Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
January-2020 Volume 19 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2020 Volume 19 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The role of deubiquitinating enzymes in gastric cancer (Review)

  • Authors:
    • Jiangang Sun
    • Xiaojing Shi
    • M.A.A. Mamun
    • Yongshun Gao
  • View Affiliations / Copyright

    Affiliations: Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China, Zhengzhou University School of Pharmaceutical Science, Zhengzhou, Henan 450001, P.R. China
    Copyright: © Sun et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 30-44
    |
    Published online on: November 7, 2019
       https://doi.org/10.3892/ol.2019.11062
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The epigenetic regulation of gene expression (via DNA methylation, histone modification and microRNA interference) contributes to a variety of diseases, particularly cancer. Protein deubiquitination serves a key role in the mechanism underlying histone modification, and consequently influences tumor development and progression. Improved characterization of the role of ubiquitinating enzymes has led to the identification of numerous deubiquitinating enzymes (DUBs) with various functions. Gastric cancer (GC) is a highly prevalent cancer type that exhibits a high mortality rate. Latest analysis about cancer patient revealed that GC is sixth deadliest cancer type, which frequently occur in male (7.2%) than female (4.1%). Complex associations between DUBs and GC progression have been revealed in multiple studies; however, the molecular mechanism underpinning the metastasis and recurrence of GC is yet to be elucidated. Generally, DUBs were upregulated in gastric cancer. The relation of DUBs and tumor size, classification and staging was observed in GC. Besides, 5‑yar survival rate of patients with GC is effeccted by expression level of DUBs. Among the highly expressed DUBs, specifically six DUBs namely UCHs, USPs, OTUs, MJDs, JAMMs and MCPIPs effect on this survival rate. Consequently, the association between GC and DUBs has received increasing attention in recent years. Therefore, in the present review, literature investigating the association between DUBs and GC pathophysiology was analyzed and critically appraised.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Pidsley R, Lawrence MG, Zotenko E, Niranjan B, Statham A, Song J, Chabanon RM, Qu W, Wang H, Richards M, et al: Enduring epigenetic landmarks define the cancer microenvironment. Genome Res. 28:625–638. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Zentner GE and Henikoff S: High-resolution digital profiling of the epigenome. Nat Rev Genet. 15:814–827. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Onder O, Sidoli S, Carroll M and Garcia BA: Progress in epigenetic histone modification analysis by mass spectrometry for clinical investigations. Expert Rev Proteomics. 12:499–517. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Swatek KN and Komander D: Ubiquitin modifications. Cell Res. 26:399–422. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Rogov V, Dotsch V, Johansen T and Kirkin V: Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell. 53:167–178. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Hershko A: Ubiquitin: Roles in protein modification and breakdown. Cell. 34:11–12. 1983. View Article : Google Scholar : PubMed/NCBI

7 

Pickart CM: Mechanisms underlying ubiquitination. Annu Rev Biochem. 70:503–533. 2001. View Article : Google Scholar : PubMed/NCBI

8 

Hershko A and Ciechanover A: The ubiquitin system. Annu Rev Biochem. 67:425–479. 1998. View Article : Google Scholar : PubMed/NCBI

9 

Finley D, Ciechanover A and Varshavsky A: Ubiquitin as a central cellular regulator. Cell. 116 (Suppl 2):S29–S32. 2004. View Article : Google Scholar : PubMed/NCBI

10 

Zhou MJ, Chen FZ and Chen HC: Ubiquitination involved enzymes and cancer. Med Oncol. 31:932014. View Article : Google Scholar : PubMed/NCBI

11 

Johnston SC, Riddle SM, Cohen RE and Hill CP: Structural basis for the specificity of ubiquitin C-terminal hydrolases. EMBO J. 18:3877–3887. 1999. View Article : Google Scholar : PubMed/NCBI

12 

Fang Y and Shen X: Ubiquitin carboxyl-terminal hydrolases: Involvement in cancer progression and clinical implications. Cancer Metastasis Rev. 36:669–682. 2017. View Article : Google Scholar : PubMed/NCBI

13 

McDonough M, Sangan P and Gonda DK: Characterization of novel yeast RAD6 (UBC2) ubiquitin-conjugating enzyme mutants constructed by charge-to-alanine scanning mutagenesis. J Bacteriol. 177:580–585. 1995. View Article : Google Scholar : PubMed/NCBI

14 

Xu JC, Dawson VL and Dawson TM: Usp16: Key controller of stem cells in Down syndrome. EMBO J. 32:2788–2789. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Avanzato D, Pupo E, Ducano N, Isella C, Bertalot G, Luise C, Pece S, Bruna A, Rueda OM, Caldas C, et al: High USP6NL levels in breast cancer sustain chronic AKT phosphorylation and GLUT1 stability fueling aerobic glycolysis. Cancer Res. 78:3432–3444. 2018.PubMed/NCBI

