|
1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Orr B and Edwards RP: Diagnosis and
treatment of ovarian cancer. Hematol Oncol Clin North Am.
32:943–964. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ashworth A: A synthetic lethal therapeutic
approach: Poly(ADP) ribose polymerase inhibitors for the treatment
of cancers deficient in DNA double-strand break repair. J Clin
Oncol. 26:3785–3790. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Beatty GL and Gladney WL: Immune escape
mechanisms as a guide for cancer immunotherapy. Clin Cancer Res.
21:687–692. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Eskander RN and Tewari KS: PARP inhibition
and synthetic lethality in ovarian cancer. Expert Rev Clin
Pharmacol. 7:613–622. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Lord CJ and Ashworth A: PARP inhibitors:
Synthetic lethality in the clinic. Science. 355:1152–1158. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Burger RA, Brady MF, Bookman MA, Fleming
GF, Monk BJ, Huang H, Mannel RS, Homesley HD, Fowler J, Greer BE,
et al: Incorporation of bevacizumab in the primary treatment of
ovarian cancer. N Engl J Med. 365:2473–2483. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Postow MA, Callahan MK and Wolchok JD:
Immune checkpoint blockade in cancer therapy. J Clin Oncol.
33:1974–1982. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Hughes PE, Caenepeel S and Wu LC: Targeted
therapy and checkpoint immunotherapy combinations for the treatment
of cancer. Trends Immunol. 37:462–476. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zou W and Chen L: Inhibitory B7-family
molecules in the tumour microenvironment. Nat Rev Immunol.
8:467–477. 2008. View
Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hamid O, Robert C, Daud A, Hodi FS, Hwu
WJ, Kefford R, Wolchok JD, Hersey P, Joseph RW, Weber JS, et al:
Safety and tumor responses with lambrolizumab (anti-PD-1) in
melanoma. N Engl J Med. 369:134–144. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Freeman GJ, Long AJ, Iwai Y, Bourque K,
Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne
MC, et al: Engagement of the PD-1 immunoinhibitory receptor by a
novel B7 family member leads to negative regulation of lymphocyte
activation. J Exp Med. 192:1027–1034. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Francisco LM, Salinas VH, Brown KE,
Vanguri VK, Freeman GJ, Kuchroo VK and Sharpe AH: PD-L1 regulates
the development, maintenance, and function of induced regulatory T
cells. J Exp Med. 206:3015–3029. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Abiko K, Mandai M, Hamanishi J, Yoshioka
Y, Matsumura N, Baba T, Yamaguchi K, Murakami R, Yamamoto A, Kharma
B, et al: PD-L1 on tumor cells is induced in ascites and promotes
peritoneal dissemination of ovarian cancer through CTL dysfunction.
Clin Cancer Res. 19:1363–1374. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Sato E, Olson SH, Ahn J, Bundy B,
Nishikawa H, Qian F, Jungbluth AA, Frosina D, Gnjatic S, Ambrosone
C, et al: Intraepithelial CD8+ tumor-infiltrating lymphocytes and a
high CD8+/regulatory T cell ratio are associated with favorable
prognosis in ovarian cancer. Proc Natl Acad Sci USA.
102:18538–18543. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Hamanishi J, Mandai M, Iwasaki M, Okazaki
T, Tanaka Y, Yamaguchi K, Higuchi T, Yagi H, Takakura K, Minato N,
et al: Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+
T lymphocytes are prognostic factors of human ovarian cancer. Proc
Natl Acad Sci USA. 104:3360–3365. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Cubillos-Ruiz JR, Engle X, Scarlett UK,
Martinez D, Barber A, Elgueta R, Wang L, Nesbeth Y, Durant Y,
Gewirtz AT, et al: Polyethylenimine-based siRNA nanocomplexes
reprogram tumor-associated dendritic cells via TLR5 to elicit
therapeutic antitumor immunity. J Clin Invest. 119:2231–2244.
