Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
December-2019 Volume 18 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2019 Volume 18 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Prognostic value and prospective molecular mechanism of miR‑100‑5p in hepatocellular carcinoma: A comprehensive study based on 1,258 samples

  • Authors:
    • Qing‑Lin He
    • Shan‑Yu Qin
    • Lin Tao
    • Hong‑Jian Ning
    • Hai‑Xing Jiang
  • View Affiliations / Copyright

    Affiliations: Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
    Copyright: © He et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 6126-6142
    |
    Published online on: October 4, 2019
       https://doi.org/10.3892/ol.2019.10962
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The prognostic value and molecular mechanism of microRNA‑100‑5p (miR‑100‑5p) in hepatocellular carcinoma (HCC) are still unclear. To explore the prognostic value and the mechanism of miR‑100‑5p in HCC, the present study analyzed the results of 18 previous studies and bioinformatic datasets. The clinical significance of miR‑100‑5p and its targets in HCC were investigated using The Cancer Genome Atlas and the Gene Expression Omnibus, as well as relevant literature. In total, 12 online tools were used to predict the target genes of miR‑100‑5p. Bioinformatics analysis and Spearman correlation analysis were performed, and genomic alterations of the hub genes were evaluated. A meta‑analysis with 1,258 samples revealed that miR‑100‑5p was significantly downregulated in HCC [standard mean difference (SMD), ‑0.94; 95% confidence interval (CI), ‑1.14 to ‑0.74; I2, 35.2%]. Lower miR‑100‑5p expression was associated with poorer clinical characteristics and a poorer prognosis for patients with HCC. Additionally, bioinformatics analysis revealed that the ʻregulation of transcriptionʼ, ʻchromatin remodeling complexʼ, ʻtranscription regulator activityʼ, ʻpathways in cancerʼ and ʻheparan sulfate biosynthesisʼ were the most enriched terms. Furthermore, expression of histone deacetylase (HDAC)2, HDAC3, SHC‑transforming protein 1 (SHC1), Ras‑related protein Rac1 (RAC1) and E3 ubiquitin‑protein ligase CBL (CBL) was negatively correlated with miR‑100‑5p expression. Among these, upregulated HDAC2 [hazard ratio (HR), 1.910; 95% CI, 1.309‑2.787; P=0.0007], HDAC3 (HR, 1.474; 95% CI, 1.012‑2.146; P=0.0435), SHC1 (HR, 1.52; 95% CI, 1.043‑2.215; P=0.0281) and RAC1 (HR, 1.817; 95% CI, 1.248‑2.645; P=0.0022) were associated with shorter survival. Alterations in HDAC2, SHC1, RAC1 and IGF1R were linked with a poorer outcome for HCC, and alternative splicing of SHC and RAC1 were significantly decreased and increased in HCC, respectively. In summary, the downregulation of miR‑100‑5p may be involved in the progression and prognosis of HCC. The upregulation of HDAC2, HDAC3, SHC1 and RAC1 may indicate a poorer survival rate for patients with HCC. Thus, miR‑100‑5p and these 4 potential target genes may provide novel therapeutic targets and prognostic predictors for patients with HCC.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

View References

1 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Kudo M: Systemic therapy for hepatocellular carcinoma: 2017 update. Oncology. 93 (Suppl 1):S135–S146. 2017. View Article : Google Scholar

3 

Aguilar C, Mano M and Eulalio A: MicroRNAs at the Host-bacteria interface: Host defense or bacterial offense. Trends Microbiol. 27:206–218. 2019. View Article : Google Scholar : PubMed/NCBI

4 

Mollaei H, Safaralizadeh R and Rostami Z: MicroRNA replacement therapy in cancer. J Cell Physiol. 234:12369–12384. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Li TT, Gao X, Gao L, Gan BL, Xie ZC, Zeng JJ and Chen G: Role of upregulated miR-136-5p in lung adenocarcinoma: A study of 1242 samples utilizing bioinformatics analysis. Pathol Res Pract. 214:750–766. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Gao L, Li SH, Tian YX, Zhu QQ, Chen G, Pang YY and Hu XH: Role of downregulated miR-133a-3p expression in bladder cancer: A bioinformatics study. Onco Targets Ther. 10:3667–3683. 2017. View Article : Google Scholar : PubMed/NCBI