16 

Weber A, Elliott PR, Pinto-Fernandez A, Bonham S, Kessler BM, Komander D, El Oualid F and Krappmann D: A linear diubiquitin-based probe for efficient and selective detection of the deubiquitinating enzyme OTULIN. Cell Chem Biol. 24:1299–1313.e7. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Taneera J, Fadista J, Ahlqvist E, Atac D, Ottosson-Laakso E, Wollheim CB and Groop L: Identification of novel genes for glucose metabolism based upon expression pattern in human islets and effect on insulin secretion and glycemia. Hum Mol Genet. 24:1945–1955. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Coombs N, Sompallae R, Olbermann P, Gastaldello S, Goppel D, Masucci MG and Josenhans C: Helicobacter pylori affects the cellular deubiquitinase USP7 and ubiquitin-regulated components TRAF6 and the tumour suppressor p53. Int J Med Microbiol. 301:213–224. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Saldana M, VanderVorst K, Berg AL, Lee H and Carraway KL: Otubain 1: A non-canonical deubiquitinase with an emerging role in cancer. Endocr Relat Cancer. 26:R1–R14. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Rahman R, Asombang AW and Ibdah JA: Characteristics of gastric cancer in Asia. World J Gastroenterol. 20:4483–5890. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Tang Z, Li C, Kang B, Gao G, Li C and Zhang Z: GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45:W98–W102. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Todi SV and Paulson HL: Balancing act: Deubiquitinating enzymes in the nervous system. Trends Neurosci. 34:370–382. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Fang Y, Fu D and Shen XZ: The potential role of ubiquitin c-terminal hydrolases in oncogenesis. Biochim Biophys Acta. 1806:1–6. 2010.PubMed/NCBI

25 

Kim HJ, Kim YM, Lim S, Nam YK, Jeong J, Kim HJ and Lee KJ: Ubiquitin C-terminal hydrolase-L1 is a key regulator of tumor cell invasion and metastasis. Oncogene. 28:117–127. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Dang LC, Melandri FD and Stein RL: Kinetic and mechanistic studies on the hydrolysis of ubiquitin C-terminal 7-amido-4-methylcoumarin by deubiquitinating enzymes. Biochemistry. 37:1868–1879. 1998. View Article : Google Scholar : PubMed/NCBI

27 

Case A and Stein RL: Mechanistic studies of ubiquitin C-terminal hydrolase L1. Biochemistry. 45:2443–2452. 2006. View Article : Google Scholar : PubMed/NCBI

28 

Arpalahti L, Laitinen A, Hagström J, Mustonen H, Kokkola A, Böckelman C, Haglund C and Holmberg CI: Positive cytoplasmic UCHL5 tumor expression in gastric cancer is linked to improved prognosis. PLoS One. 13:e01931252018. View Article : Google Scholar : PubMed/NCBI

29 

Gu YY, Yang M, Zhao M, Luo Q, Yang L, Peng H, Wang J, Huang SK, Zheng ZX, Yuan XH, et al: The de-ubiquitinase UCHL1 promotes gastric cancer metastasis via the Akt and Erk1/2 pathways. Tumour Biol. 36:8379–8387. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Yan S, He F, Luo R, Wu H, Huang M, Huang C, Li Y and Zhou Z: Decreased expression of BRCA1-associated protein 1 predicts unfavorable survival in gastric adenocarcinoma. Tumour Biol. 37:6125–6133. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK and Bernards R: A genomic and functional inventory of deubiquitinating enzymes. Cell. 123:773–786. 2005. View Article : Google Scholar : PubMed/NCBI

32 

Das DS, Das A, Ray A, Song Y, Samur MK, Munshi NC, Chauhan D and Anderson KC: Blockade of deubiquitylating enzyme USP1 inhibits DNA repair and triggers apoptosis in multiple myeloma cells. Clin Cancer Res. 23:4280–4289. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Kedersha N, Panas MD, Achorn CA, Lyons S, Tisdale S, Hickman T, Thomas M, Lieberman J, McInerney GM, Ivanov P and Anderson P: G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. J Cell Biol. 212:845–860. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Kapadia B, Nanaji NM, Bhalla K, Bhandary B, Lapidus R, Beheshti A, Evens AM and Gartenhaus RB: Fatty Acid Synthase induced S6Kinase facilitates USP11-eIF4B complex formation for sustained oncogenic translation in DLBCL. Nat Commun. 9:8292018. View Article : Google Scholar : PubMed/NCBI

35 

Aron R, Pellegrini P, Green EW, Maddison DC, Opoku-Nsiah K, Wong JS, Daub AC, Giorgini F and Finkbeiner S: Publisher correction: Deubiquitinase Usp12 functions noncatalytically to induce autophagy and confer neuroprotection in models of Huntington's disease. Nat Commun. 9:43332018. View Article : Google Scholar : PubMed/NCBI

36 

Zhang S, Zhang M, Jing Y, Yin X, Ma P, Zhang Z, Wang X, Di W and Zhuang G: Deubiquitinase USP13 dictates MCL1 stability and sensitivity to BH3 mimetic inhibitors. Nat Commun. 9:2152018. View Article : Google Scholar : PubMed/NCBI

37 

Lee BH, Lee MJ, Park S, Oh DC, Elsasser S, Chen PC, Gartner C, Dimova N, Hanna J, Gygi SP, et al: Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature. 467:179–184. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Eichhorn PJ, Rodon L, Gonzalez-Junca A, Dirac A, Gili M, Martinez-Saez E, Aura C, Barba I, Peg V, Prat A, et al: USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma. Nat Med. 18:429–435. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Adorno M, Sikandar S, Mitra SS, Kuo A, Nicolis Di Robilant B, Haro-Acosta V, Ouadah Y, Quarta M, Rodriguez J, Qian D, et al: Usp16 contributes to somatic stem-cell defects in Down's syndrome. Nature. 501:380–384. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Shaw JA, Page K, Blighe K, Hava N, Guttery D, Ward B, Brown J, Ruangpratheep C, Stebbing J, Payne R, et al: Genomic analysis of circulating cell-free DNA infers breast cancer dormancy. Genome Res. 22:220–231. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Malakhov MP, Malakhova OA, Kim KI, Ritchie KJ and Zhang DE: UBP43 (USP18) specifically removes ISG15 from conjugated proteins. J Biol Chem. 277:9976–9981. 2002. View Article : Google Scholar : PubMed/NCBI

