Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
December-2019 Volume 18 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2019 Volume 18 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Slow skeletal muscle troponin T, titin and myosin light chain 3 are candidate prognostic biomarkers for Ewing's sarcoma

  • Authors:
    • Yajun Deng
    • Qiqi Xie
    • Guangzhi Zhang
    • Shaoping Li
    • Zuolong Wu
    • Zhanjun Ma
    • Xuegang He
    • Yicheng Gao
    • Yonggang Wang
    • Xuewen Kang
    • Jing Wang
  • View Affiliations / Copyright

    Affiliations: Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
    Copyright: © Deng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 6431-6442
    |
    Published online on: November 4, 2019
       https://doi.org/10.3892/ol.2019.11044
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ewing's sarcoma (ES) is a common malignant bone tumor in children and adolescents. Although great efforts have been made to understand the pathogenesis and development of ES, the underlying molecular mechanism remains unclear. The present study aimed to identify new key genes as potential biomarkers for the diagnosis, targeted therapy or prognosis of ES. mRNA expression profile chip data sets GSE17674, GSE17679 and GSE45544 were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened using the R software limma package, and functional and pathway enrichment analyses were performed using the enrichplot package and GSEA software. The NetworkAnalyst online tool, as well as Cytoscape and its plug‑ins cytoHubba and NetworkAnalyzer, were used to construct a protein‑protein interaction network (PPI) and conduct module analysis to screen key (hub) genes. LABSO COX regression and overall survival (OS) analysis of the Hub genes were performed. A total of 211 DEGs were obtained by integrating and analyzing the three data sets. The functions and pathways of the DEGs were mainly associated with the regulation of small‑molecule metabolic processes, cofactor‑binding, amino acid, proteasome and ribosome biosynthesis in eukaryotes, as well as the Rac1, cell cycle and P53 signaling pathways. A total of one important module and 20 hub genes were screened from the PPI network using the Maximum Correlation Criteria algorithm of cytoHubba. LASSO COX regression results revealed that titin (TTN), fast skeletal muscle troponin T, skeletal muscle actin α‑actin, nebulin, troponin C type 2 (fast), myosin light‑chain 3 (MYL3), slow skeletal muscle troponin T (TNNT1), myosin‑binding protein C1 slow‑type, tropomyosin 3 and myosin heavy‑chain 7 were associated with prognosis in patients with ES. The Kaplan‑Meier curves demonstrated that high mRNA expression levels of TNNT1 (P<0.001), TTN (P=0.049), titin‑cap (P=0.04), tropomodulin 1 (P=0.011), troponin I2 fast skeletal type (P=0.021) and MYL3 (P=0.017) were associated with poor OS in patients with ES. In conclusion, the DEGs identified in the present study may be key genes in the pathogenesis of ES, three of which, namely TNNT1, TTN and MYL3, may be potential prognostic biomarkers for ES.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Orr WS, Denbo JW, Billups CA, Wu J, Navid F, Rao BN, Davidoff AM and Krasin MJ: Analysis of prognostic factors in extraosseous Ewing sarcoma family of tumors: Review of St. Jude Children's Research Hospital experience. Ann Surg Oncol. 19:3816–3822. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Fleuren ED, Versleijen-Jonkers YM, Boerman OC and van der Graaf WT: Targeting receptor tyrosine kinases in osteosarcoma and Ewing sarcoma: Current hurdles and future perspectives. Biochim Biophys Acta. 1845:266–276. 2014.PubMed/NCBI

3 

Zhang Z, Huang L, Yu Z, Chen X, Yang D, Zhan P, Dai M, Huang S, Han Z and Cao K: Let-7a functions as a tumor suppressor in Ewing's sarcoma cell lines partly by targeting cyclin-dependent kinase 6. DNA Cell Biol. 33:136–147. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Gaspar N, Hawkins DS, Dirksen U, Lewis IJ, Ferrari S, Le Deley MC, Kovar H, Grimer R, Whelan J, Claude L, et al: Ewing sarcoma: Current management and future approaches through collaboration. J Clin Oncol. 33:3036–3046. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Li Y, Shao G, Zhang M, Zhu F, Zhao B, He C and Zhang Z: miR-124 represses the mesenchymal features and suppresses metastasis in Ewing sarcoma. Oncotarget. 8:10274–10286. 2017.PubMed/NCBI