7 

He D, Yue Z, Li G, Chen L, Feng H and Sun J: Low serum levels of miR-101 are associated with poor prognosis of colorectal cancer patients after curative resection. Med Sci Monit. 24:7475–7481. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Zheng Y, Tan K and Huang H: Long noncoding RNA HAGLROS regulates apoptosis and autophagy in colorectal cancer cells via sponging miR-100 to target ATG5 expression. J Cell Biochem. 120:3922–3933. 2019. View Article : Google Scholar : PubMed/NCBI

9 

Wu G, Zhou W, Pan X, Sun Y, Xu H, Shi P, Li J, Gao L and Tian X: miR-100 reverses cisplatin resistance in breast cancer by suppressing HAX-1. Cell Physiol Biochem. 47:2077–2087. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Sun X, Liu X, Wang Y, Yang S, Chen Y and Yuan T: miR-100 inhibits the migration and invasion of nasopharyngeal carcinoma by targeting IGF1R. Oncol Lett. 15:8333–8338. 2018.PubMed/NCBI

11 

Shi DB, Wang YW, Xing AY, Gao JW, Zhang H, Guo XY and Gao P: C/EBPα-induced miR-100 expression suppresses tumor metastasis and growth by targeting ZBTB7A in gastric cancer. Cancer Lett. 369:376–385. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Chen P, Zhao X and Ma L: Downregulation of microRNA-100 correlates with tumor progression and poor prognosis in hepatocellular carcinoma. Mol Cell Biochem. 383:49–58. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Zhou HC, Fang JH, Luo X, Zhang L, Yang J, Zhang C and Zhuang SM: Downregulation of microRNA-100 enhances the ICMT-Rac1 signaling and promotes metastasis of hepatocellular carcinoma cells. Oncotarget. 5:12177–12188. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Zhou HC, Fang JH, Shang LR, Zhang ZJ, Sang Y, Xu L, Yuan Y, Chen MS, Zheng L, Zhang Y and Zhuang SM: MicroRNAs miR-125b and miR-100 suppress metastasis of hepatocellular carcinoma by disrupting the formation of vessels that encapsulate tumour clusters. J Pathol. 240:450–460. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Ge YY, Shi Q, Zheng ZY, Gong J, Zeng C, Yang J and Zhuang SM: MicroRNA-100 promotes the autophagy of hepatocellular carcinoma cells by inhibiting the expression of mTOR and IGF-1R. Oncotarget. 5:6218–6228. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Pan WY, Zeng JH, Wen DY, Wang JY, Wang PP, Chen G and Feng ZB: Oncogenic value of microRNA-15b-5p in hepatocellular carcinoma and a bioinformatics investigation. Oncol Lett. 17:1695–1713. 2019.PubMed/NCBI

17 

Zhang S, Gao Y and Huang J: Interleukin-8 Gene-251 A/T (rs4073) polymorphism and coronary artery disease risk: A meta-analysis. Med Sci Monit. 25:1645–1655. 2019. View Article : Google Scholar : PubMed/NCBI

18 

Zhang X, Xin G and Sun D: Serum exosomal miR-328, miR-575, miR-134 and miR-671-5p as potential biomarkers for the diagnosis of Kawasaki disease and the prediction of therapeutic outcomes of intravenous immunoglobulin therapy. Exp Ther Med. 16:2420–2432. 2018.PubMed/NCBI

19 

Betel D, Koppal A, Agius P, Sander C and Leslie C: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 11:R902010. View Article : Google Scholar : PubMed/NCBI

20 

Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, Filippidis C, Dalamagas T and Hatzigeorgiou AG: DIANA-microT web server v5.0: Service integration into miRNA functional analysis workflows. Nucleic Acids Res. 41:W169–W173. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Hsu SD, Chu CH, Tsou AP, Chen SJ, Chen HC, Hsu PW, Wong YH, Chen YH, Chen GH and Huang HD: miRNAMap 2.0: Genomic maps of microRNAs in metazoan genomes. Nucleic Acids Res 36 (Database Issue). D165–D169. 2008.