42 

Combaret L, Adegoke OA, Bedard N, Baracos V, Attaix D and Wing SS: USP19 is a ubiquitin-specific protease regulated in rat skeletal muscle during catabolic states. Am J Physiol Endocrinol Metab. 288:E693–E700. 2005. View Article : Google Scholar : PubMed/NCBI

43 

Xie L, Wei J, Qian X, Chen G, Yu L, Ding Y and Liu B: CXCR4, a potential predictive marker for docetaxel sensitivity in gastric cancer. Anticancer Res. 30:2209–2216. 2010.PubMed/NCBI

44 

Fu Y, Ma G, Liu G, Li B, Li H, Hao X and Liu L: USP14 as a novel prognostic marker promotes cisplatin resistance via Akt/ERK signaling pathways in gastric cancer. Cancer Med. 7:5577–5588. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Zeng Z, Wu HX, Zhan N, Huang YB, Wang ZS, Yang GF, Wang P and Fu GH: Prognostic significance of USP10 as a tumor-associated marker in gastric carcinoma. Tumour Biol. 35:3845–3853. 2014. View Article : Google Scholar : PubMed/NCBI

46 

Zhu Y, Zhang Y, Sui Z, Zhang Y, Liu M and Tang H: USP14 de-ubiquitinates vimentin and miR-320a modulates USP14 and vimentin to contribute to malignancy in gastric cancer cells. Oncotarget. 8:48725–48736. 2017.PubMed/NCBI

47 

Renatus M, Parrado SG, D'Arcy A, Eidhoff U, Gerhartz B, Hassiepen U, Pierrat B, Riedl R, Vinzenz D, Worpenberg S and Kroemer M: Structural basis of ubiquitin recognition by the deubiquitinating protease USP2. Structure. 14:1293–1302. 2006. View Article : Google Scholar : PubMed/NCBI

48 

Berthouze M, Venkataramanan V, Li Y and Shenoy SK: The deubiquitinases USP33 and USP20 coordinate beta2 adrenergic receptor recycling and resensitization. EMBO J. 28:1684–1796. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Ye Y, Akutsu M, Reyes-Turcu F, Enchev RI, Wilkinson KD and Komander D: Polyubiquitin binding and cross-reactivity in the USP domain deubiquitinase USP21. EMBO Rep. 12:350–357. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Zhang XY, Varthi M, Sykes SM, Phillips C, Warzecha C, Zhu W, Wyce A, Thorne AW, Berger SL and McMahon SB: The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression. Mol Cell. 29:102–111. 2008. View Article : Google Scholar : PubMed/NCBI

51 

Zhang L, Lubin A, Chen H, Sun Z and Gong F: The deubiquitinating protein USP24 interacts with DDB2 and regulates DDB2 stability. Cell Cycle. 11:4378–4384. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Stouffs K, Lissens W, Tournaye H, Van Steirteghem A and Liebaers I: Possible role of USP26 in patients with severely impaired spermatogenesis. Eur J Hum Genet. 13:336–340. 2005. View Article : Google Scholar : PubMed/NCBI

53 

Weber A, Heinlein M, Dengjel J, Alber C, Singh PK and Häcker G: The deubiquitinase Usp27× stabilizes the BH3-only protein Bim and enhances apoptosis. EMBO Rep. 17:724–738. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Popov N, Wanzel M, Madiredjo M, Zhang D, Beijersbergen R, Bernards R, Moll R, Elledge SJ and Eilers M: The ubiquitin-specific protease USP28 is required for MYC stability. Nat Cell Biol. 9:765–774. 2007. View Article : Google Scholar : PubMed/NCBI

55 

Liu J, Chung HJ, Vogt M, Jin Y, Malide D, He L, Dundr M and Levens D: JTV1 co-activates FBP to induce USP29 transcription and stabilize p53 in response to oxidative stress. EMBO J. 30:846–858. 2011. View Article : Google Scholar : PubMed/NCBI

56 

Zhao LJ, Zhang T, Feng XJ, Chang J, Suo FZ, Ma JL, Liu YJ, Liu Y, Zheng YC and Liu HM: USP28 contributes to the proliferation and metastasis of gastric cancer. J Cell Biochem. Nov 28–2018.(Epub ahead of print). doi: 10.1002/jcb.28040.

57 

Wang C, Yang C, Ji J, Jiang J, Shi M, Cai Q, Yu Y, Zhu Z and Zhang J: Deubiquitinating enzyme USP20 is a positive regulator of Claspin and suppresses the malignant characteristics of gastric cancer cells. Int J Oncol. Mar 8–2017.(Epub ahead of print). doi: 10.3892/ijo.2017.3904.

