Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
December-2019 Volume 18 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2019 Volume 18 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Reduced expression of microRNA‑139‑5p in hepatocellular carcinoma results in a poor outcome: An exploration the roles of microRNA‑139‑5p in tumorigenesis, advancement and prognosis at the molecular biological level using an integrated meta‑analysis and bioinformatic investigation

  • Authors:
    • Hui Qin
    • Dong‑Yue Wen
    • Qiao Que
    • Chuan‑Yang Zhou
    • Xiao‑Dong Wang
    • Yu‑Ting Peng
    • Yun He
    • Hong Yang
    • Bo‑Ming Liao
  • View Affiliations / Copyright

    Affiliations: Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China, Department of Internal Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
    Copyright: © Qin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 6704-6724
    |
    Published online on: November 1, 2019
       https://doi.org/10.3892/ol.2019.11031
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Hepatocellular carcinoma (HCC) is generally considered one of the most common gastrointestinal malignant tumors, characterized by high invasiveness and metastatic rate, as well as insidious onset. A relationship between carcinogenicity and aberrant microRNA‑139‑5p (miR‑139‑5p) expression has been identified in multiple tumors while the specific molecular mechanisms of miR‑139‑5p in HCC have not yet been thoroughly elucidated. A meta‑analysis of available data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus, ArrayExpress and Oncomine databases, as well as the published literature, was comprehensively conducted with the aim of examining the impact of miR‑139‑5p expression on HCC. Additionally, predicted downstream target genes were confirmed using a series of bioinformatics tools. Moreover, a correlative biological analysis was performed to ascertain the precise function of miR‑139‑5p in HCC. The results revealed that the expression of miR‑139‑5p was noticeably lower in HCC compared with non‑tumor liver tissues according to the pooled standard mean difference, which was ‑0.84 [95% confidence interval (CI): ‑1.36 to ‑0.32; P<0.001]. Furthermore, associations were detected between miR‑139‑5p expression and certain clinicopathological characteristics of TCGA samples, including tumor grade, pathological stage and T stage. Moreover, the pooled hazard ratio (HR) for overall survival (HR=1.37; 95% CI: 1.07‑1.76; P=0.001) indicated that decreased miR‑139‑5p expression was a risk factor for adverse outcomes. Additionally, 382 intersecting genes regulated by miR‑139‑5p were obtained and assembled in signaling pathways, including ‘transcription factor activity, sequence‑specific DNA binding’, ‘pathways in cancer’ and ‘Ras signaling pathway’. Notably, four targeted genes that were focused in ‘pathways in cancer’ were identified as hub genes and immunohistochemical staining of the proteins encoded by these four hub genes in liver tissues, explored using the Human Protein Atlas database, confirmed their expression patterns in HCC and normal liver tissues Findings of the present study suggest that reduced miR‑139‑5p expression is capable of accelerating tumor progression and is associated with a poor clinical outcome by modulating the expression of downstream target genes involved in tumor‑associated signaling pathways.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

View References

1 

Bray F and Soerjomataram I: The changing global burden of cancer: Transitions in human development and implications for cancer prevention and control. View Article : Google Scholar

2 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Yeh SH and Chen PJ: Gender disparity of hepatocellular carcinoma: The roles of sex hormones. Oncology. (78 Suppl 1):S172–S179. 2010. View Article : Google Scholar

5 

Aghemo A: Update on HCC management and review of the new EASL guidelines. Gastroenterol Hepatol (NY). 14:384–386. 2018.

6 

Singal AG and El-Serag HB: Hepatocellular carcinoma from epidemiology to prevention: Translating knowledge into practice. Clin Gastroenterol Hepatol. 13:2140–2151. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Otedo A, Simbiri KO, Were V, Ongati O and Estambale BA: Risk factors for liver Cancer in HIV endemic areas of Western Kenya. Infect Agent Cancer. 13:412018. View Article : Google Scholar : PubMed/NCBI

8 

Oweira H, Petrausch U, Helbling D, Schmidt J, Mehrabi A, Schöb O, Giryes A and Abdel-Rahman O: Prognostic value of site-specific extra-hepatic disease in hepatocellular carcinoma: A SEER database analysis. Expert Rev Gastroenterol Hepatol. 11:695–701. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Intaraprasong P, Siramolpiwat S and Vilaichone RK: Advances in management of hepatocellular carcinoma. Asian Pac J Cancer Prev. 17:3697–3703. 2016.PubMed/NCBI