22 

Tsang JS, Ebert MS and van Oudenaarden A: Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures. Mol Cell. 38:140–153. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Vejnar CE, Blum M and Zdobnov EM: miRmap web: Comprehensive microRNA target prediction online. Nucleic Acids Res. 41:W165–W168. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Anders G, Mackowiak SD, Jens M, Maaskola J, Kuntzagk A, Rajewsky N, Landthaler M and Dieterich C: doRiNA: A database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res 40 (Database Issue). D180–D186. 2012. View Article : Google Scholar

25 

Kertesz M, Iovino N, Unnerstall U, Gaul U and Segal E: The role of site accessibility in microRNA target recognition. Nat Genet. 39:1278–1284. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Wang X and El Naqa IM: Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics. 24:325–332. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Rehmsmeier M, Steffen P, Hochsmann M and Giegerich R: Fast and effective prediction of microRNA/target duplexes. RNA. 10:1507–1517. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Loher P and Rigoutsos I: Interactive exploration of RNA22 microRNA target predictions. Bioinformatics. 28:3322–3323. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Friedman RC, Farh KK, Burge CB and Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19:92–105. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Calderón-González KG, Hernández-Monge J, Herrera-Aguirre ME and Luna-Arias JP: Bioinformatics tools for proteomics data interpretation. Adv Exp Med Biol. 919:281–341. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, et al: The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45:D362–D368. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Roessler S, Jia HL, Budhu A, Forgues M, Ye QH, Lee JS, Thorgeirsson SS, Sun Z, Tang ZY, Qin LX and Wang XW: A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. Cancer Res. 70:10202–10212. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Chen X, Cheung ST, So S, Fan ST, Barry C, Higgins J, Lai KM, Ji J, Dudoit S, Ng IO, et al: Gene expression patterns in human liver cancers. Mol Biol Cell. 13:1929–1939. 2002. View Article : Google Scholar : PubMed/NCBI

34 

Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z, Edfors F, et al: A pathology atlas of the human cancer transcriptome. Science. 357(pii): eaan25072017. View Article : Google Scholar : PubMed/NCBI

35 

Jiao XD, Qin BD, You P, Cai J and Zang YS: The prognostic value of TP53 and its correlation with EGFR mutation in advanced non-small cell lung cancer, an analysis based on cBioPortal data base. Lung Cancer. 123:70–75. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Ryan M, Wong WC, Brown R, Akbani R, Su X, Broom B, Melott J and Weinstein J: TCGASpliceSeq a compendium of alternative mRNA splicing in cancer. Nucleic Acids Res. 44:D1018–D1022. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Zhang R, Lin P, Yang X, He RQ, Wu HY, Dang YW, Gu YY, Peng ZG, Feng ZB and Chen G: Survival associated alternative splicing events in diffuse large B-cell lymphoma. Am J Transl Res. 10:2636–2647. 2018.PubMed/NCBI

38 

Li Y, Sun N, Lu Z, Sun S, Huang J, Chen Z and He J: Prognostic alternative mRNA splicing signature in non-small cell lung cancer. Cancer Lett. 393:40–51. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Xiao F, Bai Y, Chen Z, Li Y, Luo L, Huang J, Yang J, Liao H and Guo L: Downregulation of HOXA1 gene affects small cell lung cancer cell survival and chemoresistance under the regulation of miR-100. Eur J Cancer. 50:1541–1554. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Guo P, Xiong X, Zhang S and Peng D: miR-100 resensitizes resistant epithelial ovarian cancer to cisplatin. Oncol Rep. 36:3552–3558. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Qin X, Yu S, Zhou L, Shi M, Hu Y, Xu X, Shen B, Liu S, Yan D and Feng J: Cisplatin-resistant lung cancer cell-derived exosomes increase cisplatin resistance of recipient cells in exosomal miR-100-5p-dependent manner. Int J Nanomedicine. 12:3721–3733. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Wang M, Ren D, Guo W, Wang Z, Huang S, Du H, Song L and Peng X: Loss of miR-100 enhances migration, invasion, epithelial-mesenchymal transition and stemness properties in prostate cancer cells through targeting Argonaute 2. Int J Oncol. 45:362–372. 2014. View Article : Google Scholar : PubMed/NCBI

