Richelme M, Carrier A and Malissen B: Mice
lacking the CCR9 CC-chemokine receptor show a mild impairment of
early T- and B-cell development and a reduction in T-cell receptor
gammadelta(+) gut intraepithelial lymphocytes. Blood. 98:2626–2632.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Demberg T, Mohanram V, Venzon D and
Robert-Guroff M: Phenotypes and distribution of mucosal memory
B-cell populations in the SIV/SHIV rhesus macaque model. Clin
Immunol. 153:264–276. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ehlin-Henriksson B, Liang W, Cagigi A,
Mowafi F, Klein G and Nilsson A: Changes in chemokines and
chemokine receptor expression on tonsillar B cells upon
Epstein-Barr virus infection. Immunology. 127:549–557. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Mizukami T, Kanai T, Mikami Y, Hayashi A,
Doi T, Handa T, Matsumoto A, Jun L, Matsuoka K, Sato T, et al:
CCR9+ macrophages are required for eradication of peritoneal
bacterial infections and prevention of polymicrobial sepsis.
Immunol Lett. 147:75–79. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Chu PS, Nakamoto N, Ebinuma H, Usui S,
Saeki K, Matsumoto A, Mikami Y, Sugiyama K, Tomita K, Kanai T, et
al: C-C motif chemokine receptor 9 positive macrophages activate
hepatic stellate cells and promote liver fibrosis in mice.
Hepatology. 58:337–350. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Amiya T, Nakamoto N, Chu PS, Teratani T,
Nakajima H, Fukuchi Y, Taniki N, Yamaguchi A, Shiba S, Miyake R, et
al: Bone marrow-derived macrophages distinct from tissue-resident
macrophages play a pivotal role in Concanavalin A-induced murine
liver injury via CCR9 axis. Sci Rep. 6:351462016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Qiuping Z, Qun L, Chunsong H, Xiaolian Z,
Baojun H, Mingzhen Y, Chengming L, Jinshen H, Qingping G, Kejian Z,
et al: Selectively increased expression and functions of chemokine
receptor CCR9 on CD4+ T cells from patients with T-cell lineage
acute lymphocytic leukemia. Cancer Res. 63:6469–6477.
2003.PubMed/NCBI
|
|
37
|
Mirandola L, Chiriva-Internati M, Montagna
D, Locatelli F, Zecca M, Ranzani M, Basile A, Locati M, Cobos E,
Kast WM, et al: Notch1 regulates chemotaxis and proliferation by
controlling the CC-chemokine receptors 5 and 9 in T cell acute
lymphoblastic leukaemia. J Pathol. 226:713–722. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhou B, Leng J, Hu M, Zhang L, Wang Z, Liu
D, Tong X, Yu B, Hu Y, Deng C, et al: Ezrin is a key molecule in
the metastasis of MOLT4 cells induced by CCL25/CCR9. Leuk Res.
34:769–776. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhang L, Yu B, Hu M, Wang Z, Liu D, Tong
X, Leng J, Zhou B, Hu Y, Wu R, et al: Role of Rho-ROCK signaling in
MOLT4 cells metastasis induced by CCL25. Leuk Res. 35:103–109.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Nagakubo D, Jin Z, Hieshima K, Nakayama T,
Shirakawa AK, Tanaka Y, Hasegawa H, Hayashi T, Tsukasaki K, Yamada
Y and Yoshie O: Expression of CCR9 in HTLV-1+ T cells and ATL cells
expressing Tax. Int J Cancer. 120:1591–1597. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Annels NE, Willemze AJ, van der Velden VH,
Faaij CM, van Wering E, Sie-Go DM, Egeler RM, van Tol MJ and Révész
T: Possible link between unique chemokine and homing receptor
expression at diagnosis and relapse location in a patient with
childhood T-ALL. Blood. 103:2806–2808. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Qiuping Z, Jei X, Youxin J, Wei J, Chun L,
Jin W, Qun W, Yan L, Chunsong H, Mingzhen Y, et al: CC chemokine
ligand 25 enhances resistance to apoptosis in CD4+ T cells from
patients with T-cell lineage acute and chronic lymphocytic leukemia
by means of livin activation. Cancer Res. 64:7579–7587. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Deutsch AJ, Steinbauer E, Hofmann NA,
Strunk D, Gerlza T, Beham-Schmid C, Schaider H and Neumeister P:
Chemokine receptors in gastric MALT lymphoma: Loss of CXCR4 and
upregulation of CXCR7 is associated with progression to diffuse
large B-cell lymphoma. Mod Pathol. 26:182–194. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Badr G, Lefevre EA and Mohany M:
Thymoquinone inhibits the CXCL12-induced chemotaxis of multiple
myeloma cells and increases their susceptibility to Fas-mediated