10 

Valinezhad Orang A, Safaralizadeh R and Kazemzadeh-Bavili M: Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int J Genomics. 2014:9706072014. View Article : Google Scholar : PubMed/NCBI

11 

Fanini F and Fabbri M: MicroRNAs and cancer resistance: A new molecular plot. Clin Pharmacol Ther. 99:485–493. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, et al: Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 105:10513–10518. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Manikandan J, Aarthi JJ, Kumar SD and Pushparaj PN: Oncomirs: The potential role of non-coding microRNAs in understanding cancer. Bioinformation. 2:330–334. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Yates LA, Norbury CJ and Gilbert RJ: The long and short of microRNA. Cell. 153:516–519. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Beca F and Schmitt F: MicroRNA signatures in cytopathology: Are they ready for prime time? Cancer Cytopathol. 124:613–615. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Wang J, Chen J and Sen S: MicroRNA as biomarkers and diagnostics. J Cell Physiol. 231:25–30. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Keller A, Rounge T, Backes C, Ludwig N, Gislefoss R, Leidinger P, Langseth H and Meese E: Sources to variability in circulating human miRNA signatures. RNA Biol. 14:1791–1798. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Chen Z, Yu T, Cabay RJ, Jin Y, Mahjabeen I, Luan X, Huang L, Dai Y and Zhou X: miR-486-3p, miR-139-5p, and miR-21 as biomarkers for the detection of oral tongue squamous cell carcinoma. Biomark Cancer. 9:1–8. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Zou F, Mao R, Yang L, Lin S, Lei K, Zheng Y, Ding Y, Zhang P, Cai G, Liang X and Liu J: Targeted deletion of miR-139-5p activates MAPK, NF-κB and STAT3 signaling and promotes intestinal inflammation and colorectal cancer. FEBS J. 283:1438–1452. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Liu H, Yin Y, Hu Y, Feng Y, Bian Z, Yao S, Li M, You Q and Huang Z: miR-139-5p sensitizes colorectal cancer cells to 5-fluorouracil by targeting NOTCH-1. Pathol Res Pract. 212:643–649. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Hu Y, Deng C, Zhang H, Zhang J, Peng B and Hu C: Long non-coding RNA XIST promotes cell growth and metastasis through regulating miR-139-5p mediated Wnt/β-catenin signaling pathway in bladder cancer. Oncotarget. 8:94554–94568. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Liu J, Li C, Jiang Y, Wan Y, Zhou S and Cheng W: Tumor-suppressor role of miR-139-5p in endometrial cancer. Cancer Cell Int. 18:512018. View Article : Google Scholar : PubMed/NCBI

24 

Hua S, Lei L, Deng L, Weng X, Liu C, Qi X, Wang S, Zhang D, Zou X, Cao C, et al: miR-139-5p inhibits aerobic glycolysis, cell proliferation, migration, and invasion in hepatocellular carcinoma via a reciprocal regulatory interaction with ETS1. Oncogene. 37:1624–1636. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Wang Z, Ding Q, Li Y, Liu Q, Wu W, Wu L and Yu H: Reanalysis of microRNA expression profiles identifies novel biomarkers for hepatocellular carcinoma prognosis. Tumour Biol. 37:14779–14787. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Ni H, Dai X, Leng X, Deng M, Qin Y, Ji Q, Xu C, Li J and Liu Y: Higher variety and quantity of microRNA-139-5p isoforms confer suppressive role in hepatocellular carcinoma. J Cell Biochem. 119:6806–6813. 2018. View Article : Google Scholar : PubMed/NCBI

27 

Wang YH, Ji J, Weng H, Wang BC and Wang FB: MiR-139 in digestive system tumor diagnosis and detection: Bioinformatics and meta-analysis. Clin Chim Acta. 485:33–41. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Wang L, Liu M, Zhu H, Rong W, Wu F, An S, Liu F, Feng L, Wu J and Xu N: Identification of recurrence-related serum microRNAs in hepatocellular carcinoma following hepatectomy. Cancer Biol Ther. 16:1445–1452. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Wong CC, Wong CM, Tung EK, Au SL, Lee JM, Poon RT, Man K and Ng IO: The microRNA miR-139 suppresses metastasis and progression of hepatocellular carcinoma by down-regulating Rho-kinase 2. Gastroenterology. 140:322–331. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Clough E and Barrett T: The gene expression omnibus database. Methods Mol Biol. 1418:93–110. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Tomczak K, Czerwińska P and Wiznerowicz M: The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge. Contemp Oncol (Pozn). 19:A68–A77. 2015.PubMed/NCBI

