Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
August-2018 Volume 16 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2018 Volume 16 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Identification of common differentially‑expressed miRNAs in ovarian cancer cells and their exosomes compared with normal ovarian surface epithelial cell cells

  • Authors:
    • Shitao Zhang
    • Xiaoping Zhang
    • Xueqi Fu
    • Wannan Li
    • Shu Xing
    • Yiling Yang
  • View Affiliations / Copyright

    Affiliations: Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China, Department of Obstetrics and Gynecology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 2391-2401
    |
    Published online on: June 12, 2018
       https://doi.org/10.3892/ol.2018.8954
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The aim of the present study was to identify common microRNAs (miRNAs) in ovarian cancer (OC) cells and their exosomes using microarray data (accession number GSE76449) available from the Gene Expression Omnibus database, including exosomal samples from 3 OC cell lines, 1 normal ovarian surface epithelial cell line and their original cell samples. Differentially‑expressed miRNAs (DE‑miRNAs) were identified using the Linear Models for Microarray data method, and mRNA targets of DE‑miRNAs were predicted using the miRWalk2 database. The potential functions of the target genes of the DE‑miRNAs were analyzed using the Database for Annotation, Visualization and Integrated Discovery tool. The association between crucial miRNAs and target genes, and their clinical associations, were validated using The Cancer Genome Atlas data. As a result, 12 upregulated and 12 downregulated DE‑miRNAs were shared by the 3 OC cell lines compared with normal controls in the exosomal samples, while 5 upregulated and 65 downregulated DE‑miRNAs were shared between the original cells. Among them, 9 downregulated DE‑miRNAs were shared between exosomal and original cells. The target genes of 4 common DE‑miRNAs between exosomal and original cells (miR‑127‑3p, miR‑339‑5p, miR‑409‑3p and miR‑654‑3p) were predicted. Functional enrichment analysis indicated that these target genes may be involved in the Wnt signaling pathway (miR‑409‑3p‑CTBP1 and miR‑339‑5p‑CHD8) and Proteoglycans in cancer (miR‑127‑3p‑PPP1CA). The negative associations between these 3 miRNAs and target genes were confirmed by a Pearson's correlation analysis. miR‑127 was negatively associated with tumor grade. In conclusion, our results describe a set of miRNAs involved in OC development, in exosomal and non‑exosomal manners, by regulating their target genes. They may be potential targets for treatment of OC.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Chen W, Zheng R, Baade P, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China, 2015. CA-Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Cliby WA, Powell MA, Al-Hammadi N, Chen L, Miller Philip J, Roland PY, Mutch DG and Bristow RE: Ovarian cancer in the United States: Contemporary patterns of care associated with improved survival. Gynecol Oncol. 136:11–17. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Hausser J and Zavolan M: Identification and consequences of miRNA-target interactions-beyond repression of gene expression. Nat Rev Genet. 15:599–612. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Yang Z, Wang XL, Bai R, Liu WY, Li X, Liu M and Tang H: miR-23a promotes IKKα expression but suppresses ST7L expression to contribute to the malignancy of epithelial ovarian cancer cells. Br J Cancer. 115:731–740. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Shen W, Song M, Liu J, Qiu G, Li T, Hu Y and Liu H: MiR-26a promotes ovarian cancer proliferation and tumorigenesis. PLoS One. 9:e868712014. View Article : Google Scholar : PubMed/NCBI

6 

Dong P, Xiong Y, Watari H, Hanley SJ, Konno Y, Ihira K, Yamada T, Kudo M, Yue J and Sakuragi N: MiR-137 and miR-34a directly target Snail and inhibit EMT, invasion and sphere-forming ability of ovarian cancer cells. J Exp Clin Cancer Res. 35:1322016. View Article : Google Scholar : PubMed/NCBI

7 

Neviani P and Fabbri M: Exosomic microRNAs in the tumor microenvironment. Front Med (Lausanne). 2:472015.PubMed/NCBI

8 

Baroni S, Romero-Cordoba S, Plantamura I, Dugo M, D'Ippolito E, Cataldo A, Cosentino G, Angeloni V, Rossini A, Daidone MG and Iorio MV: Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts. Cell Death Dis. 7:e23122016. View Article : Google Scholar : PubMed/NCBI

9 

Singh R, Pochampally R, Watabe K, Lu Z and Mo YY: Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer. Mol Cancer. 13:2562014. View Article : Google Scholar : PubMed/NCBI

10 

Kobayashi M, Salomon C, Tapia J, Illanes SE, Mitchell MD and Rice GE: Ovarian cancer cell invasiveness is associated with discordant exosomal sequestration of Let-7 miRNA and miR-200. J Transl Med. 12:42014. View Article : Google Scholar : PubMed/NCBI