apoptosis. PLoS One. 6:e237412011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Letsch A, Keilholz U, Schadendorf D,
Assfalg G, Asemissen AM, Thiel E and Scheibenbogen C: Functional
CCR9 expression is associated with small intestinal metastasis. J
Invest Dermatol. 122:685–690. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Seidl H, Richtig E, Tilz H, Stefan M,
Schmidbauer U, Asslaber M, Zatloukal K, Herlyn M and Schaider H:
Profiles of chemokine receptors in melanocytic lesions: de novo
expression of CXCR6 in melanoma. Hum Pathol. 38:768–780. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Amersi FF, Terando AM, Goto Y, Scolyer RA,
Thompson JF, Tran AN, Faries MB, Morton DL and Hoon DS: Activation
of CCR9/CCL25 in cutaneous melanoma mediates preferential
metastasis to the small intestine. Clin Cancer Res. 14:638–645.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Richmond A: CCR9 homes metastatic melanoma
cells to the small bowel. Clin Cancer Res. 14:621–623. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Salerno EP, Olson WC, McSkimming C, Shea S
and Slingluff CL Jr: T cells in the human metastatic melanoma
microenvironment express site-specific homing receptors and
retention integrins. Int J Cancer. 134:563–574. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Jacquelot N, Enot DP, Flament C, Vimond N,
Blattner C, Pitt JM, Yamazaki T, Roberti MP, Daillère R, Vétizou M,
et al: Chemokine receptor patterns in lymphocytes mirror metastatic
spreading in melanoma. J Clin Invest. 126:921–937. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Park J, Ostrowitz MB, Cohen MS and
Al-Kasspooles M: A patient with metastatic melanoma of the small
bowel. Oncology (Williston Park). 23:98–102. 2009.PubMed/NCBI
|
|
52
|
Fusi A, Liu Z, Kümmerlen V, Nonnemacher A,
Jeske J and Keilholz U: Expression of chemokine receptors on
circulating tumor cells in patients with solid tumors. J Transl
Med. 10:522012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Kühnelt-Leddihn L, Müller H, Eisendle K,
Zelger B and Weinlich G: Overexpression of the chemokine receptors
CXCR4, CCR7, CCR9, and CCR10 in human primary cutaneous melanoma: A
potential prognostic value for CCR7 and CCR10? Arch Dermatol Res.
304:185–193. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Singh R, Stockard CR, Grizzle WE, Lillard
JW Jr and Singh S: Expression and histopathological correlation of
CCR9 and CCL25 in ovarian cancer. Int J Oncol. 39:373–381.
2011.PubMed/NCBI
|
|
55
|
Johnson EL, Singh R, Singh S,
Johnson-Holiday CM, Grizzle WE, Partridge EE and Lillard JW Jr:
CCL25-CCR9 interaction modulates ovarian cancer cell migration,
metalloproteinase expression, and invasion. World J Surg Oncol.
8:622010. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Johnson-Holiday C, Singh R, Johnson E,
Singh S, Stockard CR, Grizzle WE and Lillard JW Jr: CCL25 mediates
migration, invasion and matrix metalloproteinase expression by
breast cancer cells in a CCR9-dependent fashion. Int J Oncol.
38:1279–1285. 2011.PubMed/NCBI
|
|
57
|
Feng LY, Ou ZL, Wu FY, Shen ZZ and Shao
ZM: Involvement of a novel chemokine decoy receptor CCX-CKR in
breast cancer growth, metastasis and patient survival. Clin Cancer
Res. 15:2962–2970. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Müller A, Homey B, Soto H, Ge N, Catron D,
Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, et al:
Involvement of chemokine receptors in breast cancer metastasis.
Nature. 410:50–56. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Johnson-Holiday C, Singh R, Johnson EL,
Grizzle WE, Lillard JW Jr..Singh S: CCR9-CCL25 interactions promote
cisplatin resistance in breast cancer cell through Akt activation
in a PI3K-dependent and FAK-independent fashion. World J Surg
Oncol. 9:462011. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Singh S, Singh UP, Stiles JK, Grizzle WE
and Lillard JW Jr: Expression and functional role of CCR9 in
prostate cancer cell migration and invasion. Clin Cancer Res.
10:8743–8750. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Sharma PK, Singh R, Novakovic KR, Eaton
JW, Grizzle WE and Singh S: CCR9 mediates PI3K/AKT-dependent
antiapoptotic signals in prostate cancer cells and inhibition of
CCR9-CCL25 interaction enhances the cytotoxic effects of etoposide.