6 

Felgenhauer JL, Nieder ML, Krailo MD, Bernstein ML, Henry DW, Malkin D, Baruchel S, Chuba PJ, Sailer SL, Brown K, et al: A pilot study of low-dose anti-angiogenic chemotherapy in combination with standard multiagent chemotherapy for patients with newly diagnosed metastatic Ewing sarcoma family of tumors: A children's oncology group (COG) phase II study NCT00061893. Pediatr Blood Cancer. 60:409–414. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Haga A, Ogawara Y, Kubota D, Kitabayashi I, Murakami Y and Kondo T: Interactomic approach for evaluating nucleophosmin-binding proteins as biomarkers for Ewing's sarcoma. Electrophoresis. 34:1670–1678. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Scotlandi K, Avnet S, Benini S, Manara MC, Serra M, Cerisano V, Perdichizzi S, Lollini PL, De Giovanni C, Landuzzi L and Picci P: Expression of an IGF-I receptor dominant negative mutant induces apoptosis, inhibits tumorigenesis and enhances chemosensitivity in Ewing's sarcoma cells. Int J Cancer. 101:11–16. 2002. View Article : Google Scholar : PubMed/NCBI

9 

Herrero-Martín D, Osuna D, Ordóñez JL, Sevillano V, Martins AS, Mackintosh C, Campos M, Madoz-Gúrpide J, Otero-Motta AP, Caballero G, et al: Stable interference of EWS-FLI1 in an Ewing sarcoma cell line impairs IGF-1/IGF-1R signalling and reveals TOPK as a new target. Br J Cancer. 101:80–90. 2009. View Article : Google Scholar : PubMed/NCBI

10 

Landuzzi L, De Giovanni C, Nicoletti G, Rossi I, Ricci C, Astolfi A, Scopece L, Scotlandi K, Serra M, Bagnara GP, et al: The metastatic ability of Ewing's sarcoma cells is modulated by stem cell factor and by its receptor c-kit. Am J Pathol. 157:2123–2131. 2000. View Article : Google Scholar : PubMed/NCBI

11 

Brohl AS, Solomon DA, Chang W, Wang J, Song Y, Sindiri S, Patidar R, Hurd L, Chen L, Shern JF, et al: The genomic landscape of the Ewing sarcoma family of tumors reveals recurrent STAG2 mutation. PLoS Genet. 10:e10044752014. View Article : Google Scholar : PubMed/NCBI

12 

Wang YX, Mandal D, Wang S, Hughes D, Pollock RE, Lev D, Kleinerman E and Hayes-Jordan A: Inhibiting platelet-derived growth factor beta reduces Ewing's sarcoma growth and metastasis in a novel orthotopic human xenograft model. In Vivo. 23:903–909. 2009.PubMed/NCBI

13 

Do I, Araujo ES, Kalil RK, Bacchini P, Bertoni F, Unni KK and Park YK: Protein expression of KIT and gene mutation of c-kit and PDGFRs in Ewing sarcomas. Pathol Res Pract. 203:127–134. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Ahmed AA, Sherman AK and Pawel BR: Expression of therapeutic targets in Ewing sarcoma family tumors. Hum Pathol. 43:1077–1083. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Crompton BD, Stewart C, Taylor-Weiner A, Alexe G, Kurek KC, Calicchio ML, Kiezun A, Carter SL, Shukla SA, Mehta SS, et al: The genomic landscape of pediatric Ewing sarcoma. Cancer Discov. 4:1326–1341. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Lerman DM, Monument MJ, McIlvaine E, Liu XQ, Huang D, Monovich L, Beeler N, Gorlick RG, Marina NM, Womer RB, et al: Tumoral TP53 and/or CDKN2A alterations are not reliable prognostic biomarkers in patients with localized Ewing sarcoma: A report from the children's oncology group. Pediatr Blood Cancer. 62:759–765. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, et al: NCBI GEO: Archive for functional genomics data sets-update. Nucleic Acids Res. 41((Database Issue)): D991–D995. 2013.PubMed/NCBI

18 

Savola S, Klami A, Myllykangas S, Manara C, Scotlandi K, Picci P, Knuutila S and Vakkila J: High expression of complement component 5 (C5) at tumor site associates with superior survival in Ewing's sarcoma family of tumour patients. ISRN Oncol. 2011:1687122011.PubMed/NCBI