2009.PubMed/NCBI
|
|
19
|
Brahmer JR, Drake CG, Wollner I, Powderly
JD, Picus J, Sharfman WH, Stankevich E, Pons A, Salay TM, McMiller
TL, et al: Phase I study of single-agent anti-programmed death-1
(MDX-1106) in refractory solid tumors: Safety, clinical activity,
pharmacodynamics, and immunologic correlates. J Clin Oncol.
28:3167–3175. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Taneja SS: Re: Safety and activity of
Anti-PD-L1 antibody in patients with advanced cancer. J Urol.
188:2148–2149. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Hamanishi J, Mandai M, Ikeda T, Minami M,
Kawaguchi A, Murayama T, Kanai M, Mori Y, Matsumoto S, Chikuma S,
et al: Safety and antitumor activity of anti-PD-1 antibody,
nivolumab, in patients with platinum-resistant ovarian cancer. J
Clin Oncol. 33:4015–4022. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Disis ML, Patel MR, Pant S, Infante JR,
Lockhart AC, Kelly K, Beck JT, Gordon MS, Weiss GJ, Ejadi S, et al:
Avelumab (MSB0010718C), an anti-PD-L1 antibody, in patients with
previously treated, recurrent or refractory ovarian cancer: A phase
Ib, open-label expansion trial. J Clin Oncol. 5509:2015.
|
|
23
|
Bellone S, Buza N, Choi J, Zammataro L,
Gay L, Elvin J, Rimm DL, Liu Y, Ratner ES, Schwartz PE and Santin
AD: Exceptional response to pembrolizumab in a metastatic,
chemotherapy/radiation-resistant ovarian cancer patient harboring a
PD-L1-genetic rearrangement. Clin Cancer Res. 24:3282–3291. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Tse BW, Collins A, Oehler MK, Zippelius A
and Heinzelmann-Schwarz VA: Antibody-based immunotherapy for
ovarian cancer: Where are we at? Ann Oncol. 25:322–331. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Chen L and Flies DB: Molecular mechanisms
of T cell co-stimulation and co-inhibition. Nat Rev Immunol.
13:227–242. 2013. View
Article : Google Scholar : PubMed/NCBI
|
|
26
|
Chambers CA, Kuhns MS, Egen JG and Allison
JP: CTLA-4-mediated inhibition in regulation of T cell responses:
Mechanisms and manipulation in tumor immunotherapy. Annu Rev
Immunol. 19:565–594. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Krummel MF and Allison JP: CD28 and CTLA-4
have opposing effects on the response of T cells to stimulation. J
Exp Med. 182:459–465. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Lesterhuis WJ, Salmons J, Nowak AK, Rozali
EN, Khong A, Dick IM, Harken JA, Robinson BW and Lake RA:
Synergistic effect of CTLA-4 blockade and cancer chemotherapy in
the induction of anti-tumor immunity. PLoS One. 8:e618952013.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Hodi FS, Mihm MC, Soiffer RJ, Haluska FG,
Butler M, Seiden MV, Davis T, Henry-Spires R, MacRae S, Willman A,
et al: Biologic activity of cytotoxic T lymphocyte-associated
antigen 4 antibody blockade in previously vaccinated metastatic
melanoma and ovarian carcinoma patients. Proc Natl Acad Sci USA.
100:4712–4717. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Hodi FS, Butler M, Oble DA, Seiden MV,
Haluska FG, Kruse A, Macrae S, Nelson M, Canning C, Lowy I, et al:
Immunologic and clinical effects of antibody blockade of cytotoxic
T lymphocyte-associated antigen 4 in previously vaccinated cancer
patients. Proc Natl Acad Sci USA. 105:3005–3010. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Korman A, Chen B, Wang C, Wu L, Cardarelli
P and Selby M: Activity of Anti-PD-1 in murine tumor models: Role
of ‘host’ PD-L1 and synergistic effect of anti-PD-1 and
anti-CTLA-4. J Immunol. 178:2007.