Int J Cancer. 127:2020–2030. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Shen X, Mailey B, Ellenhorn JD, Chu PG,
Lowy AM and Kim J: CC chemokine receptor 9 enhances proliferation
in pancreatic intraepithelial neoplasia and pancreatic cancer
cells. J Gastrointest Surg. 13:1955–1962. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Heinrich EL, Arrington AK, Ko ME, Luu C,
Lee W, Lu J and Kim J: paracrine activation of chemokine receptor
CCR9 enhances the invasiveness of pancreatic cancer cells. Cancer
Microenviron. 6:241–245. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Chen HJ, Sun J, Huang Z, Hou H Jr, Arcilla
M, Rakhilin N, Joe DJ, Choi J, Gadamsetty P, Milsom J, et al:
Comprehensive models of human primary and metastatic colorectal
tumors in immunodeficient and immunocompetent mice by chemokine
targeting. Nat Biotechnol. 33:656–660. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhang Z, Sun T, Chen Y, Gong S, Sun X, Zou
F and Peng R: CCL25/CCR9 Signal promotes migration and invasion in
hepatocellular and breast cancer cell lines. DNA Cell Biol.
35:348–357. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhang Z, Qin C, Wu Y, Su Z, Xian G and Hu
B: CCR9 as a prognostic marker and therapeutic target in
hepatocellular carcinoma. Oncol Rep. 31:1629–1636. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhong Y, Jiang L, Lin H, Li B, Lan J,
Liang S, Shen B, Lei Z and Zheng W: Expression of CC chemokine
receptor 9 predicts poor prognosis in patients with lung
adenocarcinoma. Diagn Pathol. 10:1012015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Gupta P, Sharma PK, Mir H, Singh R, Singh
N, Kloecker GH, Lillard JW Jr and Singh S: CCR9/CCL25 expression in
non-small cell lung cancer correlates with aggressive disease and
mediates key steps of metastasis. Oncotarget. 5:10170–10179. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Mishan MA, Heirani-Tabasi A, Mokhberian N,
Hassanzade M, Kalalian Moghaddam H, Bahrami AR and Ahmadiankia N:
Analysis of chemokine receptor gene expression in esophageal cancer
cells compared with breast cancer with insights into metastasis.
Iran J Public Health. 44:1353–1358. 2015.PubMed/NCBI
|
|
70
|
Chamorro S, Vela M, Franco-Villanueva A,
Carramolino L, Gutiérrez J, Gómez L, Lozano M, Salvador B,
García-Gallo M, Martínez-A C and Kremer L: Antitumor effects of a
monoclonal antibody to human CCR9 in leukemia cell xenografts.
MAbs. 6:1000–1012. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Khandelwal N, Breinig M, Speck T, Michels
T, Kreutzer C, Sorrentino A, Sharma AK, Umansky L, Conrad H,
Poschke I, et al: A high-throughput RNAi screen for detection of
immune-checkpoint molecules that mediate tumor resistance to
cytotoxic T lymphocytes. EMBO Mol Med. 7:450–463. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Hu Y, Zhang L, Wu R, Han R, Jia Y, Jiang
Z, Cheng M, Gan J, Tao X and Zhang Q: Specific killing of CCR9
high-expressing acute T lymphocytic leukemia cells by CCL25 fused
with PE38 toxin. Leuk Res. 35:1254–1260. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Youn BS, Kim YJ, Mantel C, Yu KY and
Broxmeyer HE: Blocking of c-FLIP(L)-independent
cycloheximide-induced apoptosis or Fas-mediated apoptosis by the CC
chemokine receptor 9/TECK interaction. Blood. 98:925–933. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Deng X, Tu Z, Xiong M, Tembo K, Zhou L,
Liu P, Pan S, Xiong J, Yang X, Leng J, et al: Wnt5a and CCL25
promote adult T-cell acute lymphoblastic leukemia cell migration,
invasion and metastasis. Oncotarget. 8:39033–39047. 2017.PubMed/NCBI
|
|
75
|
Shang L, Thirunarayanan N, Viejo-Borbolla
A, Martin AP, Bogunovic M, Marchesi F, Unkeless JC, Ho Y, Furtado
GC, Alcami A, et al: Expression of the chemokine binding protein M3
promotes marked changes in the accumulation of specific leukocytes
subsets within the intestine. Gastroenterology. 137:1006–1018,
1018.e1-3. 2009. View Article : Google Scholar : PubMed/NCBI
|