43 

Leite KR, Sousa-Canavez JM, Reis ST, Tomiyama AH, Camara-Lopes LH, Sañudo A, Antunes AA and Srougi M: Change in expression of miR-let7c, miR-100, and miR-218 from high grade localized prostate cancer to metastasis. Urol Oncol. 29:265–269. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Zhang H, Wang J, Wang Z, Ruan C, Wang L and Guo H: Serum miR-100 is a potential biomarker for detection and outcome prediction of glioblastoma patients. Cancer Biomark. 24:43–49. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Azizmohammadi S, Azizmohammadi S, Safari A, Kosari N, Kaghazian M, Yahaghi E and Seifoleslami M: The role and expression of miR-100 and miR-203 profile as prognostic markers in epithelial ovarian cancer. Am J Transl Res. 8:2403–2410. 2016.PubMed/NCBI

46 

Petrelli A, Perra A, Schernhuber K, Cargnelutti M, Salvi A, Migliore C, Ghiso E, Benetti A, Barlati S, Ledda-Columbano GM, et al: Sequential analysis of multistage hepatocarcinogenesis reveals that miR-100 and PLK1 dysregulation is an early event maintained along tumor progression. Oncogene. 31:4517–4526. 2012. View Article : Google Scholar : PubMed/NCBI

47 

Varnholt H, Drebber U, Schulze F, Wedemeyer I, Schirmacher P, Dienes HP and Odenthal M: MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology. 47:1223–1232. 2008. View Article : Google Scholar : PubMed/NCBI

48 

Wang Y, Gao Y, Shi W, Zhai D, Rao Q, Jia X, Liu J, Jiao X and Du Z: Profiles of differential expression of circulating microRNAs in hepatitis B virus-positive small hepatocellular carcinoma. Cancer Biomark. 15:171–180. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Tsai CT, Zulueta MML and Hung SC: Synthetic heparin and heparan sulfate: Probes in defining biological functions. Curr Opin Chem Biol. 40:152–159. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Li JP and Kusche-Gullberg M: Heparan Sulfate: Biosynthesis, structure, and function. Int Rev Cell Mol Biol. 325:215–273. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Weiss RJ, Esko JD and Tor Y: Targeting heparin and heparan sulfate protein interactions. Org Biomol Chem. 15:5656–5668. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Cassinelli G, Zaffaroni N and Lanzi C: The heparanase/heparan sulfate proteoglycan axis: A potential new therapeutic target in sarcomas. Cancer Lett. 382:245–254. 2016. View Article : Google Scholar : PubMed/NCBI

53 

Ling L, Tan SK, Goh TH, Cheung E, Nurcombe V, van Wijnen AJ and Cool SM: Targeting the heparin-binding domain of fibroblast growth factor receptor 1 as a potential cancer therapy. Mol Cancer. 14:1362015. View Article : Google Scholar : PubMed/NCBI

54 

Dudás J, Bocsi J, Fullár A, Baghy K, Füle T, Kudaibergenova S and Kovalszky I: Heparin and liver heparan sulfate can rescue hepatoma cells from topotecan action. Biomed Res Int. 2014:7657942014. View Article : Google Scholar : PubMed/NCBI

55 

Gao J, Wang Y, Li W, Zhang J, Che Y, Cui X, Sun B and Zhao G: Loss of histone deacetylase 2 inhibits oxidative stress induced by high glucose via the HO-1/SIRT1 pathway in endothelial progenitor cells. Gene. 678:1–7. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Li Y, Zhou M, Lv X, Song L, Zhang D, He Y, Wang M, Zhao X, Yuan X, Shi G and Wang D: Reduced activity of HDAC3 and increased acetylation of histones H3 in peripheral blood mononuclear cells of patients with rheumatoid arthritis. J Immunol Res. 2018:73135152018. View Article : Google Scholar : PubMed/NCBI

57 

Li S, Wang F, Qu Y, Chen X, Gao M, Yang J, Zhang D, Zhang N, Li W and Liu H: HDAC2 regulates cell proliferation, cell cycle progression and cell apoptosis in esophageal squamous cell carcinoma EC9706 cells. Oncol Lett. 13:403–409. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Peng Z, Zhou W, Zhang C, Liu H and Zhang Y: Curcumol controls choriocarcinoma stem-like cells self-renewal via repression of DNA Methyltransferase (DNMT)- and histone deacetylase (HDAC)-mediated epigenetic regulation. Med Sci Monit. 24:461–472. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Liu L, Lin W, Zhang Q, Cao W and Liu Z: TGF-β induces miR-30d down-regulation and podocyte injury through Smad2/3 and HDAC3-associated transcriptional repression. J Mol Med (Berl). 94:291–300. 2016. View Article : Google Scholar : PubMed/NCBI