32 

Parkinson H, Sarkans U, Kolesnikov N, Abeygunawardena N, Burdett T, Dylag M, Emam I, Farne A, Hastings E, Holloway E, et al: ArrayExpress update-an archive of microarray and high-throughput sequencing-based functional genomics experiments. Nucleic Acids Res. 39:D1002–D1004. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A and Chinnaiyan AM: ONCOMINE: A cancer microarray database and integrated data-mining platform. Neoplasia. 6:1–6. 2004. View Article : Google Scholar : PubMed/NCBI

34 

Tierney JF, Stewart LA, Ghersi D, Burdett S and Sydes MR: Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 8:162007. View Article : Google Scholar : PubMed/NCBI

35 

Vamvakas EC: Meta-analyses of studies of the diagnostic accuracy of laboratory tests: A review of the concepts and methods. Arch Pathol Lab Med. 122:675–686. 1998.PubMed/NCBI

36 

Sticht C, De La Torre C, Parveen A and Gretz N: miRWalk: An online resource for prediction of microRNA binding sites. PLoS One. 13:e02062392018. View Article : Google Scholar : PubMed/NCBI

37 

Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, Liao KW, Huang WC, Sun TH, Tu SJ, Lee WH, et al: miRTarBase update 2018: A resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 46:D296–D302. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Vergoulis T, Vlachos IS, Alexiou P, Georgakilas G, Maragkakis M, Reczko M, Gerangelos S, Koziris N, Dalamagas T and Hatzigeorgiou AG: TarBase 6.0: Capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res. 40:D222–D229. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Bandyopadhyay S and Mitra R: TargetMiner: MicroRNA target prediction with systematic identification of tissue-specific negative examples. Bioinformatics. 25:2625–2631. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Bhattacharya A, Ziebarth JD and Cui Y: PolymiRTS Database 3.0: Linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways. Nucleic Acids Res. 42:D86–D91. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Loher P and Rigoutsos I: Interactive exploration of RNA22 microRNA target predictions. Bioinformatics. 28:3322–3323. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Betel D, Wilson M, Gabow A, Marks DS and Sander C: The microRNA.org resource: Targets and expression. Nucleic Acids Res. 36:D149–D153. 2008. View Article : Google Scholar : PubMed/NCBI

43 

John B, Enright AJ, Aravin A, Tuschl T, Sander C and Marks DS: Human MicroRNA targets. PLoS Biol. 2:e3632004. View Article : Google Scholar : PubMed/NCBI

44 

Hsu SD, Chu CH, Tsou AP, Chen SJ, Chen HC, Hsu PW, Wong YH, Chen YH, Chen GH and Huang HD: miRNAMap 2.0: Genomic maps of microRNAs in metazoan genomes. Nucleic Acids Res. 36:D165–D169. 2008. View Article : Google Scholar : PubMed/NCBI

45 

Agarwal V, Bell GW, Nam JW and Bartel DP: Predicting effective microRNA target sites in mammalian mRNAs. Elife. 4:2015. View Article : Google Scholar

46 

Liu W and Wang X: Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 20:182019. View Article : Google Scholar : PubMed/NCBI

47 

Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M and Rajewsky N: Combinatorial microRNA target predictions. Nat Genet. 37:495–500. 2005. View Article : Google Scholar : PubMed/NCBI

48 

Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC and Lempicki RA: DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 4:P32003. View Article : Google Scholar : PubMed/NCBI

49 

Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, et al: The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39:D561–D568. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, et al: The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45:D362–D368. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Tang Z, Li C, Kang B, Gao G, Li C and Zhang Z: GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45:W98–W102. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Pontén F, Schwenk JM, Asplund A and Edqvist PH: The human protein atlas as a proteomic resource for biomarker discovery. J Intern Med. 270:428–446. 2011. View Article : Google Scholar : PubMed/NCBI

53 

Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et al: The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2:401–404. 2012. View Article : Google Scholar : PubMed/NCBI