|
|
32
|
Postow MA, Chesney J, Pavlick AC, Robert
C, Grossmann K, McDermott D, Linette GP, Meyer N, Giguere JK,
Agarwala SS, et al: Nivolumab and ipilimumab versus ipilimumab in
untreated melanoma. N Engl J Med. 372:2006–2017. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Larkin J, Chiarion-Sileni V, Gonzalez R,
Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M,
Rutkowski P, et al: Combined nivolumab and ipilimumab or
monotherapy in untreated melanoma. N Engl J Med. 373:23–34. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Audeh MW, Carmichael J, Penson RT,
Friedlander M, Powell B, Bell-McGuinn KM, Scott C, Weitzel JN,
Oaknin A, Loman N, et al: Oral poly(ADP-ribose) polymerase
inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and
recurrent ovarian cancer: A proof-of-concept trial. Lancet.
376:245–251. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Pujadelauraine E, Ledermann JA, Selle F,
Gebski V, Penson RT, Oza AM, Korach J, Huzarski T, Poveda A,
Pignata S, et al: Olaparib tablets as maintenance therapy in
patients with platinum-sensitive, relapsed ovarian cancer and a
BRCA1/2 mutation (SOLO2/ENGOT-Ov21): A double-blind, randomised,
placebo-controlled, phase 3 trial. Lancet Oncol. 18:1274–1284.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Lheureux S, Lai Z, Dougherty BA, Runswick
S, Hodgson DR, Timms KM, Lanchbury JS, Kaye S, Gourley C, Bowtell
D, et al: Long-term responders on olaparib maintenance in
high-grade serous ovarian cancer: Clinical and molecular
characterization. Clin Cancer Res. 23:4086–4094. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Ledermann J, Harter P, Gourley C,
Friedlander M, Vergote I, Rustin G, Scott CL, Meier W,
Shapira-Frommer R, Safra T, et al: Olaparib maintenance therapy in
patients with platinum-sensitive relapsed serous ovarian cancer: A
preplanned retrospective analysis of outcomes by BRCA status in a
randomised phase 2 trial. Lancet Oncol. 15:852–861. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Mirza MR, Monk BJ, Herrstedt J, Oza AM,
Mahner S, Redondo A, Fabbro M, Ledermann JA, Lorusso D, Vergote I,
et al: Niraparib maintenance therapy in platinum-sensitive,
recurrent ovarian cancer. N Engl J Med. 375:2154–2164. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Lim JSJ and Tan DSP: Understanding
resistance mechanisms and expanding the therapeutic utility of PARP
inhibitors. Cancers (Basel). 9:E1092017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Bouwman P and Jonkers J: Molecular
pathways: How can BRCA-mutated tumors become resistant to PARP
inhibitors? Clin Cancer Res. 20:540–547. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Deriano L and Roth DB: Modernizing the
nonhomologous end-joining repertoire: Alternative and classical
NHEJ share the stage. Annu Rev Genet. 47:433–455. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Choi YE, Meghani K, Brault ME, Leclerc L,
He YJ, Day TA, Elias KM, Drapkin R, Weinstock DM, Dao F, et al:
Platinum and PARP inhibitor resistance due to overexpression of
MicroRNA-622 in BRCA1-mutant ovarian cancer. Cell Rep. 14:429–439.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Lord CJ and Ashworth A: Mechanisms of
resistance to therapies targeting BRCA-mutant cancers. Nat Med.
19:1381–1388. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Jayson GC, Kerbel R, Ellis LM and Harris
AL: Antiangiogenic therapy in oncology: Current status and future
directions. Lancet. 388:518–529. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ferrara N and Kerbel RS: Angiogenesis as a
therapeutic target. Nature. 438:967–974. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Monk BJ, Poveda A, Vergote I, Raspagliesi
F, Fujiwara K, Bae DS, Oaknin A, Ray-Coquard I, Provencher DM,
Karlan BY, et al: Anti-angiopoietin therapy with trebananib for
recurrent ovarian cancer (TRINOVA-1): A randomised, multicentre,
double-blind, placebo-controlled phase 3 trial. Lancet Oncol.