60 

Mao QD, Zhang W, Zhao K, Cao B, Yuan H, Wei LZ, Song MQ and Liu XS: MicroRNA-455 suppresses the oncogenic function of HDAC2 in human colorectal cancer. Braz J Med Biol Res. 50:e61032017. View Article : Google Scholar : PubMed/NCBI

61 

Yang Y, Zhang J, Wu T, Xu X, Cao G, Li H and Chen X: Histone deacetylase 2 regulates the doxorubicin (Dox) resistance of hepatocarcinoma cells and transcription of ABCB1. Life Sci. 216:200–206. 2019. View Article : Google Scholar : PubMed/NCBI

62 

Zhao H, Yu Z, Zhao L, He M, Ren J, Wu H, Chen Q, Yao W and Wei M: HDAC2 overexpression is a poor prognostic factor of breast cancer patients with increased multidrug resistance-associated protein expression who received anthracyclines therapy. Jpn J Clin Oncol. 46:893–902. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Cui Z, Xie M, Wu Z and Shi Y: Relationship between histone deacetylase 3 (HDAC3) and breast cancer. Med Sci Monit. 24:2456–2464. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Wu LM, Yang Z, Zhou L, Zhang F, Xie HY, Feng XW, Wu J and Zheng SS: Identification of histone deacetylase 3 as a biomarker for tumor recurrence following liver transplantation in HBV-associated hepatocellular carcinoma. PLoS One. 5:e144602010. View Article : Google Scholar : PubMed/NCBI

65 

Lebiedzinska-Arciszewska M, Oparka M, Vega-Naredo I, Karkucinska-Wieckowska A, Pinton P, Duszynski J and Wieckowski MR: The interplay between p66Shc, reactive oxygen species and cancer cell metabolism. Eur J Clin Invest. 45 (Suppl 1):S25–S31. 2015. View Article : Google Scholar

66 

Wong N, Chan A, Lee SW, Lam E, To KF, Lai PB, Li XN, Liew CT and Johnson PJ: Positional mapping for amplified DNA sequences on 1q21-q22 in hepatocellular carcinoma indicates candidate genes over-expression. J Hepatol. 38:298–306. 2003. View Article : Google Scholar : PubMed/NCBI

67 

Kisielow M, Kleiner S, Nagasawa M, Faisal A and Nagamine Y: Isoform-specific knockdown and expression of adaptor protein ShcA using small interfering RNA. Biochem J. 363:1–5. 2002. View Article : Google Scholar : PubMed/NCBI

68 

Zhang L, Zhu S, Shi X and Sha W: The silence of p66(Shc) in HCT8 cells inhibits the viability via PI3K/AKT/Mdm-2/p53 signaling pathway. Int J Clin Exp Pathol. 8:9097–9104. 2015.PubMed/NCBI

69 

Yukimasa S, Masaki T, Yoshida S, Uchida N, Watanabe S, Usuki H, Yoshiji H, Maeta T, Ebara K, Nakatsu T, et al: Enhanced expression of p46 Shc in the nucleus and p52 Shc in the cytoplasm of human gastric cancer. Int J Oncol. 26:905–911. 2005.PubMed/NCBI

70 

Muniyan S, Chou YW, Tsai TJ, Thomes P, Veeramani S, Benigno BB, Walker LD, McDonald JF, Khan SA, Lin FF, et al: p66Shc longevity protein regulates the proliferation of human ovarian cancer cells. Mol Carcinog. 54:618–631. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Rajendran M, Thomes P, Zhang L, Veeramani S and Lin MF: p66Shc-a longevity redox protein in human prostate cancer progression and metastasis: p66Shc in cancer progression and metastasis. Cancer Metastasis Rev. 29:207–222. 2010. View Article : Google Scholar : PubMed/NCBI

72 

Yoshida S, Kornek M, Ikenaga N, Schmelzle M, Masuzaki R, Csizmadia E, Wu Y, Robson SC and Schuppan D: Sublethal heat treatment promotes epithelial-mesenchymal transition and enhances the malignant potential of hepatocellular carcinoma. Hepatology. 58:1667–1680. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Bid HK, Roberts RD, Manchanda PK and Houghton PJ: RAC1: An emerging therapeutic option for targeting cancer angiogenesis and metastasis. Mol Cancer Ther. 12:1925–1934. 2013. View Article : Google Scholar : PubMed/NCBI

