|
1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Garrido-Laguna I and Hidalgo M: Pancreatic
cancer: From state-of-the-art treatments to promising novel
therapies. Nat Rev Clin Oncol. 12:319–334. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Maitra A and Hruban RH: Pancreatic cancer.
Annu Rev Pathol. 3:157–188. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Klöppel G and Adsay NV: Chronic
pancreatitis and the differential diagnosis versus pancreatic
cancer. Arch Pathol Lab Med. 133:382–387. 2009.PubMed/NCBI
|
|
5
|
Meezan E, Wu HC, Black PH and Robbins PW:
Comparative studies on the carbohydrate-containing membrane
components of normal and virus-transformed mouse fibroblasts. II.
Separation of glycoproteins and glycopeptides by sephadex
chromatography. Biochemistry. 8:2518–2524. 1969. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Munkley J and Elliott DJ: Hallmarks of
glycosylation in cancer. Oncotarget. 7:35478–35489. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Feizi T: Demonstration by monoclonal
antibodies that carbohydrate structures of glycoproteins and
glycolipids are onco-developmental antigens. Nature. 314:53–57.
1985. View
Article : Google Scholar : PubMed/NCBI
|
|
8
|
Pinho SS and Reis CA: Glycosylation in
cancer: Mechanisms and clinical implications. Nat Rev Cancer.
15:540–555. 2015. View
Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kailemia MJ, Park D and Lebrilla CB:
Glycans and glycoproteins as specific biomarkers for cancer. Anal
Bioanal Chem. 409:395–410. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Munkley J: Glycosylation is a global
target for androgen control in prostate cancer cells. Endocr Relat
Cancer. 24:R49–R64. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Mereiter S, Balmaña M, Gomes J, Magalhães
A and Reis CA: Glycomic approaches for the discovery of targets in
gastrointestinal cancer. Front Oncol. 6:552016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Adamczyk B, Tharmalingam T and Rudd PM:
Glycans as cancer biomarkers. Biochim Biophys Acta. 1820:1347–1353.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Munkley J, Vodak D, Livermore KE, James K,
Wilson BT, Knight B, Mccullagh P, Mcgrath J, Crundwell M, Harries
LW, et al: Glycosylation is an androgen-regulated process essential
for prostate cancer cell viability. EBioMedicine. 8:103–116. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Munkley J, Mills IG and Elliott DJ: The
role of glycans in the development and progression of prostate
cancer. Nat Rev Urol. 13:324–333. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Moniaux N, Andrianifahanana M, Brand RE
and Batra SK: Multiple roles of mucins in pancreatic cancer, a
lethal and challenging malignancy. Br J Cancer. 91:1633–1638. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Magnani JL, Nilsson B, Brockhaus M, Zopf
D, Steplewski Z, Koprowski H and Ginsburg V: A monoclonal
antibody-defined antigen associated with gastrointestinal cancer is
a ganglioside containing sialylated lacto-N-fucopentaose II. J Biol
Chem. 257:14365–14369. 1982.PubMed/NCBI
|
|
17
|
Magnani JL, Brockhaus M, Smith DF,
Ginsburg V, Blaszczyk M, Mitchell KF, Steplewski Z and Koprowski H:
A monosialoganglioside is a monoclonal antibody-defined antigen of
colon carcinoma. Science. 212:55–56. 1981. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Herlyn M, Sears HF, Steplewski Z and
Koprowski H: Monoclonal antibody detection of a circulating
tumor-associated antigen. I. Presence of antigen in sera of
patients with colorectal, gastric, and pancreatic carcinoma. J Clin
Immunol. 2:135–140. 1982. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Magnani JL, Steplewski Z, Koprowski H and
Ginsburg V: Identification of the gastrointestinal and pancreatic
cancer-associated antigen detected by monoclonal antibody 19-9 in
the sera of patients as a mucin. Cancer Res. 43:5489–5492.
1983.PubMed/NCBI
|
|
20
|
Yue T, Partyka K, Maupin KA, Hurley M,
Andrews P, Kaul K, Moser AJ, Zeh H, Brand RE and Haab BB:
Identification of blood-protein carriers of the CA 19-9 antigen and
characterization of prevalence in pancreatic diseases. Proteomics.
