|
1
|
Bürkle A: Poly(ADP-ribose). The most
elaborate metabolite of NAD+. FEBS J. 272:4576–4589. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Haikarainen T, Krauss S and Lehtio L:
Tankyrases: Structure, function and therapeutic implications in
cancer. Curr Pharm Des. 20:6472–6488. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Riffell JL, Lord CJ and Ashworth A:
Tankyrase-targeted therapeutics: Expanding opportunities in the
PARP family. Nat Rev Drug Discov. 11:923–936. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Malanga M and Althaus FR: The role of
poly(ADP-ribose) in the DNA damage signaling network. Biochem Cell
Biol. 83:354–364. 2005. View
Article : Google Scholar : PubMed/NCBI
|
|
5
|
Luo X and Kraus WL: On PAR with PARP:
Cellular stress signaling through poly(ADP-ribose) and PARP-1.
Genes Dev. 26:417–432. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kraus WL and Lis JT: PARP goes
transcription. Cell. 113:677–683. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Yeh TY, Sbodio JI, Tsun ZY, Luo B and Chi
NW: Insulin-stimulated exocytosis of GLUT4 is enhanced by IRAP and
its partner tankyrase. Biochem J. 402:279–290. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Beneke S and Bürkle A:
Poly(ADP-ribosyl)ation in mammalian ageing. Nucleic Acids Res.
35:7456–7465. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Otto H, Reche PA, Bazan F, Dittmar K, Haag
F and Koch-Nolte F: In silico characterization of the family of
PARP-like poly(ADP-ribosyl)transferases (pARTs). BMC Genomics.
6:1392005. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Hsiao SJ and Smith S: Tankyrase function
at telomeres, spindle poles, and beyond. Biochimie. 90:83–92. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Smith S, Giriat I, Schmitt A and de Lange
T: Tankyrase, a poly(ADP-ribose) polymerase at human telomeres.
Science. 282:1484–1487. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Seimiya H and Smith S: The telomeric
poly(ADP-ribose) polymerase, tankyrase 1, contains multiple binding
sites for telomeric repeat binding factor 1 (TRF1) and a novel
acceptor, 182-kDa tankyrase-binding protein (TAB182). J Biol Chem.
277:14116–14126. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
De Rycker M and Price CM: Tankyrase
polymerization is controlled by its sterile alpha motif and
poly(ADP-ribose) polymerase domains. Mol Cell Biol. 24:9802–9812.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Guettler S, LaRose J, Petsalaki E, Gish G,
Scotter A, Pawson T, Rottapel R and Sicheri F: Structural basis and
sequence rules for substrate recognition by Tankyrase explain the
basis for cherubism disease. Cell. 147:1340–1354. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Huang SM, Mishina YM, Liu S, Cheung A,
Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner
S, et al: Tankyrase inhibition stabilizes axin and antagonizes Wnt
signalling. Nature. 461:614–620. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Li N, Zhang Y, Han X, Liang K, Wang J,
Feng L, Wang W, Songyang Z, Lin C, Yang L, et al: Poly-ADP
ribosylation of PTEN by tankyrases promotes PTEN degradation and
tumor growth. Genes Dev. 29:157–170. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Tian XH, Hou WJ, Fang Y, Fan J, Tong H,
Bai SL, Chen Q, Xu H and Li Y: XAV939, a tankyrase 1 inhibitior,
promotes cell apoptosis in neuroblastoma cell lines by inhibiting
Wnt/β-catenin signaling pathway. J Exp Clin Cancer Res. 32:1002013.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Smith S and de Lange T: Tankyrase promotes
telomere elongation in human cells. Curr Biol. 10:1299–1302. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Chang P, Coughlin M and Mitchison TJ:
Tankyrase-1 polymerization of poly(ADP-ribose) is required for
spindle structure and function. Nat Cell Biol. 7:1133–1139. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Chang W, Dynek JN and Smith S: NuMA is a
major acceptor of poly(ADP-ribosyl)ation by tankyrase 1 in mitosis.