58 

Ma Y, Fu HL, Wang Z, Huang H, Ni J, Song J, Xia Y, Jin WL and Cui DX: USP22 maintains gastric cancer stem cell stemness and promotes gastric cancer progression by stabilizing BMI1 protein. Oncotarget. 8:33329–33342. 2017.PubMed/NCBI

59 

He Y, Jin YJ, Zhang YH, Meng HX, Zhao BS, Jiang Y, Zhu JW, Liang GY, Kong D and Jin XM: Ubiquitin-specific peptidase 22 overexpression may promote cancer progression and poor prognosis in human gastric carcinoma. Transl Res. 16:407–416. 2015. View Article : Google Scholar

60 

Yang DD, Cui BB, Sun LY, Zheng HQ, Huang Q, Tong JX and Zhang QF: The co-expression of USP22 and BMI-1 may promote cancer progression and predict therapy failure in gastric carcinoma. Cell Biochem Biophys. 61:703–710. 2011. View Article : Google Scholar : PubMed/NCBI

61 

Nicassio F, Corrado N, Vissers JH, Areces LB, Bergink S, Marteijn JA, Geverts B, Houtsmuller AB, Vermeulen W, Di Fiore PP and Citterio E: Human USP3 is a chromatin modifier required for S phase progression and genome stability. Curr Biol. 17:1972–1977. 2007. View Article : Google Scholar : PubMed/NCBI

62 

Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE, Song Q, Foreman O, Kirkpatrick DS and Sheng M: The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature. 510:370–375. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Tzimas C, Michailidou G, Arsenakis M, Kieff E, Mosialos G and Hatzivassiliou EG: Human ubiquitin specific protease 31 is a deubiquitinating enzyme implicated in activation of nuclear factor-kappaB. Cell Signal. 18:83–92. 2006. View Article : Google Scholar : PubMed/NCBI

64 

Akhavantabasi S, Akman HB, Sapmaz A, Keller J, Petty EM and Erson AE: USP32 is an active, membrane-bound ubiquitin protease overexpressed in breast cancers. Mamm Genome. 21:388–397. 2010. View Article : Google Scholar : PubMed/NCBI

65 

Sy SM, Jiang J, O WS, Deng Y and Huen MS: The ubiquitin specific protease USP34 promotes ubiquitin signaling at DNA double-strand breaks. Nucleic Acids Res. 41:8572–8580. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Wang Y, Serricchio M, Jauregui M, Shanbhag R, Stoltz T, Di Paolo CT, Kim PK and McQuibban GA: Deubiquitinating enzymes regulate PARK2-mediated mitophagy. Autophagy. 11:595–606. 2015. View Article : Google Scholar : PubMed/NCBI

67 

Endo A, Matsumoto M, Inada T, Yamamoto A, Nakayama KI, Kitamura N and Komada M: Nucleolar structure and function are regulated by the deubiquitylating enzyme USP36. J Cell Sci. 122:678–686. 2009. View Article : Google Scholar : PubMed/NCBI

68 

Huang X, Summers MK, Pham V, Lill JR, Liu J, Lee G, Kirkpatrick DS, Jackson PK, Fang G and Dixit VM: Deubiquitinase USP37 is activated by CDK2 to antagonize APC(CDH1) and promote S phase entry. Mol Cell. 42:511–523. 2011. View Article : Google Scholar : PubMed/NCBI

69 

Lin M, Zhao Z, Yang Z, Meng Q, Tan P, Xie W, Qin Y, Wang RF and Cui J: USP38 Inhibits type I interferon signaling by editing TBK1 Ubiquitination through NLRP4 Signalosome. Mol Cell. 64:267–281. 2016. View Article : Google Scholar : PubMed/NCBI

70 

van Leuken RJ, Luna-Vargas MP, Sixma TK, Wolthuis RM and Medema RH: Usp39 is essential for mitotic spindle checkpoint integrity and controls mRNA-levels of aurora B. Cell Cycle. 7:2710–2719. 2008. View Article : Google Scholar : PubMed/NCBI

71 

Fang CL, Lin CC, Chen HK, Hseu YC, Hung ST, Sun DP, Uen YH and Lin KY: Ubiquitin-specific protease 3 overexpression promotes gastric carcinogenesis and is predictive of poor patient prognosis. Cancer Sci. 109:3438–3449. 2018. View Article : Google Scholar : PubMed/NCBI

72 

Chen Y, Pang X, Ji L, Sun Y and Ji Y: Reduced expression of deubiquitinase USP33 is associated with tumor progression and poor prognosis of gastric adenocarcinoma. Med Sci Monit. 24:3496–505. 2018. View Article : Google Scholar : PubMed/NCBI

73 

Wang X, Yu Q, Huang L and Yu P: Lentivirus-mediated inhibition of USP39 suppresses the growth of gastric cancer cells via PARP activation. Mol Med Rep. 14:301–306. 2016. View Article : Google Scholar : PubMed/NCBI

74 

Dong X, Su H, Jiang F, Li H, Shi G and Fan L: miR-133a, directly targeted USP39, suppresses cell proliferation and predicts prognosis of gastric cancer. Oncol Lett. 15:8311–3818. 2018.PubMed/NCBI

75 

Zhang L, Zhou F, Drabsch Y, Gao R, Snaar-Jagalska BE, Mickanin C, Huang H, Sheppard KA, Porter JA, Lu CX and ten Dijke P: USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-β type I receptor. Nat Cell Biol. 14:717–726. 2012. View Article : Google Scholar : PubMed/NCBI

76 

Li Y, Schrodi S, Rowland C, Tacey K, Catanese J and Grupe A: Genetic evidence for ubiquitin-specific proteases USP24 and USP40 as candidate genes for late-onset Parkinson disease. Hum Mutat. 27:1017–1023. 2006. View Article : Google Scholar : PubMed/NCBI