11:3665–3674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lahdenne P, Pitkänen S, Rajantie J,
Kuusela P, Siimes MA, Lanning M and Heikinheimo M: Tumor markers CA
125 and CA 19-9 in cord blood and during infancy: Developmental
changes and use in pediatric germ cell tumors. Pediatr Res.
38:797–801. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Goonetilleke KS and Siriwardena AK:
Systematic review of carbohydrate antigen (CA 19-9) as a
biochemical marker in the diagnosis of pancreatic cancer. Eur J
Surg Oncol. 33:266–270. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kalthoff H, Kreiker C, Schmiegel WH,
Greten H and Thiele HG: Characterization of CA 19-9 bearing mucins
as physiological exocrine pancreatic secretion products. Cancer
Res. 46:3605–3607. 1986.PubMed/NCBI
|
|
24
|
Tang H, Hsueh P, Kletter D, Bern M and
Haab B: The detection and discovery of glycan motifs in biological
samples using lectins and antibodies: New methods and
opportunities. Adv Cancer Res. 126:167–202. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Shah UA and Saif MW: Tumor markers in
pancreatic cancer: 2013. JOP. 14:318–321. 2013.PubMed/NCBI
|
|
26
|
Barton JG, Bois JP, Sarr MG, Wood CM, Qin
R, Thomsen KM, Kendrick ML and Farnell MB: Predictive and
prognostic value of CA 19-9 in resected pancreatic adenocarcinoma.
J Gastrointest Surg. 13:2050–2058. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Galli C, Basso D and Plebani M: CA 19-9:
Handle with care. Clin Chem Lab Med. 51:1369–1383. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Yue T, Maupin KA, Fallon B, Li L, Partyka
K, Anderson MA, Brenner DE, Kaul K, Zeh H, Moser AJ, et al:
Enhanced discrimination of malignant from benign pancreatic disease
by measuring the CA 19-9 antigen on specific protein carriers. PLoS
One. 6:e291802011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Tempero MA, Uchida E, Takasaki H, Burnett
DA, Steplewski Z and Pour PM: Relationship of carbohydrate antigen
19-9 and Lewis antigens in pancreatic cancer. Cancer Res.
47:5501–5503. 1987.PubMed/NCBI
|
|
30
|
Remmers N, Anderson JM, Linde EM, DiMaio
DJ, Lazenby AJ, Wandall HH, Mandel U, Clausen H, Yu F and
Hollingsworth MA: Aberrant expression of mucin core proteins and
o-linked glycans associated with progression of pancreatic cancer.
Clin Cancer Res. 19:1981–1993. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Partyka K, Maupin KA, Brand RE and Haab
BB: Diverse monoclonal antibodies against the CA 19-9 antigen show
variation in binding specificity with consequences for clinical
interpretation. Proteomics. 12:2212–2220. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Tang H, Partyka K, Hsueh P, Sinha JY,
Kletter D, Zeh H, Huang Y, Brand RE and Haab BB: Glycans related to
the CA19-9 antigen are elevated in distinct subsets of pancreatic
cancers and improve diagnostic accuracy over CA19-9. Cell Mol
Gastroenterol Hepatol. 2:201–221.e215. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Xu HL, Zhao X, Zhang KM, Tang W and Kokudo
N: Inhibition of KL-6/MUC1 glycosylation limits aggressive
progression of pancreatic cancer. World J Gastroenterol.
20:12171–12181. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Pour PM, Tempero MM, Takasaki H, Uchida E,
Takiyama Y, Burnett DA and Steplewski Z: Expression of blood
group-related antigens ABH, Lewis A, Lewis B, Lewis X, Lewis Y and
CA 19-9 in pancreatic cancer cells in comparison with the patient's
blood group type. Cancer Res. 48:5422–5426. 1988.PubMed/NCBI
|
|
35
|
Singh S, Pal K, Yadav J, Tang H, Partyka
K, Kletter D, Hsueh P, Ensink E, Kc B, Hostetter G, et al:
Upregulation of glycans containing 3′ fucose in a subset of
pancreatic cancers uncovered using fusion-tagged lectins. J
Proteome Res. 14:2594–2605. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Tang H, Singh S, Partyka K, Kletter D,
Hsueh P, Yadav J, Ensink E, Bern M, Hostetter G, Hartman D, et al:
Glycan motif profiling reveals plasma sialyl-lewis × elevations in
pancreatic cancers that are negative for sialyl-lewis A. Mol Cell
Proteomics. 14:1323–1333. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Balmaña M, Sarrats A, Llop E, Barrabés S,
Saldova R, Ferri MJ, Figueras J, Fort E, de Llorens R, Rudd PM and
Peracaula R: Identification of potential pancreatic cancer serum
markers: Increased sialyl-Lewis X on ceruloplasmin. Clin Chim Acta.