54 

Li T, Yin J, Yuan L, Wang S, Yang L, Du X and Lu J: Downregulation of microRNA-139 is associated with hepatocellular carcinoma risk and short-term survival. Oncol Rep. 31:1699–1706. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Jiao W, Zhang J, Wei Y, Feng J, Ma M, Zhao H, Wang L and Jiao W: MiR-139-5p regulates VEGFR and downstream signaling pathways to inhibit the development of esophageal cancer. Dig Liver Dis. 51:149–156. 2019. View Article : Google Scholar : PubMed/NCBI

56 

Qin L, Deng HY, Chen SJ, Wei W and Zhang YT: miR-139 acts as a tumor suppressor in T-cell acute lymphoblastic leukemia by targeting CX chemokine receptor 4. Am J Transl Res. 9:4059–4070. 2017.PubMed/NCBI

57 

Chen J, Yu Y, Chen X, He Y, Hu Q, Li H, Han Q, Ren F, Li J, Li C, et al: MiR-139-5p is associated with poor prognosis and regulates glycolysis by repressing PKM2 in gallbladder carcinoma. Cell Prolif. 51:e125102018. View Article : Google Scholar : PubMed/NCBI

58 

Zhang HD, Sun DW, Mao L, Zhang J, Jiang LH, Li J, Wu Y, Ji H, Chen W, Wang J, et al: MiR-139-5p inhibits the biological function of breast cancer cells by targeting Notch1 and mediates chemosensitivity to docetaxel. Biochem Biophys Res Commun. 465:702–713. 2015. View Article : Google Scholar : PubMed/NCBI

59 

Ren Y, Zhu H, Chi C, Yang F and Xu X: MiRNA-139 regulates oral cancer Tca8113 cells apoptosis through Akt signaling pathway. Int J Clin Exp Pathol. 8:4588–4594. 2015.PubMed/NCBI

60 

Au SL, Wong CC, Lee JM, Fan DN, Tsang FH, Ng IO and Wong CM: Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis. Hepatology. 56:622–631. 2012. View Article : Google Scholar : PubMed/NCBI

61 

Xu K, Shen K, Liang X, Li Y, Nagao N, Li J, Liu J and Yin P: MiR-139-5p reverses CD44+/CD133+-associated multidrug resistance by downregulating NOTCH1 in colorectal carcinoma cells. Oncotarget. 7:75118–75129. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Yoon EL, Yeon JE, Ko E, Lee HJ, Je JH, Yoo YJ, Kang SH, Suh SJ, Kim JH, Seo YS, et al: An explorative analysis for the role of serum miR-10b-3p levels in predicting response to sorafenib in patients with advanced hepatocellular carcinoma. J Korean Med Sci. 32:212–220. 2017. View Article : Google Scholar : PubMed/NCBI

63 

Huang LL, Huang LW, Wang L, Tong BD, Wei Q and Ding XS: Potential role of miR-139-5p in cancer diagnosis, prognosis and therapy. Oncol Lett. 14:1215–1222. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Cox AD and Der CJ: The dark side of Ras: Regulation of apoptosis. Oncogene. 22:8999–9006. 2003. View Article : Google Scholar : PubMed/NCBI

65 

Bos JL: Ras oncogenes in human cancer: A review. Cancer Res. 49:4682–4689. 1989.PubMed/NCBI

66 

Bos JL: The ras gene family and human carcinogenesis. Mutat Res. 195:255–271. 1988. View Article : Google Scholar : PubMed/NCBI

67 

Prior IA, Lewis PD and Mattos C: A comprehensive survey of Ras mutations in cancer. Cancer Res. 72:2457–2467. 2012. View Article : Google Scholar : PubMed/NCBI

68 

Schwarz R, Ramer R and Hinz B: Targeting the endocannabinoid system as a potential anticancer approach. Drug Metab Rev. 50:26–53. 2018. View Article : Google Scholar : PubMed/NCBI

69 

Lu Y and Anderson HD: Cannabinoid signaling in health and disease. Can J Physiol Pharmacol. 95:311–327. 2017. View Article : Google Scholar : PubMed/NCBI