15:799–808. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Bekes I, Friedl TW, Köhler T, Möbus V,
Janni W, Wöckel A and Wulff C: Does VEGF facilitate local tumor
growth and spread into the abdominal cavity by suppressing
endothelial cell adhesion, thus increasing vascular peritoneal
permeability followed by ascites production in ovarian cancer? Mol
Cancer. 15:132016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Graybill W, Sood AK, Monk BJ and Coleman
RL: State of the science: Emerging therapeutic strategies for
targeting angiogenesis in ovarian cancer. Gynecol Oncol.
138:223–226. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Perren TJ, Swart AM, Pfisterer J,
Ledermann JA, Pujade-Lauraine E, Kristensen G, Carey MS, Beale P,
Cervantes A, Kurzeder C, et al: A phase 3 trial of bevacizumab in
ovarian cancer. N Engl J Med. 365:2484–2496. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Moore KN, Di Silvestro P, Lowe ES, Garnett
S and Pujade-Lauraine E: SOLO1 and SOLO2: Randomized phase III
trials of olaparib in patients (pts) with ovarian cancer and a
BRCA1/2 mutation (BRCAm). J Clin Oncol. 32:2014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Aghajanian C, Blank SV, Goff BA, Judson
PL, Teneriello MG, Husain A, Sovak MA, Yi J and Nycum LR: OCEANS: A
randomized, double-blind, placebo-controlled phase III trial of
chemotherapy with or without bevacizumab in patients with
platinum-sensitive recurrent epithelial ovarian, primary
peritoneal, or fallopian tube cancer. J Clin Oncol. 30:2039–2045.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ledermann JA, Embleton AC, Raja F, Perren
TJ, Jayson GC, Rustin GJS, Kaye SB, Hirte H, Eisenhauer E, Vaughan
M, et al: Cediranib in patients with relapsed platinum-sensitive
ovarian cancer (ICON6): A randomised, double-blind,
placebo-controlled phase 3 trial. Lancet. 387:1066–1074. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Bergers G and Hanahan D: Modes of
resistance to anti-angiogenic therapy. Nat Rev Cancer. 8:592–603.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Gourley C, Mccavigan A, Perren T, Paul J,
Michie CO, Churchman M, Williams A, McCluggage WG, Parmar M, Kaplan
RS, et al: Molecular subgroup of high-grade serous ovarian cancer
(HGSOC) as a predictor of outcome following bevacizumab. J Clin
Oncol. 32:55022014. View Article : Google Scholar
|
|
55
|
Galluzzi L, Buque A, Kepp O, Zitvogel L
and Kroemer G: Immunological effects of conventional chemotherapy
and targeted anticancer agents. Cancer Cell. 28:690–714. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
McAlpine JN, Porter H, Köbel M, Nelson BH,
Prentice LM, Kalloger SE, Senz J, Milne K, Ding J, Shah SP, et al:
BRCA1 and BRCA2 mutations correlate with TP53 abnormalities and
presence of immune cell infiltrates in ovarian high-grade serous
carcinoma. Mod Pathol. 25:740–750. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Nolan E, Savas P, Policheni AN, Darcy PK,
Vaillant F, Mintoff CP, Dushyanthen S, Mansour M, Pang JB, Fox SB,
et al: Combined immune checkpoint blockade as a therapeutic
strategy for BRCA1-mutated breast cancer. Sci Transl Med.