19 

Agelopoulos K, Richter GH, Schmidt E, Dirksen U, von Heyking K, Moser B, Klein HU, Kontny U, Dugas M, Poos K, et al: Deep sequencing in conjunction with expression and functional analyses reveals activation of FGFR1 in Ewing sarcoma. Clin Cancer Res. 21:4935–4946. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Gautier L, Cope L, Bolstad BM and Irizarry RA: affy-analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 20:307–315. 2004. View Article : Google Scholar : PubMed/NCBI

21 

Leek JT, Johnson WE, Parker HS, Jaffe AE and Storey JD: The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 28:882–883. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W and Smyth GK: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43:e472015. View Article : Google Scholar : PubMed/NCBI

23 

Yu G, Wang LG, Han Y and He QY: clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES and Mesirov JP: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 102:15545–15550. 2005. View Article : Google Scholar : PubMed/NCBI

25 

Smoot ME, Ono K, Ruscheinski J, Wang PL and Ideker T: Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics. 27:431–432. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Doncheva NT, Assenov Y, Domingues FS and Albrecht M: Topological analysis and interactive visualization of biological networks and protein structures. Nat Protoc Nature protocols. 7:670–685. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Chin CH, Chen SH, Wu HH, Ho CW, Ko MT and Lin CY: cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 8 (Suppl 4):S112014. View Article : Google Scholar : PubMed/NCBI

28 

Durisová M and Dedik L: SURVIVAL-an integrated software package for survival curve estimation and statistical comparison of survival rates of two groups of patients or experimental animals. Methods Find Exp Clin Pharmacol. 15:535–540. 1993.PubMed/NCBI

29 

Unal I: Defining an optimal cut-point value in ROC analysis: An alternative approach. Comput Math Methods Med. 2017:37626512017. View Article : Google Scholar : PubMed/NCBI

30 

Van Mater D and Wagner L: Management of recurrent Ewing sarcoma: Challenges and approaches. Onco Targets Ther. 12:2279–2288. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Sandberg AA and Bridge JA: Updates on cytogenetics and molecular genetics of bone and soft tissue tumors: Ewing sarcoma and peripheral primitive neuroectodermal tumors. Cancer Genet Cytogenet. 123:1–26. 2000. View Article : Google Scholar : PubMed/NCBI

32 

Chaber R, Łach K, Arthur CJ, Raciborska A, Michalak E, Ciebiera K, Bilska K, Drabko K and Cebulski J: Prediction of Ewing Sarcoma treatment outcome using attenuated tissue reflection FTIR tissue spectroscopy. Sci Rep. 8:122992018. View Article : Google Scholar : PubMed/NCBI

33 

Esiashvili N, Goodman M and Marcus RB Jr: Changes in incidence and survival of Ewing sarcoma patients over the past 3 decades: Surveillance epidemiology and end results data. J Pediatr Hematol Oncol. 30:425–430. 2008. View Article : Google Scholar : PubMed/NCBI

34 

Bosma SE, Ayu O, Fiocco M, Gelderblom H and Dijkstra PDS: Prognostic factors for survival in Ewing sarcoma: A systematic review. Surg Oncol. 27:603–610. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Koppenhafer SL, Goss KL, Terry WW and Gordon DJ: mTORC1/2 and protein translation regulate levels of CHK1 and the sensitivity to CHK1 inhibitors in Ewing sarcoma cells. Mol Cancer Ther. 17:2676–2688. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Lin L, Huang M, Shi X, Mayakonda A, Hu K, Jiang YY, Guo X, Chen L, Pang B, Doan N, et al: Super-enhancer-associated MEIS1 promotes transcriptional dysregulation in Ewing sarcoma in co-operation with EWS-FLI1. Nucleic Acids Res. 47:1255–1267. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Henrich IC, Young R, Quick L, Oliveira AM and Chou MM: USP6 confers sensitivity to IFN-mediated apoptosis through modulation of TRAIL signaling in Ewing sarcoma. Mol Cancer Res. 16:1834–1843. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Xia L, Su X, Shen J, Meng Q, Yan J, Zhang C, Chen Y, Wang H and Xu M: ANLN functions as a key candidate gene in cervical cancer as determined by integrated bioinformatic analysis. Cancer Manag Res. 10:663–670. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Xia P and Xu XY: Prognostic significance of CD44 in human colon cancer and gastric cancer: Evidence from bioinformatic analyses. Oncotarget. 7:45538–45546. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Mendoza-Naranjo A, El-Naggar A, Wai DH, Mistry P, Lazic N, Ayala FR, da Cunha IW, Rodriguez-Viciana P, Cheng H, Tavares Guerreiro Fregnani JH, et al: ERBB4 confers metastatic capacity in Ewing sarcoma. EMBO Mol Med. 5:1087–1102. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Qin H and Liu W: MicroRNA-99a-5p suppresses breast cancer progression and cell-cycle pathway through downregulating CDC25A. J Cell Physiol. 234:3526–3537. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Wang J, Jia N, Lyv T, Wang C, Tao X, Wong K, Li Q and Feng W: Paired box 2 promotes progression of endometrial cancer via regulating cell cycle pathway. J Cancer. 9:3743–3754. 2018. View Article : Google Scholar : PubMed/NCBI