70 

Vago R, Bettiga A, Salonia A, Ciuffreda P and Ottria R: Development of new inhibitors for N-acylethanolamine-hydrolyzing acid amidase as promising tool against bladder cancer. Bioorg Med Chem. 25:1242–1249. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Martínez-Martínez E, Martín-Ruiz A, Martín P, Calvo V, Provencio M and García JM: CB2 cannabinoid receptor activation promotes colon cancer progression via AKT/GSK3β signaling pathway. Oncotarget. 7:68781–68791. 2016. View Article : Google Scholar : PubMed/NCBI

72 

Liontos M, Koutsami M, Sideridou M, Evangelou K, Kletsas D, Levy B, Kotsinas A, Nahum O, Zoumpourlis V, Kouloukoussa M, et al: Deregulated overexpression of hCdt1 and hCdc6 promotes malignant behavior. Cancer Res. 67:10899–10909. 2007. View Article : Google Scholar : PubMed/NCBI

73 

Bravou V, Nishitani H, Song SY, Taraviras S and Varakis J: Expression of the licensing factors, Cdt1 and Geminin, in human colon cancer. Int J Oncol. 27:1511–1518. 2005.PubMed/NCBI

74 

Arentson E, Faloon P, Seo J, Moon E, Studts JM, Fremont DH and Choi K: Oncogenic potential of the DNA replication licensing protein CDT1. Oncogene. 21:1150–1158. 2002. View Article : Google Scholar : PubMed/NCBI

75 

Karavias D, Maroulis I, Papadaki H, Gogos C, Kakkos S, Karavias D and Bravou V: Overexpression of CDT1 is a predictor of poor survival in patients with hepatocellular carcinoma. J Gastrointest Surg. 20:568–579. 2016. View Article : Google Scholar : PubMed/NCBI

76 

Yu Z, Wang R, Chen F, Wang J and Huang X: Five novel oncogenic signatures could be utilized as AFP-related diagnostic biomarkers for hepatocellular carcinoma based on next-generation sequencing. Dig Dis Sci. 63:945–957. 2018. View Article : Google Scholar : PubMed/NCBI

77 

Zhong Q, Chen CF, Li S, Chen Y, Wang CC, Xiao J, Chen PL, Sharp ZD and Lee WH: Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response. Science. 285:747–750. 1999. View Article : Google Scholar : PubMed/NCBI

78 

Chen CC, Chen CY, Ueng SH, Hsueh C, Yeh CT, Ho JY, Chou LF and Wang TH: Corylin increases the sensitivity of hepatocellular carcinoma cells to chemotherapy through long noncoding RNA RAD51-AS1-mediated inhibition of DNA repair. Cell Death Dis. 9:5432018. View Article : Google Scholar : PubMed/NCBI

79 

Chen CC, Chen CY, Wang SH, Yeh CT, Su SC, Ueng SH, Chuang WY, Hsueh C and Wang TH: Melatonin sensitizes hepatocellular carcinoma cells to chemotherapy through long non-coding RNA RAD51-AS1-mediated suppression of DNA repair. Cancers (Basel). 10:2018. View Article : Google Scholar

80 

Shao J, Xu Z, Peng X, Chen M, Zhu Y, Xu L, Zhu H, Yang B, Luo P and He Q: Gefitinib synergizes with irinotecan to suppress hepatocellular carcinoma via antagonizing Rad51-mediated DNA-repair. PLoS One. 11:e01469682016. View Article : Google Scholar : PubMed/NCBI

81 

Luo J, Si ZZ, Li T, Li JQ, Zhang ZQ, Chen GS, Qi HZ and Yao HL: MicroRNA-146a-5p enhances radiosensitivity in hepatocellular carcinoma through replication protein A3-induced activation of the DNA repair pathway. Am J Physiol Cell Physiol. 316:C299–C311. 2019. View Article : Google Scholar : PubMed/NCBI

82 

Chand V, Pandey A, Kopanja D, Guzman G and Raychaudhuri P: Opposing roles of the forkhead box factors FoxM1 and FoxA2 in liver cancer. Mol Cancer Res. 17:1063–1074. 2019. View Article : Google Scholar : PubMed/NCBI

83 

Liang C, Zhao J, Ge H, Li G and Wu J: Clinicopathological and prognostic significance of FoxM1 in hepatocellular carcinoma patients: A meta-analysis. Onco Targets Ther. 11:3561–3571. 2018. View Article : Google Scholar : PubMed/NCBI