9:eaal49222017. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Snyder A, Makarov V, Merghoub T, Yuan J,
Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, et
al: Genetic basis for clinical response to CTLA-4 blockade in
melanoma. N Engl J Med. 371:2189–2199. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Higuchi T, Flies DB, Marjon NA,
Mantia-Smaldone G, Ronner L, Gimotty PA and Adams SF: CTLA-4
blockade synergizes therapeutically with PARP inhibition in
BRCA1-deficient ovarian cancer. Cancer Immunol Res. 3:1257–1268.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Jiao S, Xia W, Yamaguchi H, Wei Y, Chen
MK, Hsu JM, Hsu JL, Yu WH, Du Y, Lee HH, et al: PARP inhibitor
upregulates PD-L1 expression and enhances cancer-associated
immunosuppression. Clin Cancer Res. 23:3711–3720. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Xing D and Orsulic S: A mouse model for
the molecular characterization of brca1-associated ovarian
carcinoma. Cancer Res. 66:8949–8953. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Li A, Sun S, Song T, Li X, Cheng W, Yao R,
Zhang D, Cai Z, Zhang J, Zhai D and Yu C: Targeted therapy and
immunotherapy for platinum-refractory advanced ovarian
adenosquamous carcinoma: A case report. OncoTargets Ther.
11:3705–3711. 2018. View Article : Google Scholar
|
|
63
|
Adams SF, Rixe O, McCance D, Lee H,
Eberhardt S, Westgate S, Rutledge T and Muller C: Phase I study
combining PARP-inhibition with immune checkpoint blockade in women
with BRCA-deficient recurrent ovarian cancer. Gynecol Oncol. 145
Suppl 1:S99–S100. 2017. View Article : Google Scholar
|
|
64
|
Mabuchi S, Terai Y, Morishige K,
Tanabe-Kimura A, Sasaki H, Kanemura M, Tsunetoh S, Tanaka Y, Sakata
M, Burger RA, et al: Maintenance treatment with bevacizumab
prolongs survival in an in vivo ovarian cancer model. Clin Cancer
Res. 14:7781–7789. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Terme M, Pernot S, Marcheteau E, Sandoval
F, Benhamouda N, Colussi O, Dubreuil O, Carpentier AF, Tartour E
and Taieb J: VEGFA-VEGFR pathway blockade inhibits tumor-induced
regulatory T-cell proliferation in colorectal cancer. Cancer Res.
73:539–549. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Huang Y, Chen X, Dikov MM, Novitskiy SV,
Mosse CA, Yang L and Carbone DP: Distinct roles of VEGFR-1 and
VEGFR-2 in the aberrant hematopoiesis associated with elevated
levels of VEGF. Blood. 110:624–631. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Buchbinder EI and Desai A: CTLA-4 and PD-1
pathways: Similarities, differences, and implications of their
inhibition. Am J Clin Oncol. 39:98–106. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Voron T, Colussi O, Marcheteau E, Pernot
S, Nizard M, Pointet AL, Latreche S, Bergaya S, Benhamouda N,
Tanchot C, et al: VEGF-A modulates expression of inhibitory
checkpoints on CD8+ T cells in tumors. J Exp Med. 212:139–148.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Tada Y, Togashi Y, Kotani D, Kuwata T,
Sato E, Kawazoe A, Doi T, Wada H, Nishikawa H and Shitara K:
Targeting VEGFR2 with Ramucirumab strongly impacts
effector/activated regulatory T cells and CD8(+) T cells in the
tumor microenvironment. J Immunother Cancer. 6:1062018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wallin JJ, Bendell JC, Funke R, Sznol M,
Korski K, Jones S, Hernandez G, Mier J, He X, Hodi FS, et al:
Atezolizumab in combination with bevacizumab enhances
antigen-specific T-cell migration in metastatic renal cell
carcinoma. Nat Commun. 7:126242016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Choueiri TK, Figueroa DJ, Fay AP,
Signoretti S, Liu Y, Gagnon R, Deen K, Carpenter C, Benson P, Ho
TH, et al: Correlation of PD-L1 tumor expression and treatment
outcomes in patients with renal cell carcinoma receiving sunitinib
or pazopanib: Results from COMPARZ, a randomized controlled trial.