Biochem J. 391:177–184. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Kim MK, Dudognon C and Smith S: Tankyrase
1 regulates centrosome function by controlling CPAP stability. EMBO
Rep. 13:724–732. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kim MK and Smith S: Persistent telomere
cohesion triggers a prolonged anaphase. Mol Biol Cell. 25:30–40.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Guo HL, Zhang C, Liu Q, Li Q, Lian G, Wu
D, Li X, Zhang W, Shen Y, Ye Z, et al: The Axin/TNKS complex
interacts with KIF3A and is required for insulin-stimulated GLUT4
translocation. Cell Res. 22:1246–1257. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Yeh TY, Sbodio JI and Chi NW: Mitotic
phosphorylation of tankyrase, a PARP that promotes spindle
assembly, by GSK3. Biochem Biophys Res Commun. 350:574–579. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Levaot N, Voytyuk O, Dimitriou I,
Sircoulomb F, Chandrakumar A, Deckert M, Krzyzanowski PM, Scotter
A, Gu S, Janmohamed S, et al: Loss of Tankyrase-mediated
destruction of 3BP2 is the underlying pathogenic mechanism of
cherubism. Cell. 147:1324–1339. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kang DH, Lee DJ, Lee S, Lee SY, Jun Y, Kim
Y, Kim Y, Lee JS, Lee DK, Lee S, et al: Interaction of tankyrase
and peroxiredoxin II is indispensable for the survival of
colorectal cancer cells. Nat Commun. 8:402017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Croy HE, Fuller CN, Giannotti J, Robinson
P, Foley AV, Yamulla RJ, Cosgriff S, Greaves BD, von Kleeck RA, An
HH, et al: The poly(ADP-ribose) polymerase enzyme tankyrase
antagonizes activity of the β-catenin destruction complex through
ADP-ribosylation of axin and APC2. J Biol Chem. 291:12747–12760.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wang W, Li N, Li X, Tran MK, Han X and
Chen J: Tankyrase inhibitors target YAP by stabilizing angiomotin
family proteins. Cell Rep. 13:524–532. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Tripathi E and Smith S: Cell
cycle-regulated ubiquitination of tankyrase 1 by RNF8 and
ABRO1/BRCC36 controls the timing of sister telomere resolution.
EMBO J. 36:503–519. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kuusela S, Wang H, Wasik AA, Suleiman H
and Lehtonen S: Tankyrase inhibition aggravates kidney injury in
the absence of CD2AP. Cell Death Dis. 7:e23022016. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Li X, Han H, Zhou MT, Yang B, Ta AP, Li N,
Chen J and Wang W: Proteomic analysis of the human tankyrase
protein interaction network reveals its role in pexophagy. Cell
Rep. 20:737–749. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Chang W, Dynek JN and Smith S: TRF1 is
degraded by ubiquitin-mediated proteolysis after release from
telomeres. Genes Dev. 17:1328–1333. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wang W, Huang J and Chen J:
Angiomotin-like proteins associate with and negatively regulate
YAP1. J Biol Chem. 286:4364–4370. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ha GH, Kim HS, Go H, Lee H, Seimiya H,
Chung DH and Lee CW: Tankyrase-1 function at telomeres and during
mitosis is regulated by Polo-like kinase-1-mediated
phosphorylation. Cell Death Differ. 19:321–332. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Chi NW and Lodish HF: Tankyrase is a
golgi-associated mitogen-activated protein kinase substrate that
interacts with IRAP in GLUT4 vesicles. J Biol Chem.
275:38437–38444. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Yan Y and Lackner MR: FOXO3a and β-catenin
co-localization: Double trouble in colon cancer? Nat Med.
18:854–856. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Bisht KK, Dudognon C, Chang WG, Sokol ES,
Ramirez A and Smith S: GDP-mannose-4,6-dehydratase is a cytosolic
partner of tankyrase 1 that inhibits its poly(ADP-ribose)
polymerase activity. Mol Cell Biol. 32:3044–3053. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kaminker PG, Kim SH, Taylor RD,
Zebarjadian Y, Funk WD, Morin GB, Yaswen P and Campisi J: TANK2, a
new TRF1-associated poly(ADP-ribose) polymerase, causes rapid
induction of cell death upon overexpression. J Biol Chem.
