Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
October-2020 Volume 20 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2020 Volume 20 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Functions of mammalian SIRT4 in cellular metabolism and research progress in human cancer (Review)

  • Authors:
    • Changming Wang
    • Yan Liu
    • Yuyan Zhu
    • Chuize Kong
  • View Affiliations / Copyright

    Affiliations: Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China, Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 11
    |
    Published online on: July 15, 2020
       https://doi.org/10.3892/ol.2020.11872
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Sirtuins are mammalian homologs of yeast silent information regulator two (SIRT) and are a highly conserved family of proteins, which act as nicotinamide adenine dinucleotide (NAD+)‑dependent histone deacetylases. The seven sirtuins (SIRT1‑7) share a conserved catalytic core domain; however, they have different enzyme activities, biological functions, and subcellular localizations. Among them, mitochondrial SIRT4 possesses ADP‑ribosyltransferase, NAD+‑dependent deacetylase, lipoamidase, and long‑chain deacylase activities and can modulate the function of substrate proteins via ADP‑ribosylation, delipoylation, deacetylation and long‑chain deacylation. SIRT4 has been shown to play a crucial role in insulin secretion, fatty acid oxidation, amino acid metabolism, ATP homeostasis, apoptosis, neurodegeneration, and cardiovascular diseases. In addition, recent studies have demonstrated that SIRT4 acts as a tumor suppressor. Here, the present review summarizes the enzymatic activities and biological functions of SIRT4, as well as its roles in cellular metabolism and human cancer, which are described in the current literature.
View Figures

Figure 1

View References

1 

Wang Y, He J, Liao M, Hu M, Li W, Ouyang H, Wang X, Ye T, Zhang Y and Ouyang L: An overview of Sirtuins as potential therapeutic target: Structure, function and modulators. Eur J Med Chem. 161:48–77. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Jing H and Lin H: Sirtuins in epigenetic regulation. Chem Rev. 115:2350–2375. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Hirschey MD: Old enzymes, new tricks: Sirtuins are NAD(+)-dependent de-acylases. Cell Metab. 14:718–719. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Klar AJ, Fogel S and Macleod K: MAR1-a Regulator of the HMa and HMalpha Loci in SACCHAROMYCES CEREVISIAE. Genetics. 93:37–50. 1979.PubMed/NCBI

5 

Michan S and Sinclair D: Sirtuins in mammals: Insights into their biological function. Biochem J. 404:1–13. 2007. View Article : Google Scholar : PubMed/NCBI

6 

Frye RA: Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun. 273:793–798. 2000. View Article : Google Scholar : PubMed/NCBI

7 

Li Y, Zhou Y, Wang F, Chen X, Wang C, Wang J, Liu T, Li Y and He B: SIRT4 is the last puzzle of mitochondrial sirtuins. Bioorg Med Chem. 26:3861–3865. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Tanno M, Sakamoto J, Miura T, Shimamoto K and Horio Y: Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem. 282:6823–6832. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Liszt G, Ford E, Kurtev M and Guarente L: Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem. 280:21313–21320. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Kumar S and Lombard DB: Mitochondrial sirtuins and their relationships with metabolic disease and cancer. Antioxid Redox Signal. 22:1060–1077. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Michishita E, Park JY, Burneskis JM, Barrett JC and Horikawa I: Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell. 16:4623–4635. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Mei Z, Zhang X, Yi J, Huang J, He J and Tao Y: Sirtuins in metabolism, DNA repair and cancer. J Exp Clin Cancer Res. 35:1822016. View Article : Google Scholar : PubMed/NCBI

13 

Vaquero A, Scher MB, Lee DH, Sutton A, Cheng HL, Alt FW, Serrano L, Sternglanz R and Reinberg D: SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev. 20:1256–1261. 2006. View Article : Google Scholar : PubMed/NCBI

14 

Jeong SM and Haigis MC: Sirtuins in cancer: A balancing act between genome stability and metabolism. Mol Cells. 38:750–758. 2015. View Article : Google Scholar : PubMed/NCBI

15 

German NJ and Haigis MC: Sirtuins and the metabolic hurdles in cancer. Curr Biol. 25:R569–R583. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Grabowska W, Sikora E and Bielak-Zmijewska A: Sirtuins, a promising target in slowing down the ageing process. Biogerontology. 18:447–476. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Kupis W, Palyga J, Tomal E and Niewiadomska E: The role of sirtuins in cellular homeostasis. J Physiol Biochem. 72:371–380. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Frye RA: Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun. 260:273–279. 1999. View Article : Google Scholar : PubMed/NCBI