442:56–62. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Natoni A, Macauley MS and O'Dwyer ME:
Targeting selectins and their ligands in cancer. Front Oncol.
6:932016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Takahashi S, Oda T, Hasebe T, Sasaki S,
Kinoshita T, Konishi M, Ueda T, Nakahashi C, Ochiai T and Ochiai A:
Overexpression of sialyl Lewis × antigen is associated with
formation of extratumoral venous invasion and predicts
postoperative development of massive hepatic metastasis in cases
with pancreatic ductal adenocarcinoma. Pathobiology. 69:127–135.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Rho JH, Mead JR, Wright WS, Brenner DE,
Stave JW, Gildersleeve JC and Lampe PD: Discovery of sialyl Lewis A
and Lewis X modified protein cancer biomarkers using high density
antibody arrays. J Proteomics. 96:291–299. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Metzgar RS, Gaillard MT, Levine SJ, Tuck
FL, Bossen EH and Borowitz MJ: Antigens of human pancreatic
adenocarcinoma cells defined by murine monoclonal antibodies.
Cancer Res. 42:601–608. 1982.PubMed/NCBI
|
|
42
|
Kawa S, Tokoo M, Oguchi H, Furuta S, Homma
T, Hasegawa Y, Ogata H and Sakata K: Epitope analysis of SPan-1 and
DUPAN-2 using synthesized glycoconjugates sialyllact-N-fucopentaose
II and sialyllact-N-tetraose. Pancreas. 9:692–697. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Munkley J: The role of Sialyl-Tn in
cancer. Int J Mol Sci. 17:2752016. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Radhakrishnan P, Dabelsteen S, Madsen FB,
Francavilla C, Kopp KL, Steentoft C, Vakhrushev SY, Olsen JV,
Hansen L, Bennett EP, et al: Immature truncated O-glycophenotype of
cancer directly induces oncogenic features. Proc Natl Acad Sci USA.
111:E4066–E4075. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Hofmann BT, Schlüter L, Lange P,
Mercanoglu B, Ewald F, Fölster A, Picksak AS, Harder S, El Gammal
AT, Grupp K, et al: COSMC knockdown mediated aberrant
O-glycosylation promotes oncogenic properties in pancreatic cancer.
Mol Cancer. 14:1092015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Itzkowitz S, Kjeldsen T, Friera A,
Hakomori S, Yang US and Kim YS: Expression of Tn, sialosyl Tn, and
T antigens in human pancreas. Gastroenterology. 100:1691–1700.
1991. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Chugh S, Meza J, Sheinin YM, Ponnusamy MP
and Batra SK: Loss of N-acetylgalactosaminyltransferase 3 in poorly
differentiated pancreatic cancer: Augmented aggressiveness and
aberrant ErbB family glycosylation. Br J Cancer. 114:1376–1386.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wang Y, Ju T, Ding X, Xia B, Wang W, Xia
L, He M and Cummings RD: Cosmc is an essential chaperone for
correct protein O-glycosylation. Proc Natl Acad Sci USA.
107:9228–9233. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Taniuchi K, Cerny RL, Tanouchi A, Kohno K,
Kotani N, Honke K, Saibara T and Hollingsworth MA: Overexpression
of GalNAc-transferase GalNAc-T3 promotes pancreatic cancer cell
growth. Oncogene. 30:4843–4854. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Pan S, Tamura Y, Chen R, May D, McIntosh
MW and Brentnall TA: Large-scale quantitative glycoproteomics
analysis of site-specific glycosylation occupancy. Mol Biosyst.
8:2850–2856. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Pan S, Chen R, Tamura Y, Crispin DA, Lai
LA, May DH, McIntosh MW, Goodlett DR and Brentnall TA: Quantitative
glycoproteomics analysis reveals changes in N-glycosylation level
associated with pancreatic ductal adenocarcinoma. J Proteome Res.