276:35891–35899. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Cerone MA, Burgess DJ, Naceur-Lombardelli
C, Lord CJ and Ashworth A: High-throughput RNAi screening reveals
novel regulators of telomerase. Cancer Res. 71:3328–3340. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Seimiya H, Muramatsu Y, Ohishi T and
Tsuruo T: Tankyrase 1 as a target for telomere-directed molecular
cancer therapeutics. Cancer Cell. 7:25–37. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lu H, Lei Z, Lu Z, Lu Q, Lu C, Chen W,
Wang C, Tang Q and Kong Q: Silencing tankyrase and telomerase
promotes A549 human lung adenocarcinoma cell apoptosis and inhibits
proliferation. Oncol Rep. 30:1745–1752. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhang H, Yang MH, Zhao JJ, Chen L, Yu ST,
Tang XD, Fang DC and Yang SM: Inhibition of tankyrase 1 in human
gastric cancer cells enhances telomere shortening by telomerase
inhibitors. Oncol Rep. 24:1059–1065. 2010.PubMed/NCBI
|
|
43
|
Lin L, Sabnis AJ, Chan E, Olivas V, Cade
L, Pazarentzos E, Asthana S, Neel D, Yan JJ, Lu X, et al: The Hippo
effector YAP promotes resistance to RAF- and MEK-targeted cancer
therapies. Nat Genet. 47:250–256. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Clevers H: Wnt/beta-catenin signaling in
development and disease. Cell. 127:469–480. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Rubinfeld B, Albert I, Porfiri E, Fiol C,
Munemitsu S and Polakis P: Binding of GSK3beta to the
APC-beta-catenin complex and regulation of complex assembly.
Science. 272:1023–1026. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Cancer Genome Atlas Network, .
Comprehensive molecular characterization of human colon and rectal
cancer. Nature. 487:330–337. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Lau T, Chan E, Callow M, Waaler J, Boggs
J, Blake RA, Magnuson S, Sambrone A, Schutten M, Firestein R, et
al: A novel tankyrase small-molecule inhibitor suppresses APC
mutation-driven colorectal tumor growth. Cancer Res. 73:3132–3144.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Waaler J, Machon O, Tumova L, Dinh H,
Korinek V, Wilson SR, Paulsen JE, Pedersen NM, Eide TJ, Machonova
O, et al: A novel tankyrase inhibitor decreases canonical Wnt
signaling in colon carcinoma cells and reduces tumor growth in
conditional APC mutant mice. Cancer Res. 72:2822–2832. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wu X, Luo F, Li J, Zhong X and Liu K:
Tankyrase 1 inhibitior XAV939 increases chemosensitivity in colon
cancer cell lines via inhibition of the Wnt signaling pathway. Int
J Oncol. 48:1333–1340. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Nguyen DX, Chiang AC, Zhang XH, Kim JY,
Kris MG, Ladanyi M, Gerald WL and Massagué J: WNT/TCF signaling
through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis.
Cell. 138:51–62. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Pacheco-Pinedo EC, Durham AC, Stewart KM,
Goss AM, Lu MM, Demayo FJ and Morrisey EE: Wnt/β-catenin signaling
accelerates mouse lung tumorigenesis by imposing an embryonic
distal progenitor phenotype on lung epithelium. J Clin Invest.