77 

Pinilla-Vera M, Xiong Z, Zhao Y, Zhao J, Donahoe MP, Barge S, Horne WT, Kolls JK, McVerry BJ, Birukova A, et al: Full spectrum of LPS activation in alveolar macrophages of healthy volunteers by whole transcriptomic profiling. PLoS One. 11:e01593292016. View Article : Google Scholar : PubMed/NCBI

78 

Hock AK, Vigneron AM, Carter S, Ludwig RL and Vousden KH: Regulation of p53 stability and function by the deubiquitinating enzyme USP42. EMBO J. 30:4921–4930. 2011. View Article : Google Scholar : PubMed/NCBI

79 

He L, Liu X, Yang J, Li W, Liu S, Liu X, Yang Z, Ren J, Wang Y, Shan L, et al: Imbalance of the reciprocally inhibitory loop between the ubiquitin-specific protease USP43 and EGFR/PI3K/AKT drives breast carcinogenesis. Cell Res. 28:934–951. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Borrero J, Jimenez JJ, Gutiez L, Herranz C, Cintas LM and Hernandez PE: Use of the usp45 lactococcal secretion signal sequence to drive the secretion and functional expression of enterococcal bacteriocins in Lactococcus lactis. Appl Microbiol Biotechnol. 89:131–143. 2011. View Article : Google Scholar : PubMed/NCBI

81 

Schweitzer K and Naumann M: CSN-associated USP48 confers stability to nuclear NF-kappaB/RelA by trimming K48-linked Ub-chains. Biochim Biophys Acta. 1853:453–469. 2015. View Article : Google Scholar : PubMed/NCBI

82 

Weinstock J, Wu J, Cao P, Kingsbury WD, McDermott JL, Kodrasov MP, McKelvey DM, Suresh Kumar KG, Goldenberg SJ, Mattern MR and Nicholson B: Selective dual inhibitors of the cancer-related deubiquitylating proteases USP7 and USP47. ACS Med Chem Lett. 3:789–792. 2012. View Article : Google Scholar : PubMed/NCBI

83 

Zhang B, Yin Y, Hu Y, Zhang J, Bian Z, Song M, Hua D and Huang Z: MicroRNA-204-5p inhibits gastric cancer cell proliferation by downregulating USP47 and RAB22A. Med Oncol. 32:3312015. View Article : Google Scholar : PubMed/NCBI

84 

Naghavi L, Schwalbe M, Ghanem A and Naumann M: Deubiquitinylase USP47 promotes RelA phosphorylation and survival in gastric cancer cells. Biomedicines. 6(pii): E622018. View Article : Google Scholar : PubMed/NCBI

85 

Hou K, Zhu Z, Wang Y, Zhang C, Yu S, Zhu Q and Yan B: Overexpression and biological function of ubiquitin-specific protease 42 in gastric cancer. PLoS One. 11:e01529972016. View Article : Google Scholar : PubMed/NCBI

86 

Nishimura S, Oki E, Ando K, Iimori M, Nakaji Y, Nakashima Y, Saeki H, Oda Y and Maehara Y: High ubiquitin-specific protease 44 expression induces DNA aneuploidy and provides independent prognostic information in gastric cancer. Cancer Med. 6:1453–1464. 2017. View Article : Google Scholar : PubMed/NCBI

87 

Dayal S, Sparks A, Jacob J, Allende-Vega N, Lane DP and Saville MK: Suppression of the deubiquitinating enzyme USP5 causes the accumulation of unanchored polyubiquitin and the activation of p53. J Biol Chem. 284:5030–5041. 2009. View Article : Google Scholar : PubMed/NCBI

88 

Aressy B, Jullien D, Cazales M, Marcellin M, Bugler B, Burlet-Schiltz O and Ducommun B: A screen for deubiquitinating enzymes involved in the G2/M checkpoint identifies USP50 as a regulator of HSP90-dependent Wee1 stability. Cell Cycle. 9:3815–3822. 2010. View Article : Google Scholar : PubMed/NCBI

89 

Wang Z, Zhang H, Liu J, Cheruiyot A, Lee JH, Ordog T, Lou Z, You Z and Zhang Z: USP51 deubiquitylates H2AK13,15ub and regulates DNA damage response. Genes Dev. 30:946–959. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Yang S, Liu L, Cao C, Song N, Wang Y, Ma S, Zhang Q, Yu N, Ding X, Yang F, et al: USP52 acts as a deubiquitinase and promotes histone chaperone ASF1A stabilization. Nat Commun. 9:12852018. View Article : Google Scholar : PubMed/NCBI

91 

Kazmierczak M, Harris SL, Kazmierczak P, Shah P, Starovoytov V, Ohlemiller KK and Schwander M: Progressive hearing loss in mice carrying a mutation in Usp53. J Neurosci. 35:15582–15598. 2015. View Article : Google Scholar : PubMed/NCBI

92 

Fraile JM, Campos-Iglesias D, Rodriguez F, Espanol Y and Freije JM: The deubiquitinase USP54 is overexpressed in colorectal cancer stem cells and promotes intestinal tumorigenesis. Oncotarget. 7:74427–74434. 2016. View Article : Google Scholar : PubMed/NCBI

93 

Liu Y, Wang WM, Zou LY, Li L, Feng L, Pan MZ, Lv MY, Cao Y, Wang H, Kung HF, et al: Ubiquitin specific peptidase 5 mediates Histidine-rich protein Hpn induced cell apoptosis in hepatocellular carcinoma through P14-P53 signaling. Proteomics. 172017.doi: 10.1002/pmic.201600350. PubMed/NCBI