13:1293–1306. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Contessa JN, Bhojani MS, Freeze HH,
Rehemtulla A and Lawrence TS: Inhibition of N-linked glycosylation
disrupts receptor tyrosine kinase signaling in tumor cells. Cancer
Res. 68:3803–3809. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Pérez-Garay M, Arteta B, Llop E, Cobler L,
Pagès L, Ortiz R, Ferri MJ, de Bolós C, Figueras J, de Llorens R,
et al: α2,3-Sialyltransferase ST3Gal IV promotes migration and
metastasis in pancreatic adenocarcinoma cells and tends to be
highly expressed in pancreatic adenocarcinoma tissues. Int J
Biochem Cell Biol. 45:1748–1757. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Pérez-Garay M, Arteta B, Pagès L, de
Llorens R, de Bolòs C, Vidal-Vanaclocha F and Peracaula R:
alpha2,3-sialyltransferase ST3Gal III modulates pancreatic cancer
cell motility and adhesion in vitro and enhances its metastatic
potential in vivo. PLoS One. 5(pii): e125242010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Hsieh CC, Shyr YM, Liao WY, Chen TH, Wang
SE, Lu PC, Lin PY, Chen YB, Mao WY, Han HY, et al: Elevation of
β-galactoside α2,6-sialyltransferase 1 in a fructoseresponsive
manner promotes pancreatic cancer metastasis. Oncotarget.
8:7691–7709. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yue T, Goldstein IJ, Hollingsworth MA,
Kaul K, Brand RE and Haab BB: The prevalence and nature of glycan
alterations on specific proteins in pancreatic cancer patients
revealed using antibody-lectin sandwich arrays. Mol Cell
Proteomics. 8:1697–1707. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Park HM, Hwang MP, Kim YW, Kim KJ, Jin JM,
Kim YH, Yang YH, Lee KH and Kim YG: Mass spectrometry-based
N-linked glycomic profiling as a means for tracking pancreatic
cancer metastasis. Carbohydr Res. 413:5–11. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhao J, Qiu W, Simeone DM and Lubman DM:
N-linked glycosylation profiling of pancreatic cancer serum using
capillary liquid phase separation coupled with mass spectrometric
analysis. J Proteome Res. 6:1126–1138. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Kamada Y, Kinoshita N, Tsuchiya Y,
Kobayashi K, Fujii H, Terao N, Kamihagi K, Koyama N, Yamada S,
Daigo Y, et al: Reevaluation of a lectin antibody ELISA kit for
measuring fucosylated haptoglobin in various conditions. Clin Chim
Acta. 417:48–53. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Barrabés S, Pagès-Pons L, Radcliffe CM,
Tabarés G, Fort E, Royle L, Harvey DJ, Moenner M, Dwek RA, Rudd PM,
et al: Glycosylation of serum ribonuclease 1 indicates a major
endothelial origin and reveals an increase in core fucosylation in
pancreatic cancer. Glycobiology. 17:388–400. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Fardini Y, Dehennaut V, Lefebvre T and
Issad T: O-GlcNAcylation: A new cancer hallmark? Front Endocrinol
(Lausanne). 4(99)2013.PubMed/NCBI
|
|
62
|
Bond MR and Hanover JA: A little sugar
goes a long way: The cell biology of O-GlcNAc. J Cell Biol.
208:869–880. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Liu Y, Cao Y, Pan X, Shi M, Wu Q, Huang T,
Jiang H, Li W and Zhang J: O-GlcNAc elevation through activation of
the hexosamine biosynthetic pathway enhances cancer cell
chemoresistance. Cell Death Dis. 9:4852018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Qian K, Wang S, Fu M, Zhou J, Singh JP, Li
MD, Yang Y, Zhang K, Wu J, Nie Y, et al: Transcriptional regulation
of O-GlcNAc homeostasis is disrupted in pancreatic cancer. J Biol
Chem. 293:13989–14000. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Konrad RJ and Kudlow JE: The role of
O-linked protein glycosylation in beta-cell dysfunction. Int J Mol
Med. 10:535–539. 2002.PubMed/NCBI
|
|
66
|
Ma Z, Vocadlo DJ and Vosseller K:
Hyper-O-GlcNAcylation is anti-apoptotic and maintains constitutive
NF-κB activity in pancreatic cancer cells. J Biol Chem.