121:1935–1945. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Busch AM, Johnson KC, Stan RV, Sanglikar
A, Ahmed Y, Dmitrovsky E and Freemantle SJ: Evidence for tankyrases
as antineoplastic targets in lung cancer. BMC Cancer. 13:2112013.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Casás-Selves M, Kim J, Zhang Z, Helfrich
BA, Gao D, Porter CC, Scarborough HA, Bunn PA Jr, Chan DC, Tan AC
and DeGregori J: Tankyrase and the canonical Wnt pathway protect
lung cancer cells from EGFR inhibition. Cancer Res. 72:4154–4164.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Halder G and Johnson RL: Hippo signaling:
Growth control and beyond. Development. 138:9–22. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhao B, Li L, Lei Q and Guan KL: The
Hippo-YAP pathway in organ size control and tumorigenesis: An
updated version. Genes Dev. 24:862–874. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Dong J, Feldmann G, Huang J, Wu S, Zhang
N, Comerford SA, Gayyed MF, Anders RA, Maitra A and Pan D:
Elucidation of a universal size-control mechanism in Drosophila and
mammals. Cell. 130:1120–1133. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Harvey KF, Zhang X and Thomas DM: The
Hippo pathway and human cancer. Nat Rev Cancer. 13:246–257. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Mo JS, Park HW and Guan KL: The Hippo
signaling pathway in stem cell biology and cancer. EMBO Rep.
15:642–656. 2014.PubMed/NCBI
|
|
59
|
Wang H, Lu B, Castillo J, Zhang Y, Yang Z,
McAllister G, Lindeman A, Reece-Hoyes J, Tallarico J, Russ C, et
al: Tankyrase inhibitor sensitizes lung cancer cells to Endothelial
Growth Factor Receptor (EGFR) inhibition via stabilizing
angiomotins and inhibiting YAP signaling. J Biol Chem.
291:15256–15266. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Li J, Yen C, Liaw D, Podsypanina K, Bose
S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, et al:
PTEN, a putative protein tyrosine phosphatase gene mutated in human
brain, breast, and prostate cancer. Science. 275:1943–1947. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Steck PA, Pershouse MA, Jasser SA, Yung
WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T,
et al: Identification of a candidate tumour suppressor gene, MMAC1,
at chromosome 10q23.3 that is mutated in multiple advanced cancers.
Nat Genet. 15:356–362. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI,
Zheng Z, Bose S, Call KM, Tsou HC, Peacocke M, et al: Germline
mutations of the PTEN gene in Cowden disease, an inherited breast
and thyroid cancer syndrome. Nat Genet. 16:64–67. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Losada A and Hirano T: Dynamic molecular
linkers of the genome: The first decade of SMC proteins. Genes Dev.
19:1269–1287. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Nasmyth K and Haering CH: The structure
and function of SMC and kleisin complexes. Annu Rev Biochem.
74:595–648. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ozaki Y, Matsui H, Asou H, Nagamachi A,
Aki D, Honda H, Yasunaga S, Takihara Y, Yamamoto T, Izumi S, et al:
Poly-ADP ribosylation of Miki by tankyrase-1 promotes centrosome
maturation. Mol Cell. 47:694–706. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Boveri T: Concerning the origin of
malignant tumours by Theodor Boveri. Translated and annotated by
Henry Harris. J Cell Sci. 121 Suppl 1:S1–S84. 2008. View Article : Google Scholar
|
|
67
|
Duensing S and Münger K: Centrosome
abnormalities, genomic instability and carcinogenic progression.
Biochim Biophys Acta. 1471:M81–M88. 2001.PubMed/NCBI
|
|
68
|
Ganem NJ, Godinho SA and Pellman D: A
mechanism linking extra centrosomes to chromosomal instability.
Nature. 460:278–282. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Guerrero AA, Martínez-A C and van Wely KH:
Merotelic attachments and non-homologous end joining are the basis
of chromosomal instability. Cell Div. 5:132010. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Korzeniewski N, Hohenfellner M and
Duensing S: The centrosome as potential target for cancer therapy
and prevention. Expert Opin Ther Targets. 17:43–52. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Goodwin JF and Knudsen KE: Beyond DNA
repair: DNA-PK function in cancer. Cancer Discov. 4:1126–1139.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Gagné JP, Isabelle M, Lo KS, Bourassa S,
Hendzel MJ, Dawson VL, Dawson TM and Poirier GG: Proteome-wide
identification of poly(ADP-ribose) binding proteins and
poly(ADP-ribose)-associated protein complexes. Nucleic Acids Res.