94 

Oliveira AM, Perez-Atayde AR, Inwards CY, Medeiros F, Derr V, Hsi BL, Gebhardt MC, Rosenberg AE and Fletcher JA: USP6 and CDH11 oncogenes identify the neoplastic cell in primary aneurysmal bone cysts and are absent in so-called secondary aneurysmal bone cysts. Am J Pathol. 165:1773–1780. 2004. View Article : Google Scholar : PubMed/NCBI

95 

Kang A, Kumar JB, Thomas A and Bourke AG: A spontaneously resolving breast lesion: Imaging and cytological findings of nodular fasciitis of the breast with FISH showing USP6 gene rearrangement. BMJ Case Rep. 2015(pii): bcr20152130762015. View Article : Google Scholar : PubMed/NCBI

96 

Jian F, Cao Y, Bian L and Sun Q: USP8: A novel therapeutic target for Cushing's disease. Endocrine. 50:292–296. 2015. View Article : Google Scholar : PubMed/NCBI

97 

Fu X, Xie W, Song X, Wu K, Xiao L, Liu Y and Zhang L: Aberrant expression of deubiquitylating enzyme USP9X predicts poor prognosis in gastric cancer. Clin Res Hepatol Gastroenterol. 41:687–692. 2017. View Article : Google Scholar : PubMed/NCBI

98 

Deng S, Zhou H, Xiong R, Lu Y, Yan D, Xing T, Dong L, Tang E and Yang H: Over-expression of genes and proteins of ubiquitin specific peptidases (USPs) and proteasome subunits (PSs) in breast cancer tissue observed by the methods of RFDD-PCR and proteomics. Breast Cancer Res Treat. 104:21–30. 2007. View Article : Google Scholar : PubMed/NCBI

99 

Xia JT, Chen LZ, Jian WH, Wang KB, Yang YZ, He WL, Chen D and Li W: MicroRNA-362 induces cell proliferation and apoptosis resistance in gastric cancer by activation of NF-B signaling. J Transl Med. 12:332014. View Article : Google Scholar : PubMed/NCBI

100 

Sun B, Li L, Ma W, Wang S and Huang C: MiR-130b inhibits proliferation and induces apoptosis of gastric cancer cells via CYLD. Tumour Biol. 37:7981–9787. 2016. View Article : Google Scholar : PubMed/NCBI

101 

Bermejo JL, Kabisch M, Dunnebier T, Schnaidt S, Melchior F, Fischer HP, Harth V, Rabstein S, Pesch B, Brüning T, et al: Exploring the association between genetic variation in the SUMO isopeptidase gene USPL1 and breast cancer through integration of data from the population-based GENICA study and external genetic databases. Int J Cancer. 133:362–372. 2013. View Article : Google Scholar : PubMed/NCBI

102 

Mevissen TE, Hospenthal MK, Geurink PP, Elliott PR, Akutsu M, Arnaudo N, Ekkebus R, Kulathu Y, Wauer T, El Oualid F, et al: OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell. 154:169–184. 2013. View Article : Google Scholar : PubMed/NCBI

103 

Wiener R, Zhang X, Wang T and Wolberger C: The mechanism of OTUB1-mediated inhibition of ubiquitination. Nature. 483:618–622. 2012. View Article : Google Scholar : PubMed/NCBI

104 

Kato K, Nakajima K, Ui A, Muto-Terao Y, Ogiwara H and Nakada S: Fine-tuning of DNA damage-dependent ubiquitination by OTUB2 supports the DNA repair pathway choice. Mol Cell. 53:617–630. 2014. View Article : Google Scholar : PubMed/NCBI

105 

Wang YQ, Zhang QY, Weng WW, Wu Y, Yang YS, Shen C, Chen XC, Wang L, Liu KJ, Xu MD and Sheng WQ: Upregulation of the Non-coding RNA OTUB1-isoform 2 contributes to gastric cancer cell proliferation and invasion and predicts poor gastric cancer prognosis. Int J Biol Sci. 12:545–557. 2016. View Article : Google Scholar : PubMed/NCBI

106 

Carneiro AP, Reis CF, Morari EC, Maia YC, Nascimento R, Bonatto JM, de Souza MA, Goulart LR and Ward LS: A putative OTU domain-containing protein 1 deubiquitinating enzyme is differentially expressed in thyroid cancer and identifies less-aggressive tumours. Br J Cancer. 111:551–558. 2014. View Article : Google Scholar : PubMed/NCBI

107 

Flierman D, van der Heden van Noort GJ, Ekkebus R, Geurink PP, Mevissen TE, Hospenthal MK, Komander D and Ovaa H: Non-hydrolyzable diubiquitin probes reveal linkage-specific reactivity of deubiquitylating enzymes mediated by S2 pockets. Cell Chem Biol. 23:472–482. 2016. View Article : Google Scholar : PubMed/NCBI

108 

Yuan L, Lv Y, Li H, Gao H, Song S, Zhang Y, Xing G, Kong X, Wang L, Li Y, et al: Deubiquitylase OTUD3 regulates PTEN stability and suppresses tumorigenesis. Nat Cell Biol. 17:1169–1181. 2015. View Article : Google Scholar : PubMed/NCBI