11 

Ying X, Wu Q, Wu X, Zhu Q and Wang X, Jiang L, Chen X and Wang X: Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget. 7:43076–43087. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Kanlikilicer P, Rashed MH, Bayraktar R, Mitra R, Ivan C, Aslan B, Zhang X, Filant J, Silva AM, Rodriguez-Aguayo C, et al: Ubiquitous release of exosomal tumor suppressor miR-6126 from ovarian cancer cells. Cancer Res. 76:7194–7207. 2016. View Article : Google Scholar : PubMed/NCBI

13 

De A, Powers B, De A, Zhou J, Sharma S, Van Veldhuizen P, Bansal A, Sharma R and Sharma M: Emblica officinalis extract downregulates pro-angiogenic molecules via upregulation of cellular and exosomal miR-375 in human ovarian cancer cells. Oncotarget. 7:31484–31500. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Smyth GK: Limma: Linear models for microarray dataBioinform Comput Biol Solut Using R Bioconduct. Gentleman R, Carey V, Dudoit S, Irizarry R and Huber W: Springer; New York, NY: pp. 397–420. 2005

15 

Kohl M, Wiese S and Warscheid B: Cytoscape: Software for visualization and analysis of biological networks. Methods Mol Biol. 696:291–303. 2011. View Article : Google Scholar : PubMed/NCBI

16 

da Huang W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Kosary CL: FIGO stage, histology, histologic grade, age and race as prognostic factors in determining survival for cancers of the female gynecological system: An analysis of 1973–87 SEER cases of cancers of the endometrium, cervix, ovary, vulva, and vagina. Semin Surg Oncol. 10:31–46. 1994. View Article : Google Scholar : PubMed/NCBI

18 

Shimizu Y, Kamoi S, Amada S, Akiyama F and Silverberg SG: Toward the development of a universal grading system for ovarian epithelial carcinoma: Testing of a proposed system in a series of 461 patients with uniform treatment and follow-up. Cancer. 82:893–901. 1998. View Article : Google Scholar : PubMed/NCBI

19 

Vasaikar SV, Straub P, Wang J and Zhang B: LinkedOmics: Analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 46(D1): D956–D963. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Zhang G, Liu Z, Xu H and Yang Q: miR-409-3p suppresses breast cancer cell growth and invasion by targeting Akt1. Biochem Biophys Res Commun. 469:189–195. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Bi L, Yang Q, Yuan J, Miao Q, Duan L, Li F and Wang S: MicroRNA-127-3p acts as a tumor suppressor in epithelial ovarian cancer by regulating the BAG5 gene. Oncol Rep. 36:2563–2570. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Shan W, Li J, Bai Y and Lu X: miR-339-5p inhibits migration and invasion in ovarian cancer cell lines by targeting NACC1 and BCL6. Tumour Biol. 37:5203–5211. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Arend RC, Londoño-Joshi AI, Straughn JM Jr and Buchsbaum DJ: The Wnt/β-catenin pathway in ovarian cancer: A review. Gynecol Oncol. 131:772–779. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Yoshioka S, King ML, Ran S, Okuda H, MacLean JA II, Mcasey ME, Sugino N, Brard L, Watabe K and Hayashi K: WNT7A regulates tumor growth and progression in ovarian cancer through the WNT/β-catenin pathway. Mol Cancer Res. 10:469–482. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Usongo M, Li X and Farookhi R: Activation of the canonical WNT signaling pathway promotes ovarian surface epithelial proliferation without inducing β-catenin/Tcf-mediated reporter expression. Dev Dyn. 242:291–300. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Puvirajesinghe TM, Bertucci F, Jain A, Scerbo P, Belotti E, Audebert S, Sebbagh M, Lopez M, Brech A, Finetti P, et al: Identification of p62/SQSTM1 as a component of non-canonical Wnt VANGL2-JNK signalling in breast cancer. Nat Commun. 7:103182016. View Article : Google Scholar : PubMed/NCBI

27 

Deng Y, Deng H, Liu J, Han G, Malkoski S, Liu B, Zhao R, Wang XJ and Zhang Q: Transcriptional down-regulation of Brca1 and E-cadherin by CtBP1 in breast cancer. Mol Carcinog. 51:500–507. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Wang R, Asangani IA, Chakravarthi BV, Ateeq B, Lonigro RJ, Cao Q, Mani RS, Camacho DF, McGregor N, Schumann TE, et al: Role of transcriptional corepressor CtBP1 in prostate cancer progression. Neoplasia. 14:905–914. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Nishiyama M, Skoultchi AI and Nakayama KI: Histone H1 recruitment by CHD8 is essential for suppression of the Wnt-β-catenin signaling pathway. Mol Cell Biol. 32:501–512. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Sawada G, Ueo H, Matsumura T, Uchi R, Ishibashi M, Mima K, Kurashige J, Takahashi Y, Akiyoshi S, Sudo T, et al: CHD8 is an independent prognostic indicator that regulates Wnt/β-catenin signaling and the cell cycle in gastric cancer. Oncol Rep. 30:1137–1142. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Menon T, Yates JA and Bochar DA: Regulation of androgen-responsive transcription by the chromatin remodeling factor CHD8. Mol Endocrinol. 24:1165–1174. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Jones DH and Lin DI: Amplification of the NSD3-BRD4-CHD8 pathway in pelvic high-grade serous carcinomas of tubo-ovarian and endometrial origin. Mol Clin Oncol. 7:301–307. 2017.PubMed/NCBI