74 

Cheng H, Wang W, Wang G, Wang A, Du L and Lou W: Silencing ras-related C3 botulinum toxin substrate 1 inhibits growth and migration of hypopharyngeal squamous cell carcinoma via the P38 mitogen-activated protein kinase signaling pathway. Med Sci Monit. 24:768–781. 2018. View Article : Google Scholar : PubMed/NCBI

75 

Liu B, Xiong J, Liu G, Wu J, Wen L, Zhang Q and Zhang C: High expression of Rac1 is correlated with partial reversed cell polarity and poor prognosis in invasive ductal carcinoma of the breast. Tumour Biol. 39:10104283177109082017. View Article : Google Scholar : PubMed/NCBI

76 

Yoon C, Cho SJ, Chang KK, Park DJ, Ryeom SW and Yoon SS: Role of Rac1 pathway in epithelial-to-mesenchymal transition and cancer stem-like cell phenotypes in gastric adenocarcinoma. Mol Cancer Res. 15:1106–1116. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Niu X, Gao Z, Qi S, Su L, Yang N, Luan X, Li J, Zhang Q, An Y and Zhang S: Macropinocytosis activated by oncogenic Dbl enables specific targeted delivery of Tat/pDNA nano-complexes into ovarian cancer cells. Int J Nanomedicine. 13:4895–4911. 2018. View Article : Google Scholar : PubMed/NCBI

78 

Poudel KR, Roh-Johnson M, Su A, Ho T, Mathsyaraja H, Anderson S, Grady WM, Moens CB, Conacci-Sorrell M, Eisenman RN and Bai J: Competition between TIAM1 and membranes balances endophilin A3 activity in cancer metastasis. Dev Cell. 45:738–752.e6. 2018. View Article : Google Scholar : PubMed/NCBI

79 

Aspenström P: Activated Rho GTPases in cancer-the beginning of a new paradigm. Int J Mol Sci. 19(pii): E39492018. View Article : Google Scholar : PubMed/NCBI

80 

Ching YP, Leong VY, Lee MF, Xu HT, Jin DY and Ng IO: P21-activated protein kinase is overexpressed in hepatocellular carcinoma and enhances cancer metastasis involving c-Jun NH2-terminal kinase activation and paxillin phosphorylation. Cancer Res. 67:3601–3608. 2007. View Article : Google Scholar : PubMed/NCBI

81 

Zhu S, Jin J, Gokhale S, Lu AM, Shan H, Feng J and Xie P: Genetic alterations of TRAF proteins in human cancers. Front Immunol. 9:21112018. View Article : Google Scholar : PubMed/NCBI

82 

Reder H, Wagner S, Gamerdinger U, Sandmann S, Wuerdemann N, Braeuninger A, Dugas M, Gattenloehner S, Klussmann JP and Wittekindt C: Genetic alterations in human papillomavirus-associated oropharyngeal squamous cell carcinoma of patients with treatment failure. Oral Oncol. 93:59–65. 2019. View Article : Google Scholar : PubMed/NCBI

83 

Sajnani K, Islam F, Smith RA, Gopalan V and Lam AK: Genetic alterations in Krebs cycle and its impact on cancer pathogenesis. Biochimie. 135:164–172. 2017. View Article : Google Scholar : PubMed/NCBI

84 

Jonckheere N, Vasseur R and Van Seuningen I: The cornerstone K-RAS mutation in pancreatic adenocarcinoma: From cell signaling network, target genes, biological processes to therapeutic targeting. Crit Rev Oncol Hematol. 111:7–19. 2017. View Article : Google Scholar : PubMed/NCBI

85 

Song X, Zeng Z, Wei H and Wang Z: Alternative splicing in cancers: From aberrant regulation to new therapeutics. Semin Cell Dev Biol. 75:13–22. 2018. View Article : Google Scholar : PubMed/NCBI

86 

Climente-González H, Porta-Pardo E, Godzik A and Eyras E: The functional impact of alternative splicing in cancer. Cell Rep. 20:2215–2226. 2017. View Article : Google Scholar : PubMed/NCBI

87 

Xie M, Dart DA, Owen S, Wen X, Ji J and Jiang W: Insights into roles of the miR-1, −133 and −206 family in gastric cancer (Review). Oncol Rep. 36:1191–1198. 2016. View Article : Google Scholar : PubMed/NCBI