109 

Zhao Y, Majid MC, Soll JM, Brickner JR, Dango S and Mosammaparast N: Noncanonical regulation of alkylation damage resistance by the OTUD4 deubiquitinase. EMBO J. 34:1687–1703. 2015. View Article : Google Scholar : PubMed/NCBI

110 

Luo J, Lu Z, Lu X, Chen L, Cao J, Zhang S, Ling Y and Zhou X: OTUD5 regulates p53 stability by deubiquitinating p53. PLoS One. 8:e776822013. View Article : Google Scholar : PubMed/NCBI

111 

Kim SY, Kwon SK, Lee SY and Baek KH: Ubiquitin-specific peptidase 5 and ovarian tumor deubiquitinase 6A are differentially expressed in p53+/+ and p53−/− HCT116 cells. Int J Oncol. Mar 5–2018.(Epub ahead of print). doi: 10.3892/ijo.2018.4302. View Article : Google Scholar

112 

Santiago-Sim T, Burrage LC, Ebstein F, Tokita MJ, Miller M, Bi W, Braxton AA, Rosenfeld JA, Shahrour M, Lehmann A, et al: Biallelic variants in OTUD6B cause an intellectual disability syndrome associated with seizures and dysmorphic features. Am J Hum Genet. 100:676–688. 2017. View Article : Google Scholar : PubMed/NCBI

113 

Evans PC, Smith TS, Lai MJ, Williams MG, Burke DF, Heyninck K, Kreike MM, Beyaert R, Blundell TL and Kilshaw PJ: A novel type of deubiquitinating enzyme. J Biol Chem. 278:23180–23186. 2003. View Article : Google Scholar : PubMed/NCBI

114 

Xu Z, Pei L, Wang L, Zhang F, Hu X and Gui Y: Snail1-dependent transcriptional repression of Cezanne2 in hepatocellular carcinoma. Oncogene. 33:2836–2845. 2014. View Article : Google Scholar : PubMed/NCBI

115 

Virdee S, Ye Y, Nguyen DP, Komander D and Chin JW: Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase. Nat Chem Biol. 6:750–757. 2010. View Article : Google Scholar : PubMed/NCBI

116 

Guo T, Zhang Y, Qu X, Che X, Li C, Fan Y, Wan X, Ma R, Hou K, Zhou H, et al: miR-200a enhances TRAIL-induced apoptosis in gastric cancer cells by targeting A20. Cell Biol Int. 42:506–514. 2018. View Article : Google Scholar : PubMed/NCBI

117 

Lork M, Verhelst K and Beyaert R: CYLD, A20 and OTULIN deubiquitinases in NF-B signaling and cell death: So similar, yet so different. Cell Death Differ. 24:1172–1183. 2017. View Article : Google Scholar : PubMed/NCBI

118 

Weng W, Zhang Q, Xu M, Wu Y, Zhang M, Shen C, Chen X, Wang Y and Sheng W: OTUB1 promotes tumor invasion and predicts a poor prognosis in gastric adenocarcinoma. Am J Transl Res. 8:2234–2244. 2016.PubMed/NCBI

119 

Wang X, Zhang L, Zhang Y, Zhao P, Qian L, Yuan Y, Liu J, Cheng Q, Xu W, Zuo Y, et al: JOSD1 negatively regulates type-I interferon antiviral activity by deubiquitinating and stabilizing SOCS1. Viral Immunol. 30:342–349. 2017. View Article : Google Scholar : PubMed/NCBI

120 

Zhang B, Zheng A, Hydbring P, Ambroise G, Ouchida AT, Goiny M, Vakifahmetoglu-Norberg H and Norberg E: PHGDH defines a metabolic subtype in lung adenocarcinomas with poor prognosis. Cell Rep. 19:2289–2303. 2017. View Article : Google Scholar : PubMed/NCBI

121 

Zhang J, Huang JY, Chen YN, Yuan F, Zhang H, Yan FH, Wang MJ, Wang G, Su M, Lu G, et al: Whole genome and transcriptome sequencing of matched primary and peritoneal metastatic gastric carcinoma. Sci Rep. 5:137502015. View Article : Google Scholar : PubMed/NCBI

122 

Butler LR, Densham RM, Jia J, Garvin AJ, Stone HR, Shah V, Weekes D, Festy F, Beesley J and Morris JR: The proteasomal de-ubiquitinating enzyme POH1 promotes the double-strand DNA break response. EMBO J. 31:3918–3934. 2012. View Article : Google Scholar : PubMed/NCBI

123 

Py BF, Kim MS, Vakifahmetoglu-Norberg H and Yuan J: Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell. 49:331–338. 2013. View Article : Google Scholar : PubMed/NCBI

124 

Sun H, Guo D, Su Y, Yu D, Wang Q, Wang T, Zhou Q, Ran X and Zou Z: Hyperplasia of pericytes is one of the main characteristics of microvascular architecture in malignant glioma. PLoS One. 9:e1142462014. View Article : Google Scholar : PubMed/NCBI

125 

Zhou L, Shi L, Guo H and Yao X: MYSM-1 suppresses migration and invasion in renal carcinoma through inhibiting epithelial-mesenchymal transition. Tumour Biol. Sep 27–2015.(Epub ahead of print).