36:6959–6976. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ruscetti T, Lehnert BE, Halbrook J, Le
Trong H, Hoekstra MF, Chen DJ and Peterson SR: Stimulation of the
DNA-dependent protein kinase by poly(ADP-ribose) polymerase. J Biol
Chem. 273:14461–14467. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Dregalla RC, Zhou J, Idate RR, Battaglia
CL, Liber HL and Bailey SM: Regulatory roles of tankyrase 1 at
telomeres and in DNA repair: Suppression of T-SCE and stabilization
of DNA-PKcs. Aging (Albany NY). 2:691–708. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Nagy Z, Kalousi A, Furst A, Koch M,
Fischer B and Soutoglou E: Tankyrase promote homologous
recombination and check point activation in response to DSBs. PLoS
Genet. 12:e10057912016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Arqués O, Chicote I, Puig I, Tenbaum SP,
Argilés G, Dienstmann R, Fernández N, Caratù G, Matito J,
Silberschmidt D, et al: Tankyrase inhibition blocks Wnt/β-catenin
pathway and reverts resistance to PI3K and AKT inhibitors in the
treatment of colorectal cancer. Clin Cancer Res. 22:644–656. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Bao R, Christova T, Song S, Angers S, Yan
X and Attisano L: Inhibition of tankyrases induces Axin
stabilization and blocks Wnt signalling in breast cancer cells.
PLoS One. 7:e486702012. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Quackenbush KS, Bagby S, Tai WM,
Messersmith WA, Schreiber A, Greene J, Kim J, Wang G, Purkey A,
Pitts TM, et al: The novel tankyrase inhibitor (AZ1366) enhances
irinotecan activity in tumors that exhibit elevated tankyrase and
irinotecan resistance. Oncotarget. 7:28273–28285. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Stratford EW, Daffinrud J, Munthe E,
Castro R, Waaler J, Krauss S and Myklebost O: The
tankyrase-specific inhibitor JW74 affects cell cycle progression
and induces apoptosis and differentiation in osteosarcoma cell
lines. Cancer Med. 3:36–46. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Tian X, Hou W, Bai S, Fan J, Tong H and Xu
H: XAV939 inhibits the stemness and migration of neuroblastoma
cancer stem cells via repression of tankyrase 1. Int J Oncol.
45:121–128. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Mashima T, Taneda Y, Jang MK, Mizutani A,
Muramatsu Y, Yoshida H, Sato A, Tanaka N, Sugimoto Y and Seimiya H:
mTOR signaling mediates resistance to tankyrase inhibitors in
Wnt-driven colorectal cancer. Oncotarget. 8:47902–47915. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Tenbaum SP, Ordóñez-Morán P, Puig I,
Chicote I, Arqués O, Landolfi S, Fernández Y, Herance JR, Gispert
JD, Mendizabal L, et al: β-catenin confers resistance to PI3K and
AKT inhibitors and subverts FOXO3a to promote metastasis in colon
cancer. Nat Med. 18:892–901. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Thomson DW, Wagner AJ, Bantscheff M,
Benson RE, Dittus L, Duempelfeld B, Drewes G, Krause J, Moore JT,
Mueller K, et al: Discovery of a highly selective tankyrase
inhibitor displaying growth inhibition effects against a diverse
range of tumor derived cell lines. J Med Chem. 60:5455–5471. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Keren-Paz A, Emmanuel R and Samuels Y: YAP
and the drug resistance highway. Nat Genet. 47:193–194. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Peters JM and Nishiyama T: Sister
chromatid cohesion. Cold Spring Harb Perspect Biol. 4(pii):
a0111302012.PubMed/NCBI
|
|
86
|
Canudas S and Smith S: Differential
regulation of telomere and centromere cohesion by the Scc3
homologues SA1 and SA2, respectively, in human cells. J Cell Biol.
187:165–173. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Matovinović MS: Podocyte injury in
glomerular diseases. EJIFCC. 20:21–27. 2009.PubMed/NCBI
|