43 

Zhao F, Zhou LH, Ge YZ, Ping WW, Wu X, Xu ZL, Wang M, Sha ZL and Jia RP: MicroRNA-133b suppresses bladder cancer malignancy by targeting TAGLN2-mediated cell cycle. J Cell Physiol. 234:4910–4923. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Zhang L, Kang W, Lu X, Ma S, Dong L and Zou B: LncRNA CASC11 promoted gastric cancer cell proliferation, migration and invasion in vitro by regulating cell cycle pathway. Cell Cycle. 17:1886–1900. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Guenther LM, Dharia NV, Ross L, Conway A, Robichaud AL, Catlett JL II, Wechsler CS, Frank ES, Goodale A, Church AJ, et al: A combination CDK4/6 and IGF1R inhibitor strategy for Ewing sarcoma. Clin Cancer Res. 25:1343–1357. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Lorin S, Borges A, Ribeiro Dos Santos L, Souquère S, Pierron G, Ryan KM, Codogno P and Djavaheri-Mergny M: c-Jun NH2-terminal kinase activation is essential for DRAM-dependent induction of autophagy and apoptosis in 2-methoxyestradiol-treated Ewing sarcoma cells. Cancer Res. 69:6924–6931. 2009. View Article : Google Scholar : PubMed/NCBI

47 

Wilky BA, Kim C, McCarty G, Montgomery EA, Kammers K, DeVine LR, Cole RN, Raman V and Loeb DM: RNA helicase DDX3: A novel therapeutic target in Ewing sarcoma. Oncogene. 35:2574–2583. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Tong DL, Boocock DJ, Dhondalay GK, Lemetre C and Ball GR: Artificial neural network inference (ANNI): A study on gene-gene interaction for biomarkers in childhood sarcomas. PLoS One. 9:e1024832014. View Article : Google Scholar : PubMed/NCBI

49 

Cheung IY, Feng Y, Danis K, Shukla N, Meyers P, Ladanyi M and Cheung NK: Novel markers of subclinical disease for Ewing family tumors from gene expression profiling. Clin Cancer Res. 13:6978–6983. 2007. View Article : Google Scholar : PubMed/NCBI

50 

Ohali A, Avigad S, Zaizov R, Ophir R, Horn-Saban S, Cohen IJ, Meller I, Kollender Y, Issakov J and Yaniv I: Prediction of high risk Ewing's sarcoma by gene expression profiling. Oncogene. 23:8997–9006. 2004. View Article : Google Scholar : PubMed/NCBI

51 

Kikuta K, Tochigi N, Shimoda T, Yabe H, Morioka H, Toyama Y, Hosono A, Beppu Y, Kawai A, Hirohashi S and Kondo T: Nucleophosmin as a candidate prognostic biomarker of Ewing's sarcoma revealed by proteomics. Clin Cancer Res. 15:2885–2894. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Wei B and Jin JP: TNNT1, TNNT2, and TNNT3: Isoform genes, regulation, and structure-function relationships. Gene. 582:1–13. 2016. View Article : Google Scholar : PubMed/NCBI

53 

Gupton SL, Anderson KL, Kole TP, Fischer RS, Ponti A, Hitchcock-DeGregori SE, Danuser G, Fowler VM, Wirtz D, Hanein D and Waterman-Storer CM: Cell migration without a lamellipodium: Translation of actin dynamics into cell movement mediated by tropomyosin. J Cell Biol. 168:619–631. 2005. View Article : Google Scholar : PubMed/NCBI

54 

Lees JG, Bach CT and O'Neill GM: Interior decoration: Tropomyosin in actin dynamics and cell migration. Cell Adh Migr. 5:181–186. 2011. View Article : Google Scholar : PubMed/NCBI