126 

Xiao D, Yang S, Huang L, He H, Pan H and He J: COP9 signalosome subunit CSN5, but not CSN6, is upregulated in lung adenocarcinoma and predicts poor prognosis. J Thorac Dis. 10:1596–1606. 2018. View Article : Google Scholar : PubMed/NCBI

127 

Niu Z, Lei R, Shi J, Wang D, Shou W, Wang Z, Wang Y, Wang Z and Huang W: A polymorphism rs17336700 in the PSMD7 gene is associated with ankylosing spondylitis in Chinese subjects. Ann Rheum Dis. 70:706–907. 2011. View Article : Google Scholar : PubMed/NCBI

128 

McCullough J, Clague MJ and Urbe S: AMSH is an endosome-associated ubiquitin isopeptidase. J Cell Biol. 166:487–492. 2004. View Article : Google Scholar : PubMed/NCBI

129 

Zhu W, Liu Y and Ling B: Quantum mechanics and molecular mechanics study of the catalytic mechanism of human AMSH-LP domain deubiquitinating enzymes. Biochemistry. 54:5225–5234. 2015. View Article : Google Scholar : PubMed/NCBI

130 

Wickramasinghe VO, Gonzalez-Porta M, Perera D, Bartolozzi AR, Sibley CR, Hallegger M, Ule J, Marioni JC and Venkitaraman AR: Regulation of constitutive and alternative mRNA splicing across the human transcriptome by PRPF8 is determined by 5′ splice site strength. Genome Biol. 16:2012015. View Article : Google Scholar : PubMed/NCBI

131 

Sang MM, Du WQ, Zhang RY, Zheng JN and Pei DS: Suppression of CSN5 promotes the apoptosis of gastric cancer cells through regulating p53-related apoptotic pathways. Bioorg Med Chem Lett. 25:2897–2901. 2015. View Article : Google Scholar : PubMed/NCBI

132 

Wang X, Wang H, Zhao S, Sun P, Wen D, Liu T, Liu H, Yang Z and Ma Z: Eukaryotic translation initiation factor EIF3H potentiates gastric carcinoma cell proliferation. Tissue Cell. 53:23–29. 2018. View Article : Google Scholar : PubMed/NCBI

133 

Cheng Y, Jia C, Li G and Li H: Expression of eukaryotic initiation factor 3f is associated with prognosis in gastric carcinomas. Oncol Res Treat. 37:198–202. 2014. View Article : Google Scholar : PubMed/NCBI

134 

Tahara H, Kay MA, Yasui W and Tahara E: MicroRNAs in cancer: The 22nd hiroshima cancer Seminar/the 4th Japanese Association for RNA interference joint international symposium, 30 August 2012, grand prince hotel Hiroshima. Jpn J Clin Oncol. 43:579–582. 2013. View Article : Google Scholar : PubMed/NCBI

135 

Huang S, Liu S, Fu JJ, Tony Wang T, Yao X, Kumar A, Liu G and Fu M: Monocyte chemotactic protein-induced protein 1 and 4 form a complex but act independently in regulation of interleukin-6 mRNA degradation. J Biol Chem. 290:20782–20792. 2015. View Article : Google Scholar : PubMed/NCBI

136 

Roy A and Kolattukudy PE: Monocyte chemotactic protein-induced protein (MCPIP) promotes inflammatory angiogenesis via sequential induction of oxidative stress, endoplasmic reticulum stress and autophagy. Cell Signal. 24:2123–2131. 2012. View Article : Google Scholar : PubMed/NCBI

137 

Mansour MA: Ubiquitination: Friend and foe in cancer. Int J Biochem Cell Biol. 101:80–93. 2018. View Article : Google Scholar : PubMed/NCBI

138 

Suk FM, Chang CC, Lin RJ, Lin SY, Chen YT and Liang YC: MCPIP3 as a potential metastasis suppressor gene in human colorectal cancer. Int J Mol Sci. 19:E13502018. View Article : Google Scholar : PubMed/NCBI

139 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Sun J, Shi X, Mamun M and Gao Y: The role of deubiquitinating enzymes in gastric cancer (Review). Oncol Lett 19: 30-44, 2020.
APA
Sun, J., Shi, X., Mamun, M., & Gao, Y. (2020). The role of deubiquitinating enzymes in gastric cancer (Review). Oncology Letters, 19, 30-44. https://doi.org/10.3892/ol.2019.11062
MLA
Sun, J., Shi, X., Mamun, M., Gao, Y."The role of deubiquitinating enzymes in gastric cancer (Review)". Oncology Letters 19.1 (2020): 30-44.
Chicago
Sun, J., Shi, X., Mamun, M., Gao, Y."The role of deubiquitinating enzymes in gastric cancer (Review)". Oncology Letters 19, no. 1 (2020): 30-44. https://doi.org/10.3892/ol.2019.11062
Copy and paste a formatted citation
x
Spandidos Publications style
Sun J, Shi X, Mamun M and Gao Y: The role of deubiquitinating enzymes in gastric cancer (Review). Oncol Lett 19: 30-44, 2020.
APA
Sun, J., Shi, X., Mamun, M., & Gao, Y. (2020). The role of deubiquitinating enzymes in gastric cancer (Review). Oncology Letters, 19, 30-44. https://doi.org/10.3892/ol.2019.11062
MLA
Sun, J., Shi, X., Mamun, M., Gao, Y."The role of deubiquitinating enzymes in gastric cancer (Review)". Oncology Letters 19.1 (2020): 30-44.
Chicago
Sun, J., Shi, X., Mamun, M., Gao, Y."The role of deubiquitinating enzymes in gastric cancer (Review)". Oncology Letters 19, no. 1 (2020): 30-44. https://doi.org/10.3892/ol.2019.11062
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team