88 

Teplyuk NM, Uhlmann EJ, Gabriely G, Volfovsky N, Wang Y, Teng J, Karmali P, Marcusson E, Peter M, Mohan A, et al: Therapeutic potential of targeting microRNA-10b in established intracranial glioblastoma: First steps toward the clinic. EMBO Mol Med. 8:268–287. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Li W, Xie L, He X, Li J, Tu K, Wei L, Wu J, Guo Y, Ma X, Zhang P, et al: Diagnostic and prognostic implications of microRNAs in human hepatocellular carcinoma. Int J Cancer. 123:1616–1622. 2008. View Article : Google Scholar : PubMed/NCBI

90 

Su H, Yang JR, Xu T, Huang J, Xu L, Yuan Y and Zhuang SM: MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res. 69:1135–1142. 2009. View Article : Google Scholar : PubMed/NCBI

91 

Burchard J, Zhang C, Liu AM, Poon RT, Lee NP, Wong KF, Sham PC, Lam BY, Ferguson MD, Tokiwa G, et al: microRNA-122 as a regulator of mitochondrial metabolic gene network in hepatocellular carcinoma. Mol Sys Biol. 6:4022010. View Article : Google Scholar

92 

Sato F, Hatano E, Kitamura K, Myomoto A, Fujiwara T, Takizawa S, Tsuchiya S, Tsujimoto G, Uemoto S and Shimizu K: MicroRNA profile predicts recurrence after resection in patients with hepatocellular carcinoma within the Milan Criteria. PLoS One. 6:e164352011. View Article : Google Scholar : PubMed/NCBI

93 

Noh JH, Chang YG, Kim MG, Jung KH, Kim JK, Bae HJ, Eun JW, Shen Q, Kim SJ, Kwon SH, et al: MiR-145 functions as a tumor suppressor by directly targeting histone deacetylase 2 in liver cancer. Cancer Lett. 335:455–462. 2013. View Article : Google Scholar : PubMed/NCBI

94 

Wang PR, Xu M, Toffanin S, Li Y, Llovet JM and Russell DW: Induction of hepatocellular carcinoma by in vivo gene targeting. Proc Natl Acad Sci USA. 109:11264–11269. 2012. View Article : Google Scholar : PubMed/NCBI

95 

Morita K, Shirabe K, Taketomi A, Soejima Y, Yoshizumi T, Uchiyama H, Ikegami T, Yamashita Y, Sugimachi K, Harimoto N, et al: Relevance of microRNA-18a and microRNA-199a-5p to hepatocellular carcinoma recurrence after living donor liver transplantation. Liver Transpl. 22:665–676. 2016. View Article : Google Scholar : PubMed/NCBI

96 

Shih TC, Tien YJ, Wen CJ, Yeh TS, Yu MC, Huang CH, Lee YS, Yen TC and Hsieh SY: MicroRNA-214 downregulation contributes to tumor angiogenesis by inducing secretion of the hepatoma-derived growth factor in human hepatoma. J Hepatol. 57:584–591. 2012. View Article : Google Scholar : PubMed/NCBI

97 

Wojcicka A, Swierniak M, Kornasiewicz O, Gierlikowski W, Maciag M, Kolanowska M, Kotlarek M, Gornicka B, Koperski L, Niewinski G, et al: Next generation sequencing reveals microRNA isoforms in liver cirrhosis and hepatocellular carcinoma. Int J Biochem Cell Biol. 53:208–217. 2014. View Article : Google Scholar : PubMed/NCBI

98 

Shen J, Siegel AB, Remotti H, Wang Q and Santella RM: Identifying microRNA panels specifically associated with hepatocellular carcinoma and its different etiologies. Hepatoma Res. 2:151–162. 2016. View Article : Google Scholar : PubMed/NCBI

99 

Lou W, Liu J, Ding B, Chen D, Xu L, Ding J, Jiang D, Zhou L, Zheng S and Fan W: Identification of potential miRNA-mRNA regulatory network contributing to pathogenesis of HBV-related HCC. J Transl Med. 17:72019. View Article : Google Scholar : PubMed/NCBI