55 

Nguyen TH and Barr FG: Therapeutic approaches targeting PAX3-FOXO1 and its regulatory and transcriptional pathways in rhabdomyosarcoma. Molecules. 23(pii): E27982018. View Article : Google Scholar : PubMed/NCBI

56 

Kawabe S, Mizutani T, Ishikane S, Martinez ME, Kiyono Y, Miura K, Hosoda H, Imamichi Y, Kangawa K, Miyamoto K and Yoshida Y: Establishment and characterization of a novel orthotopic mouse model for human uterine sarcoma with different metastatic potentials. Cancer Lett. 366:182–190. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Davidson B, Abeler VM, Forsund M, Holth A, Yang Y, Kobayashi Y, Chen L, Kristensen GB, Shih IeM and Wang TL: Gene expression signatures of primary and metastatic uterine leiomyosarcoma. Hum Pathol. 45:691–700. 2014. View Article : Google Scholar : PubMed/NCBI

58 

Shi Y, Zhao Y, Zhang Y, AiErken N, Shao N, Ye R, Lin Y and Wang S: TNNT1 facilitates proliferation of breast cancer cells by promoting G1/S phase transition. Life Sci. 208:161–166. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Lawrenson K, Pakzamir E, Liu B, Lee JM, Delgado MK, Duncan K, Gayther SA, Liu S, Roman L and Mhawech-Fauceglia P: Molecular analysis of mixed endometrioid and serous adenocarcinoma of the endometrium. PLoS One. 10:e01309092015. View Article : Google Scholar : PubMed/NCBI

60 

Kuroda T, Yasuda S, Nakashima H, Takada N, Matsuyama S, Kusakawa S, Umezawa A, Matsuyama A, Kawamata S and Sato Y: Identification of a gene encoding slow skeletal muscle troponin t as a novel marker for immortalization of retinal pigment epithelial cells. Sci Rep. 7:81632017. View Article : Google Scholar : PubMed/NCBI

61 

Gu X, Li B, Jiang M, Fang M, Ji J, Wang A, Wang M, Jiang X and Gao C: RNA sequencing reveals differentially expressed genes as potential diagnostic and prognostic indicators of gallbladder carcinoma. Oncotarget. 6:20661–20671. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Watanabe H, Atsuta N, Hirakawa A, Nakamura R, Nakatochi M, Ishigaki S, Iida A, Ikegawa S, Kubo M, Yokoi D, et al: A rapid functional decline type of amyotrophic lateral sclerosis is linked to low expression of TTN. J Neurol Neurosurg Psychiatry. 87:851–858. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Herman DS, Lam L, Taylor MR, Wang L, Teekakirikul P, Christodoulou D, Conner L, DePalma SR, McDonough B, Sparks E, et al: Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 366:619–628. 2012. View Article : Google Scholar : PubMed/NCBI

64 

Kim N, Hong Y, Kwon D and Yoon S: Somatic mutaome profile in human cancer tissues. Genomics Inform. 11:239–244. 2013. View Article : Google Scholar : PubMed/NCBI

65 

Wolff RK, Hoffman MD, Wolff EC, Herrick JS, Sakoda LC, Samowitz WS and Slattery ML: Mutation analysis of adenomas and carcinomas of the colon: Early and late drivers. Genes Chromosomes Cancer. 57:366–376. 2018. View Article : Google Scholar : PubMed/NCBI

66 

Bizama C, Benavente F, Salvatierra E, Gutiérrez-Moraga A, Espinoza JA, Fernández EA, Roa I, Mazzolini G, Sagredo EA, Gidekel M and Podhajcer OL: The low-abundance transcriptome reveals novel biomarkers, specific intracellular pathways and targetable genes associated with advanced gastric cancer. Int J Cancer. 134:755–764. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Yang CK, Yu TD, Han CY, Qin W, Liao XW, Yu L, Liu XG, Zhu GZ, Su H, Lu SC, et al: Genome-wide association study of MKI67 expression and its clinical implications in HBV-related hepatocellular carcinoma in Southern China. Cell Physiol Biochem. 42:1342–1357. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Cheng X, Yin H, Fu J, Chen C, An J, Guan J, Duan R, Li H and Shen H: Aggregate analysis based on TCGA: TTN missense mutation correlates with favorable prognosis in lung squamous cell carcinoma. J Cancer Res Clin Oncol. 145:1027–1035. 2019. View Article : Google Scholar : PubMed/NCBI