Clin Cancer Res. 21:1071–1077. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yuan J, Zhou J, Dong Z, Tandon S, Kuk D,
Panageas KS, Wong P, Wu X, Naidoo J, Page DB, et al: Pretreatment
serum VEGF is associated with clinical response and overall
survival in advanced melanoma patients treated with ipilimumab.
Cancer Immunol Res. 2:127–132. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Peske JD, Woods AB and Engelhard VH:
Control of CD8 T-cell infiltration into tumors by vasculature and
microenvironment. Adv Cancer Res. 128:263–307. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wu X, Giobbie-Hurder A, Liao X, Lawrence
D, McDermott D, Zhou J, Rodig S and Hodi FS: VEGF neutralization
plus CTLA-4 blockade alters soluble and cellular factors associated
with enhancing lymphocyte infiltration and humoral recognition in
melanoma. Cancer Immunol Res. 4:858–868. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wu X, Li J, Connolly EM, Liao X, Ouyang J,
Giobbie-Hurder A, Lawrence D, McDermott D, Murphy G, Zhou J, et al:
Combined anti-VEGF and anti-CTLA-4 therapy elicits humoral immunity
to galectin-1 which is associated with favorable clinical outcomes.
Cancer Immunol Res. 5:446–454. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Goede V, Coutelle O, Neuneier J,
Reinacher-Schick A, Schnell R, Koslowsky TC, Weihrauch MR, Cremer
B, Kashkar H, Odenthal M, et al: Identification of serum
angiopoietin-2 as a biomarker for clinical outcome of colorectal
cancer patients treated with bevacizumab-containing therapy. Br J
Cancer. 103:1407–1414. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Wu X, Giobbie-Hurder A, Liao X, Connelly
C, Connolly EM, Li J, Manos MP, Lawrence D, McDermott D, Severgnini
M, et al: Angiopoietin-2 as a biomarker and target for immune
checkpoint therapy. Cancer Immunol Res. 5:17–28. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Lee JM, Cimino-Mathews A, Peer CJ, Zimmer
A, Lipkowitz S, Annunziata CM, Cao L, Harrell MI, Swisher EM,
Houston N, et al: Safety & clinical activity of the programmed
death-ligand 1 inhibitor durvalumab in combination with Poly
(ADP-Ribose) polymerase inhibitor olaparib or vascular endothelial
growth factor Receptor 1–3 Inhibitor Cediranib in Women's Cancers:
A dose-escalation, phase I study. J Clin Oncol. 35:2193–2202. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Hirte H, Lheureux S, Fleming GF, Sugimoto
A, Morgan R, Biagi J, Wang L, McGill S, Ivy SP and Oza AM: A phase
2 study of cediranib in recurrent or persistent ovarian, peritoneal
or fallopian tube cancer: A trial of the Princess Margaret, Chicago
and California Phase II Consortia. Gynecol Oncol. 138:55–61. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Huang J, Wang L, Cong Z, Amoozgar Z, Kiner
E, Xing D, Orsulic S, Matulonis U and Goldberg MS: The PARP1
inhibitor BMN 673 exhibits immunoregulatory effects in a Brca1(−/-)
murine model of ovarian cancer. Biochem Biophys Res Commun.
463:551–556. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Fukuda T, Kamai T, Masuda A, Nukui A, Abe
H, Arai K and Yoshida K: Higher preoperative serum levels of PD-L1
and B7-H4 are associated with invasive and metastatic potential and
predictable for poor response to VEGF-targeted therapy and
unfavorable prognosis of renal cell carcinoma. Cancer Med.
5:1810–1820. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Robert L, Ribas A and Hu-Lieskovan S:
Combining targeted therapy with immunotherapy. Can 1+1 equal more
than 2? Semin Immunol. 28:73–80. 2016.
|