33 

Shingleton JR and Hemann MT: The chromatin regulator CHD8 is a context-dependent mediator of cell survival in murine hematopoietic malignancies. PLoS One. 10:e01432752015. View Article : Google Scholar : PubMed/NCBI

34 

MacLean JA II, King ML, Okuda H and Hayashi K: WNT7A regulation by miR-15b in ovarian cancer. PLoS One. 11:e01561092016. View Article : Google Scholar : PubMed/NCBI

35 

Deng Y, Deng H, Bi F, Liu J, Bemis LT, Norris D, Wang XJ and Zhang Q: MicroRNA-137 targets carboxyl-terminal binding protein 1 in melanoma cell lines. Int J Biol Sci. 7:133–137. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Wang L, Madigan MC, Chen H, Liu F, Patterson KI, Beretov J, O'Brien PM and Li Y: Expression of urokinase plasminogen activator and its receptor in advanced epithelial ovarian cancer patients. Gynecol Oncol. 114:265–272. 2009. View Article : Google Scholar : PubMed/NCBI

37 

Dorn J, Harbeck N, Kates R, Gkazepis A, Scorilas A, Soosaipillai A, Diamandis E, Kiechle M, Schmalfeldt B and Schmitt M: Impact of expression differences of kallikrein-related peptidases and of uPA and PAI-1 between primary tumor and omentum metastasis in advanced ovarian cancer. Ann Oncol. 22:877–883. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Tang J, Wang J, Fan L, Li X, Liu N, Luo W, Wang J and Wang Y and Wang Y: cRGD inhibits vasculogenic mimicry formation by down-regulating uPA expression and reducing EMT in ovarian cancer. Oncotarget. 7:24050–24062. 2016.PubMed/NCBI

39 

Estrella VC, Eder AM, Liu S, Pustilnik TB, Tabassam FH, Claret FX, Gallick GE, Mills GB and Wiener JR: Lysophosphatidic acid induction of urokinase plasminogen activator secretion requires activation of the p38MAPK pathway. Int J Oncol. 31:441–449. 2007.PubMed/NCBI

40 

Li XF, Yan PJ and Shao ZM: Downregulation of miR-193b contributes to enhance urokinase-type plasminogen activator (uPA) expression and tumor progression and invasion in human breast cancer. Oncogene. 28:3937–3948. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Li J, Kong F, Wu K, Song K, He J and Sun W: miR-193b directly targets STMN1 and uPA genes and suppresses tumor growth and metastasis in pancreatic cancer. Mol Med Rep. 10:2613–2620. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Xie C, Jiang XH, Zhang JT, Sun TT, Dong JD, Sanders AJ, Diao RY, Wang Y, Fok KL, Tsang LL, et al: CFTR suppresses tumor progression through miR-193b targeting urokinase plasminogen activator (uPA) in prostate cancer. Oncogene. 32(2282–2291): 2291. e1–e7. 2013.

43 

Kawabe T, Muslin AJ and Korsmeyer SJ: HOX11 interacts with protein phosphatases PP2A and PP1 and disrupts a G2/M cell-cycle checkpoint. Nature. 385:454–458. 1997. View Article : Google Scholar : PubMed/NCBI

44 

Dessauge F, Cayla X, Albar JP, Fleischer A, Ghadiri A, Duhamel M and Rebollo A: Identification of PP1alpha as a caspase-9 regulator in IL-2 deprivation-induced apoptosis. J Immunol. 177:2441–2451. 2006. View Article : Google Scholar : PubMed/NCBI

45 

Hsu LC, Huang X, Seasholtz S, Potter DM and Gollin SM: Gene amplification and overexpression of protein phosphatase 1alpha in oral squamous cell carcinoma cell lines. Oncogene. 25:5517–5526. 2006. View Article : Google Scholar : PubMed/NCBI