69 

Caleshu C, Sakhuja R, Nussbaum RL, Schiller NB, Ursell PC, Eng C, De Marco T, McGlothlin D, Burchard EG and Rame JE: Furthering the link between the sarcomere and primary cardiomyopathies: Restrictive cardiomyopathy associated with multiple mutations in genes previously associated with hypertrophic or dilated cardiomyopathy. Am J Med Genet A 155A. 2229–2235. 2011. View Article : Google Scholar

70 

Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C, Evans JP, Herman GE, Hufnagel SB, Klein TE, Korf BR, et al: Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): A policy statement of the American college of medical genetics and genomics. Genet Med. 19:249–255. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Grabarek Z: Structural basis for diversity of the EF-hand calcium-binding proteins. J Mol Biol. 359:509–525. 2006. View Article : Google Scholar : PubMed/NCBI

72 

Morano I: Tuning smooth muscle contraction by molecular motors. J Mol Med (Berl). 81:481–487. 2003. View Article : Google Scholar : PubMed/NCBI

73 

Meder B, Laufer C, Hassel D, Just S, Marquart S, Vogel B, Hess A, Fishman MC, Katus HA and Rottbauer W: A single serine in the carboxyl terminus of cardiac essential myosin light chain-1 controls cardiomyocyte contractility in vivo. Circ Res. 104:650–659. 2009. View Article : Google Scholar : PubMed/NCBI

74 

Gharahkhani P, Fitzgerald RC, Vaughan TL, Palles C, Gockel I, Tomlinson I, Buas MF, May A, Gerges C, Anders M, et al: Genome-wide association studies in oesophageal adenocarcinoma and Barrett's oesophagus: A large-scale meta-analysis. Lancet Oncol. 17:1363–1373. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Dalan AB, Gulluoglu S, Tuysuz EC, Kuskucu A, Yaltirik CK, Ozturk O, Ture U and Bayrak OF: Simultaneous analysis of miRNA-mRNA in human meningiomas by integrating transcriptome: A relationship between PTX3 and miR-29c. BMC Cancer. 17:2072017. View Article : Google Scholar : PubMed/NCBI

76 

Ito-Kureha T, Koshikawa N, Yamamoto M, Semba K, Yamaguchi N, Yamamoto T, Seiki M and Inoue J: Tropomodulin 1 expression driven by NF-κB enhances breast cancer growth. Cancer Res. 75:62–72. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Núñez-Enríquez JC, Bárcenas-López DA, Hidalgo-Miranda A, Jiménez-Hernández E, Bekker-Méndez VC, Flores-Lujano J, Solis-Labastida KA, Martínez-Morales GB, Sánchez-Muñoz F, Espinoza-Hernández LE, et al: Gene expression profiling of acute lymphoblastic leukemia in children with very early relapse. Arch Med Res. 47:644–655. 2016. View Article : Google Scholar : PubMed/NCBI

78 

Suzuki T, Kasamatsu A, Miyamoto I, Saito T, Higo M, Endo-Sakamoto Y, Shiiba M, Tanzawa H and Uzawa K: Overexpression of TMOD1 is associated with enhanced regional lymph node metastasis in human oral cancer. Int J Oncol. 48:607–612. 2016. View Article : Google Scholar : PubMed/NCBI

79 

Staaf J, Jönsson G, Ringnér M, Vallon-Christersson J, Grabau D, Arason A, Gunnarsson H, Agnarsson BA, Malmström PO, Johannsson OT, et al: High-resolution genomic and expression analyses of copy number alterations in HER2-amplified breast cancer. Breast Cancer Res. 12:R252010. View Article : Google Scholar : PubMed/NCBI

80 

Pan X, Hu X, Zhang YH, Chen L, Zhu L, Wan S, Huang T and Cai YD: Identification of the copy number variant biomarkers for breast cancer subtypes. Mol Genet Genomics. 294:95–110. 2019. View Article : Google Scholar : PubMed/NCBI

81 

Sawaki K, Kanda M, Miwa T, Umeda S, Tanaka H, Tanaka C, Kobayashi D, Suenaga M, Hattori N, Hayashi M, et al: Troponin I2 as a specific biomarker for prediction of peritoneal metastasis in gastric cancer. Ann Surg Oncol. 25:2083–2090. 2018. View Article : Google Scholar : PubMed/NCBI