84 

Tian C, Wu H, Li C, Tian X, Sun Y, Liu E, Liao X and Song W: Downreguation of FoxM1 by miR-214 inhibits proliferation and migration in hepatocellular carcinoma. Gene Ther. 25:312–319. 2018. View Article : Google Scholar : PubMed/NCBI

85 

Song BN and Chu IS: A gene expression signature of FOXM1 predicts the prognosis of hepatocellular carcinoma. Exp Mol Med. 50:e4182018. View Article : Google Scholar : PubMed/NCBI

86 

Lin P, He RQ, Dang YW, Wen DY, Ma J, He Y, Chen G and Yang H: An autophagy-related gene expression signature for survival prediction in multiple cohorts of hepatocellular carcinoma patients. Oncotarget. 9:17368–17395. 2018. View Article : Google Scholar : PubMed/NCBI

87 

Chang Y, Zhou C, Fan L, Qiu G, Wang G, Wei G, Chang X and Li X: Upregulation of microRNA-300 induces the proliferation of liver cancer by downregulating transcription factor FOXO1. Oncol Rep. 40:3561–3572. 2018.PubMed/NCBI

88 

Xu H, Li G, Yue Z and Li C: HCV core protein-induced upregulation of microRNA-196a promotes aberrant proliferation in hepatocellular carcinoma by targeting FOXO1. Mol Med Rep. 13:5223–5229. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Yang XW, Shen GZ, Cao LQ, Jiang XF, Peng HP, Shen G, Chen D and Xue P: MicroRNA-1269 promotes proliferation in human hepatocellular carcinoma via downregulation of FOXO1. BMC Cancer. 14:9092014. View Article : Google Scholar : PubMed/NCBI

90 

Xu X, Yamamoto H, Sakon M, Yasui M, Ngan CY, Fukunaga H, Morita T, Ogawa M, Nagano H, Nakamori S, et al: Overexpression of CDC25A phosphatase is associated with hypergrowth activity and poor prognosis of human hepatocellular carcinomas. Clin Cancer Res. 9:1764–1772. 2003.PubMed/NCBI

91 

Xu X, Yamamoto H, Liu G, Ito Y, Ngan CY, Kondo M, Nagano H, Dono K, Sekimoto M and Monden M: CDC25A inhibition suppresses the growth and invasion of human hepatocellular carcinoma cells. Int J Mol Med. 21:145–152. 2008.PubMed/NCBI

92 

Kelly P, Moeller BJ, Juneja J, Booden MA, Der CJ, Daaka Y, Dewhirst MW, Fields TA and Casey PJ: The G12 family of heterotrimeric G proteins promotes breast cancer invasion and metastasis. Proc Natl Acad Sci USA. 103:8173–8178. 2006. View Article : Google Scholar : PubMed/NCBI

93 

Kelly P, Stemmle LN, Madden JF, Fields TA, Daaka Y and Casey PJ: A role for the G12 family of heterotrimeric G proteins in prostate cancer invasion. J Biol Chem. 281:26483–26490. 2006. View Article : Google Scholar : PubMed/NCBI

94 

Chia CY, Kumari U and Casey PJ: Breast cancer cell invasion mediated by Gα12 signaling involves expression of interleukins-6 and −8, and matrix metalloproteinase-2. J Mol Signal. 9:62014. View Article : Google Scholar : PubMed/NCBI

95 

Udayappan UK and Casey PJ: c-Jun contributes to transcriptional control of GNA12 expression in prostate cancer cells. Molecules. 22:2017. View Article : Google Scholar : PubMed/NCBI

96 

Bakiri L, Hamacher R, Graña O, Guío-Carrión A, Campos-Olivas R, Martinez L, Dienes HP, Thomsen MK, Hasenfuss SC and Wagner EF: Liver carcinogenesis by FOS-dependent inflammation and cholesterol dysregulation. J Exp Med. 214:1387–1409. 2017. View Article : Google Scholar : PubMed/NCBI

97 

Watanabe T, Hiasa Y, Tokumoto Y, Hirooka M, Abe M, Ikeda Y, Matsuura B, Chung RT and Onji M: Protein kinase R modulates c-Fos and c-Jun signaling to promote proliferation of hepatocellular carcinoma with hepatitis C virus infection. PLoS One. 8:e677502013. View Article : Google Scholar : PubMed/NCBI