288:15121–15130. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zachara NE, O'Donnell N, Cheung WD, Mercer
JJ, Marth JD and Hart GW: Dynamic O-GlcNAc modification of
nucleocytoplasmic proteins in response to stress. A survival
response of mammalian cells. J Biol Chem. 279:30133–30142. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Banerjee S, Sangwan V, McGinn O, Chugh R,
Dudeja V, Vickers SM and Saluja AK: Triptolide-induced cell death
in pancreatic cancer is mediated by O-GlcNAc modification of
transcription factor Sp1. J Biol Chem. 288:33927–33938. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Garg B, Giri B, Majumder K, Dudeja V,
Banerjee S and Saluja A: Modulation of post-translational
modifications in β-catenin and LRP6 inhibits Wnt signaling pathway
in pancreatic cancer. Cancer Lett. 388:64–72. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Sharma NS, Gupta VK, Dauer P, Kesh K,
Hadad R, Giri B, Chandra A, Dudeja V, Slawson C, Banerjee S, et al:
O-GlcNAc modification of oncogenic transcription factor Sox2
promotes protein stability and regulates self-renewal in pancreatic
cancer. bioRxiv. doi: https://doi.org/10.1101/345223.
|
|
71
|
Dwek RA, Butters TD, Platt FM and Zitzmann
N: Targeting glycosylation as a therapeutic approach. Nat Rev Drug
Discov. 1:65–75. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
72
|
Vasconcelos-Dos-Santos A, Oliveira IA,
Lucena MC, Mantuano NR, Whelan SA, Dias WB and Todeschini AR:
Biosynthetic machinery involved in aberrant glycosylation:
Promising targets for developing of drugs against cancer. Front
Oncol. 5:1382015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Iozzo RV and Sanderson RD: Proteoglycans
in cancer biology, tumour microenvironment and angiogenesis. J Cell
Mol Med. 15:1013–1031. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Pan S, Chen R, Stevens T, Bronner MP, May
D, Tamura Y, McIntosh MW and Brentnall TA: Proteomics portrait of
archival lesions of chronic pancreatitis. PLoS One. 6:e275742011.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Pan S, Chen R, Reimel BA, Crispin DA,
Mirzaei H, Cooke K, Coleman JF, Lane Z, Bronner MP, Goodlett DR, et
al: Quantitative proteomics investigation of pancreatic
intraepithelial neoplasia. Electrophoresis. 30:1132–1144. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Chen R, Yi EC, Donohoe S, Pan S, Eng J,
Cooke K, Crispin DA, Lane Z, Goodlett DR, Bronner MP, et al:
Pancreatic cancer proteome: The proteins that underlie invasion,
metastasis, and immunologic escape. Gastroenterology.
129:1187–1197. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chen WB, Lenschow W, Tiede K, Fischer JW,
Kalthoff H and Ungefroren H: Smad4/DPC4-dependent regulation of
biglycan gene expression by transforming growth factor-beta in
pancreatic tumor cells. J Biol Chem. 277:36118–36128. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Koninger J, Giese T, di Mola FF, Wente MN,
Esposito I, Bachem MG, Giese NA, Büchler MW and Friess H:
Pancreatic tumor cells influence the composition of the
extracellular matrix. Biochem Biophys Res Commun. 322:943–949.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Koninger J, Giese NA, di Mola FF, Berberat
P, Giese T, Esposito I, Bachem MG, Büchler MW and Friess H:
Overexpressed decorin in pancreatic cancer: Potential tumor growth
inhibition and attenuation of chemotherapeutic action. Clin Cancer
Res. 10:4776–4783. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Weber CK, Sommer G, Michl P, Fensterer H,
Weimer M, Gansauge F, Leder G, Adler G and Gress TM: Biglycan is
overexpressed in pancreatic cancer and induces G1-arrest in
pancreatic cancer cell lines. Gastroenterology. 121:657–667. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Conejo JR, Kleeff J, Koliopanos A, Matsuda
K, Zhu ZW, Goecke H, Bicheng N, Zimmermann A, Korc M, Friess H and
Büchler MW: Syndecan-1 expression is up-regulated in pancreatic but
not in other gastrointestinal cancers. Int J Cancer. 88:12–20.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kleeff J, Ishiwata T, Kumbasar A, Friess
H, Büchler MW, Lander AD and Korc M: The cell-surface heparan
sulfate proteoglycan glypican-1 regulates growth factor action in
pancreatic carcinoma cells and is overexpressed in human pancreatic
cancer. J Clin Invest. 102:1662–1673. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Whipple CA, Young AL and Korc M: A
KrasG12D-driven genetic mouse model of pancreatic cancer requires
glypican-1 for efficient proliferation and angiogenesis. Oncogene.