100 

Murakami Y, Kubo S, Tamori A, Itami S, Kawamura E, Iwaisako K, Ikeda K, Kawada N, Ochiya T and Taguchi YH: Comprehensive analysis of transcriptome and metabolome analysis in Intrahepatic Cholangiocarcinoma and hepatocellular carcinoma. Sci Rep. 5:162942015. View Article : Google Scholar : PubMed/NCBI

101 

Ghosh A, Ghosh A, Datta S, Dasgupta D, Das S, Ray S, Gupta S, Datta S, Chowdhury A, Chatterjee R, et al: Hepatic miR-126 is a potential plasma biomarker for detection of hepatitis B virus infected hepatocellular carcinoma. Int J Cancer. 138:2732–2744. 2016. View Article : Google Scholar : PubMed/NCBI

102 

Peng H, Ishida M, Li L, Saito A, Kamiya A, Hamilton JP, Fu R, Olaru AV, An F, Popescu I, et al: Pseudogene INTS6P1 regulates its cognate gene INTS6 through competitive binding of miR-17-5p in hepatocellular carcinoma. Oncotarget. 6:5666–5677. 2015. View Article : Google Scholar : PubMed/NCBI

103 

Zhang Y, Wen DY, Zhang R, Huang JC, Lin P, Ren FH, Wang X, He Y, Yang H, Chen G and Luo DZ: A preliminary investigation of PVT1 on the effect and mechanisms of hepatocellular carcinoma: Evidence from clinical data, a meta-analysis of 840 cases and in vivo validation. Cell Physiol Biochem. 47:2216–2232. 2018. View Article : Google Scholar : PubMed/NCBI

104 

Shi J, Ye G, Zhao G, Wang X, Ye C, Thammavong K, Xu J and Dong J: Coordinative control of G2/M phase of the cell cycle by non-coding RNAs in hepatocellular carcinoma. PeerJ. 6:e57872018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
He QL, Qin SY, Tao L, Ning HJ and Jiang HX: Prognostic value and prospective molecular mechanism of miR‑100‑5p in hepatocellular carcinoma: A comprehensive study based on 1,258 samples. Oncol Lett 18: 6126-6142, 2019.
APA
He, Q., Qin, S., Tao, L., Ning, H., & Jiang, H. (2019). Prognostic value and prospective molecular mechanism of miR‑100‑5p in hepatocellular carcinoma: A comprehensive study based on 1,258 samples. Oncology Letters, 18, 6126-6142. https://doi.org/10.3892/ol.2019.10962
MLA
He, Q., Qin, S., Tao, L., Ning, H., Jiang, H."Prognostic value and prospective molecular mechanism of miR‑100‑5p in hepatocellular carcinoma: A comprehensive study based on 1,258 samples". Oncology Letters 18.6 (2019): 6126-6142.
Chicago
He, Q., Qin, S., Tao, L., Ning, H., Jiang, H."Prognostic value and prospective molecular mechanism of miR‑100‑5p in hepatocellular carcinoma: A comprehensive study based on 1,258 samples". Oncology Letters 18, no. 6 (2019): 6126-6142. https://doi.org/10.3892/ol.2019.10962
Copy and paste a formatted citation
x
Spandidos Publications style
He QL, Qin SY, Tao L, Ning HJ and Jiang HX: Prognostic value and prospective molecular mechanism of miR‑100‑5p in hepatocellular carcinoma: A comprehensive study based on 1,258 samples. Oncol Lett 18: 6126-6142, 2019.
APA
He, Q., Qin, S., Tao, L., Ning, H., & Jiang, H. (2019). Prognostic value and prospective molecular mechanism of miR‑100‑5p in hepatocellular carcinoma: A comprehensive study based on 1,258 samples. Oncology Letters, 18, 6126-6142. https://doi.org/10.3892/ol.2019.10962
MLA
He, Q., Qin, S., Tao, L., Ning, H., Jiang, H."Prognostic value and prospective molecular mechanism of miR‑100‑5p in hepatocellular carcinoma: A comprehensive study based on 1,258 samples". Oncology Letters 18.6 (2019): 6126-6142.
Chicago
He, Q., Qin, S., Tao, L., Ning, H., Jiang, H."Prognostic value and prospective molecular mechanism of miR‑100‑5p in hepatocellular carcinoma: A comprehensive study based on 1,258 samples". Oncology Letters 18, no. 6 (2019): 6126-6142. https://doi.org/10.3892/ol.2019.10962
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team