98 

Fan Q, He M, Deng X, Wu WK, Zhao L, Tang J, Wen G, Sun X and Liu Y: Derepression of c-Fos caused by microRNA-139 down-regulation contributes to the metastasis of human hepatocellular carcinoma. Cell Biochem Funct. 31:319–324. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Qin H, Wen DY, Que Q, Zhou CY, Wang XD, Peng YT, He Y, Yang H and Liao BM: Reduced expression of microRNA‑139‑5p in hepatocellular carcinoma results in a poor outcome: An exploration the roles of microRNA‑139‑5p in tumorigenesis, advancement and prognosis at the molecular biological level using an integrated meta‑analysis and bioinformatic investigation. Oncol Lett 18: 6704-6724, 2019.
APA
Qin, H., Wen, D., Que, Q., Zhou, C., Wang, X., Peng, Y. ... Liao, B. (2019). Reduced expression of microRNA‑139‑5p in hepatocellular carcinoma results in a poor outcome: An exploration the roles of microRNA‑139‑5p in tumorigenesis, advancement and prognosis at the molecular biological level using an integrated meta‑analysis and bioinformatic investigation. Oncology Letters, 18, 6704-6724. https://doi.org/10.3892/ol.2019.11031
MLA
Qin, H., Wen, D., Que, Q., Zhou, C., Wang, X., Peng, Y., He, Y., Yang, H., Liao, B."Reduced expression of microRNA‑139‑5p in hepatocellular carcinoma results in a poor outcome: An exploration the roles of microRNA‑139‑5p in tumorigenesis, advancement and prognosis at the molecular biological level using an integrated meta‑analysis and bioinformatic investigation". Oncology Letters 18.6 (2019): 6704-6724.
Chicago
Qin, H., Wen, D., Que, Q., Zhou, C., Wang, X., Peng, Y., He, Y., Yang, H., Liao, B."Reduced expression of microRNA‑139‑5p in hepatocellular carcinoma results in a poor outcome: An exploration the roles of microRNA‑139‑5p in tumorigenesis, advancement and prognosis at the molecular biological level using an integrated meta‑analysis and bioinformatic investigation". Oncology Letters 18, no. 6 (2019): 6704-6724. https://doi.org/10.3892/ol.2019.11031
Copy and paste a formatted citation
x
Spandidos Publications style
Qin H, Wen DY, Que Q, Zhou CY, Wang XD, Peng YT, He Y, Yang H and Liao BM: Reduced expression of microRNA‑139‑5p in hepatocellular carcinoma results in a poor outcome: An exploration the roles of microRNA‑139‑5p in tumorigenesis, advancement and prognosis at the molecular biological level using an integrated meta‑analysis and bioinformatic investigation. Oncol Lett 18: 6704-6724, 2019.
APA
Qin, H., Wen, D., Que, Q., Zhou, C., Wang, X., Peng, Y. ... Liao, B. (2019). Reduced expression of microRNA‑139‑5p in hepatocellular carcinoma results in a poor outcome: An exploration the roles of microRNA‑139‑5p in tumorigenesis, advancement and prognosis at the molecular biological level using an integrated meta‑analysis and bioinformatic investigation. Oncology Letters, 18, 6704-6724. https://doi.org/10.3892/ol.2019.11031
MLA
Qin, H., Wen, D., Que, Q., Zhou, C., Wang, X., Peng, Y., He, Y., Yang, H., Liao, B."Reduced expression of microRNA‑139‑5p in hepatocellular carcinoma results in a poor outcome: An exploration the roles of microRNA‑139‑5p in tumorigenesis, advancement and prognosis at the molecular biological level using an integrated meta‑analysis and bioinformatic investigation". Oncology Letters 18.6 (2019): 6704-6724.
Chicago
Qin, H., Wen, D., Que, Q., Zhou, C., Wang, X., Peng, Y., He, Y., Yang, H., Liao, B."Reduced expression of microRNA‑139‑5p in hepatocellular carcinoma results in a poor outcome: An exploration the roles of microRNA‑139‑5p in tumorigenesis, advancement and prognosis at the molecular biological level using an integrated meta‑analysis and bioinformatic investigation". Oncology Letters 18, no. 6 (2019): 6704-6724. https://doi.org/10.3892/ol.2019.11031
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team