31:2535–2544. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Aikawa T, Whipple CA, Lopez ME, Gunn J,
Young A, Lander AD and Korc M: Glypican-1 modulates the angiogenic
and metastatic potential of human and mouse cancer cells. J Clin
Invest. 118:89–99. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Melo SA, Luecke LB, Kahlert C, Fernandez
AF, Gammon ST, Kaye J, LeBleu VS, Mittendorf EA, Weitz J, Rahbari
N, et al: Glypican-1 identifies cancer exosomes and detects early
pancreatic cancer. Nature. 523:177–182. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Ebrahim AH, Alalawi Z, Mirandola L,
Rakhshanda R, Dahlbeck S, Nguyen D, Jenkins M, Grizzi F, Cobos E,
Figueroa JA, et al: Galectins in cancer: Carcinogenesis, diagnosis
and therapy. Ann Transl Med. 2:882014.PubMed/NCBI
|
|
87
|
Qian D, Lu Z, Xu Q, Wu P, Tian L, Zhao L,
Cai B, Yin J, Wu Y, Staveley-O'Carroll KF, et al: Galectin-1-driven
upregulation of SDF-1 in pancreatic stellate cells promotes
pancreatic cancer metastasis. Cancer Lett. 397:43–51. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zhao W, Ajani JA, Sushovan G, Ochi N,
Hwang R, Hafley M, Johnson RL, Bresalier RS, Logsdon CD, Zhang Z
and Song S: Galectin-3 mediates tumor cell-stroma interactions by
activating pancreatic stellate cells to produce cytokines via
integrin signaling. Gastroenterology. 154:1524–1537.e6. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Chen R, Pan S, Ottenhof NA, de Wilde RF,
Wolfgang CL, Lane Z, Post J, Bronner MP, Willmann JK, Maitra A and
Brentnall TA: Stromal galectin-1 expression is associated with
long-term survival in resectable pancreatic ductal adenocarcinoma.
Cancer Biol Ther. 13:899–907. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Chen R, Dawson DW, Pan S, Ottenhof NA, de
Wilde RF, Wolfgang CL, May DH, Crispin DA, Lai LA, Lay AR, et al:
Proteins associated with pancreatic cancer survival in patients
with resectable pancreatic ductal adenocarcinoma. Lab Invest.
95:43–55. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Martinez-Bosch N, Fernández-Barrena MG,
Moreno M, Ortiz-Zapater E, Munné-Collado J, Iglesias M, André S,
Gabius HJ, Hwang RF, Poirier F, et al: Galectin-1 drives pancreatic
carcinogenesis through stroma remodeling and Hedgehog signaling
activation. Cancer Res. 74:3512–3524. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Orozco CA, Martinez-Bosch N, Guerrero PE,
Vinaixa J, Dalotto-Moreno T, Iglesias M, Moreno M, Djurec M,
Poirier F, Gabius HJ, et al: Targeting galectin-1 inhibits
pancreatic cancer progression by modulating tumor-stroma crosstalk.
Proc Natl Acad Sci USA. 115:E3769–E3778. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Seguin L, Camargo MF, Wettersten HI, Kato
S, Desgrosellier JS, von Schalscha T, Elliott KC, Cosset E,
Lesperance J, Weis SM and Cheresh DA: Galectin-3, a druggable
vulnerability for KRAS-addicted cancers. Cancer Discov.
7:1464–1479. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Bailey P, Chang DK, Nones K, Johns AL,
Patch AM, Gingras MC, Miller DK, Christ AN, Bruxner TJ, Quinn MC,
et al: Genomic analyses identify molecular subtypes of pancreatic
cancer. Nature. 531:47–52. 2016. View Article : Google Scholar : PubMed/NCBI
|