82 

Postel-Vinay S, Véron AS, Tirode F, Pierron G, Reynaud S, Kovar H, Oberlin O, Lapouble E, Ballet S, Lucchesi C, et al: Common variants near TARDBP and EGR2 are associated with susceptibility to Ewing sarcoma. Nat Genet. 44:323–327. 2012. View Article : Google Scholar : PubMed/NCBI

83 

Schmiedel BJ, Hutter C, Hesse M and Staege MS: Expression of multiple membrane-associated phospholipase A1 beta transcript variants and lysophosphatidic acid receptors in Ewing tumor cells. Mol Biol Rep. 38:4619–4628. 2011. View Article : Google Scholar : PubMed/NCBI

84 

Foell JL, Hesse M, Volkmer I, Schmiedel BJ, Neumann I and Staege MS: Membrane-associated phospholipase A1 beta (LIPI) Is an Ewing tumour-associated cancer/testis antigen. Pediatr Blood Cancer. 51:228–234. 2008. View Article : Google Scholar : PubMed/NCBI

85 

Kedage V, Selvaraj N, Nicholas TR, Budka JA, Plotnik JP, Jerde TJ and Hollenhorst PC: An interaction with Ewing's Sarcoma breakpoint protein EWS defines a specific oncogenic mechanism of ETS factors rearranged in prostate cancer. Cell Reports. 17:1289–1301. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Deng Y, Xie Q, Zhang G, Li S, Wu Z, Ma Z, He X, Gao Y, Wang Y, Kang X, Kang X, et al: Slow skeletal muscle troponin T, titin and myosin light chain 3 are candidate prognostic biomarkers for Ewing's sarcoma. Oncol Lett 18: 6431-6442, 2019.
APA
Deng, Y., Xie, Q., Zhang, G., Li, S., Wu, Z., Ma, Z. ... Wang, J. (2019). Slow skeletal muscle troponin T, titin and myosin light chain 3 are candidate prognostic biomarkers for Ewing's sarcoma. Oncology Letters, 18, 6431-6442. https://doi.org/10.3892/ol.2019.11044
MLA
Deng, Y., Xie, Q., Zhang, G., Li, S., Wu, Z., Ma, Z., He, X., Gao, Y., Wang, Y., Kang, X., Wang, J."Slow skeletal muscle troponin T, titin and myosin light chain 3 are candidate prognostic biomarkers for Ewing's sarcoma". Oncology Letters 18.6 (2019): 6431-6442.
Chicago
Deng, Y., Xie, Q., Zhang, G., Li, S., Wu, Z., Ma, Z., He, X., Gao, Y., Wang, Y., Kang, X., Wang, J."Slow skeletal muscle troponin T, titin and myosin light chain 3 are candidate prognostic biomarkers for Ewing's sarcoma". Oncology Letters 18, no. 6 (2019): 6431-6442. https://doi.org/10.3892/ol.2019.11044
Copy and paste a formatted citation
x
Spandidos Publications style
Deng Y, Xie Q, Zhang G, Li S, Wu Z, Ma Z, He X, Gao Y, Wang Y, Kang X, Kang X, et al: Slow skeletal muscle troponin T, titin and myosin light chain 3 are candidate prognostic biomarkers for Ewing's sarcoma. Oncol Lett 18: 6431-6442, 2019.
APA
Deng, Y., Xie, Q., Zhang, G., Li, S., Wu, Z., Ma, Z. ... Wang, J. (2019). Slow skeletal muscle troponin T, titin and myosin light chain 3 are candidate prognostic biomarkers for Ewing's sarcoma. Oncology Letters, 18, 6431-6442. https://doi.org/10.3892/ol.2019.11044
MLA
Deng, Y., Xie, Q., Zhang, G., Li, S., Wu, Z., Ma, Z., He, X., Gao, Y., Wang, Y., Kang, X., Wang, J."Slow skeletal muscle troponin T, titin and myosin light chain 3 are candidate prognostic biomarkers for Ewing's sarcoma". Oncology Letters 18.6 (2019): 6431-6442.
Chicago
Deng, Y., Xie, Q., Zhang, G., Li, S., Wu, Z., Ma, Z., He, X., Gao, Y., Wang, Y., Kang, X., Wang, J."Slow skeletal muscle troponin T, titin and myosin light chain 3 are candidate prognostic biomarkers for Ewing's sarcoma". Oncology Letters 18, no. 6 (2019): 6431-6442. https://doi.org/10.3892/ol.2019.11044
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team