46 

Nohata N, Hanazawa T, Kikkawa N, Sakurai D, Fujimura L, Chiyomaru T, Kawakami K, Yoshino H, Enokida H, Nakagawa M, et al: Tumour suppressive microRNA-874 regulates novel cancer networks in maxillary sinus squamous cell carcinoma. Br J Cancer. 105:833–841. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Shastry AH, Thota B, Srividya MR, Arivazhagan A and Santosh V: Nuclear Protein Phosphatase 1 α (PP1A) expression is associated with poor prognosis in p53 expressing glioblastomas. Pathol Oncol Res. 22:287–292. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Noskova V, Ahmadi S, Asander E and Casslén B: Ovarian cancer cells stimulate uPA gene expression in fibroblastic stromal cells via multiple paracrine and autocrine mechanisms. Gynecol Oncol. 115:121–126. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Lin F, Wang HJ, Li CX, Li H, Wang T, Nan P, Qian HL and Zhan QM: Effects of esophageal cancer cell-derived exosomes on cancer cell migration and invasion and its mechanism research. Med J Chin PLA. 42:307–313. 2017.

50 

Dempsey E, Dervin F and Maguire PB: Platelet derived exosomes are enriched for specific microRNAs which regulate WNT signalling in endothelial cells. Blood. 124:27602014.PubMed/NCBI

51 

Zhang P, Garnett J, Creighton CJ, Al Sannaa GA, Igram DR, Lazar A, Liu X, Liu C and Pollock RE: EZH2-miR-30d-KPNB1 pathway regulates malignant peripheral nerve sheath tumour cell survival and tumourigenesis. J Pathol. 232:308–318. 2014. View Article : Google Scholar : PubMed/NCBI

52 

Li B, Jiang S, Yu X, Cheng C, Chen S, Cheng Y, Yuan JS, Jiang D, He P and Shan L: Phosphorylation of trihelix transcriptional repressor ASR3 by MAP KINASE4 negatively regulates Arabidopsis immunity. Plant Cell. 27:839–856. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Rashed MH, Kanlikilicer P, Rodriguez-Aguayo C, Pichler M, Bayraktar R, Bayraktar E, Ivan C, Filant J, Silva A, Aslan B, et al: Exosomal miR-940 maintains SRC-mediated oncogenic activity in cancer cells: A possible role for exosomal disposal of tumor suppressor miRNAs. Oncotarget. 8:20145–20164. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang S, Zhang X, Fu X, Li W, Xing S and Yang Y: Identification of common differentially‑expressed miRNAs in ovarian cancer cells and their exosomes compared with normal ovarian surface epithelial cell cells. Oncol Lett 16: 2391-2401, 2018.
APA
Zhang, S., Zhang, X., Fu, X., Li, W., Xing, S., & Yang, Y. (2018). Identification of common differentially‑expressed miRNAs in ovarian cancer cells and their exosomes compared with normal ovarian surface epithelial cell cells. Oncology Letters, 16, 2391-2401. https://doi.org/10.3892/ol.2018.8954
MLA
Zhang, S., Zhang, X., Fu, X., Li, W., Xing, S., Yang, Y."Identification of common differentially‑expressed miRNAs in ovarian cancer cells and their exosomes compared with normal ovarian surface epithelial cell cells". Oncology Letters 16.2 (2018): 2391-2401.
Chicago
Zhang, S., Zhang, X., Fu, X., Li, W., Xing, S., Yang, Y."Identification of common differentially‑expressed miRNAs in ovarian cancer cells and their exosomes compared with normal ovarian surface epithelial cell cells". Oncology Letters 16, no. 2 (2018): 2391-2401. https://doi.org/10.3892/ol.2018.8954
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang S, Zhang X, Fu X, Li W, Xing S and Yang Y: Identification of common differentially‑expressed miRNAs in ovarian cancer cells and their exosomes compared with normal ovarian surface epithelial cell cells. Oncol Lett 16: 2391-2401, 2018.
APA
Zhang, S., Zhang, X., Fu, X., Li, W., Xing, S., & Yang, Y. (2018). Identification of common differentially‑expressed miRNAs in ovarian cancer cells and their exosomes compared with normal ovarian surface epithelial cell cells. Oncology Letters, 16, 2391-2401. https://doi.org/10.3892/ol.2018.8954
MLA
Zhang, S., Zhang, X., Fu, X., Li, W., Xing, S., Yang, Y."Identification of common differentially‑expressed miRNAs in ovarian cancer cells and their exosomes compared with normal ovarian surface epithelial cell cells". Oncology Letters 16.2 (2018): 2391-2401.
Chicago
Zhang, S., Zhang, X., Fu, X., Li, W., Xing, S., Yang, Y."Identification of common differentially‑expressed miRNAs in ovarian cancer cells and their exosomes compared with normal ovarian surface epithelial cell cells". Oncology Letters 16, no. 2 (2018): 2391-2401. https://doi.org/10.3892/ol.2018.8954
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team