19 

North BJ, Marshall BL, Borra MT, Denu JM and Verdin E: The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell. 11:437–444. 2003. View Article : Google Scholar : PubMed/NCBI

20 

Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, Valenzuela DM, Yancopoulos GD, Karow M, Blander G, et al: SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell. 126:941–954. 2006. View Article : Google Scholar : PubMed/NCBI

21 

Kumar S and Lombard DB: For certain, SIRT4 activities! Trends Biochem Sci. 42:499–501. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Shi JX, Wang QJ, Li H and Huang Q: SIRT4 overexpression protects against diabetic nephropathy by inhibiting podocyte apoptosis. Exp Ther Med. 13:342–348. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Kane AE and Sinclair DA: Sirtuins and NAD(+) in the development and treatment of metabolic and cardiovascular diseases. Circ Res. 123:868–885. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, et al: Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 425:191–196. 2003. View Article : Google Scholar : PubMed/NCBI

25 

McGuinness D, McGuinness DH, McCaul JA and Shiels PG: Sirtuins, bioageing, and cancer. J Aging Res. 2011:2357542011. View Article : Google Scholar : PubMed/NCBI

26 

Onyango P, Celic I, McCaffery JM, Boeke JD and Feinberg AP: SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci USA. 99:13653–13658. 2002. View Article : Google Scholar : PubMed/NCBI

27 

Schwer B, North BJ, Frye RA, Ott M and Verdin E: The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol. 158:647–657. 2002. View Article : Google Scholar : PubMed/NCBI

28 

Finnin MS, Donigian JR and Pavletich NP: Structure of the histone deacetylase SIRT2. Nat Struct Biol. 8:621–625. 2001. View Article : Google Scholar : PubMed/NCBI

29 

Bellamacina CR: The nicotinamide dinucleotide binding motif: A comparison of nucleotide binding proteins. FASEB J. 10:1257–1269. 1996. View Article : Google Scholar : PubMed/NCBI

30 

Sanders BD, Jackson B and Marmorstein R: Structural basis for sirtuin function: What we know and what we don't. Biochim Biophys Acta. 1804:1604–1616. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Moniot S, Weyand M and Steegborn C: Structures, substrates, and regulators of Mammalian sirtuins-opportunities and challenges for drug development. Front Pharmacol. 3:162012. View Article : Google Scholar : PubMed/NCBI

32 

Yuan H and Marmorstein R: Structural basis for sirtuin activity and inhibition. J Biol Chem. 287:42428–42435. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Moniot S, Schutkowski M and Steegborn C: Crystal structure analysis of human Sirt2 and its ADP-ribose complex. J Struct Biol. 182:136–143. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Zhou Y, Zhang H, He B, Du J, Lin H, Cerione RA and Hao Q: The bicyclic intermediate structure provides insights into the desuccinylation mechanism of human sirtuin 5 (SIRT5). J Biol Chem. 287:28307–28314. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Jin L, Wei W, Jiang Y, Peng H, Cai J, Mao C, Dai H, Choy W, Bemis JE, Jirousek, et al: Crystal structures of human SIRT3 displaying substrate-induced conformational changes. J Biol Chem. 284:24394–24405. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Ahuja N, Schwer B, Carobbio S, Waltregny D, North BJ, Castronovo V, Maechler P and Verdin E: Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J Biol Chem. 282:33583–33592. 2007. View Article : Google Scholar : PubMed/NCBI

37 

Pannek M, Simic Z, Fuszard M, Meleshin M, Rotili D, Mai A, Schutkowski M and Steegborn C: Crystal structures of the mitochondrial deacylase Sirtuin 4 reveal isoform-specific acyl recognition and regulation features. Nat Commun. 8:15132017. View Article : Google Scholar : PubMed/NCBI

38 

Kato Y, Kihara H, Fukui K and Kojima M: A ternary complex model of Sirtuin4-NAD+-Glutamate dehydrogenase. Comput Biol Chem. 74:94–104. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Madsen AS, Andersen C, Daoud M, Anderson KA, Laursen JS, Chakladar S, Huynh FK, Colaço AR, Backos DS, Fristrup P, et al: Investigating the sensitivity of NAD+-dependent sirtuin deacylation activities to NADH. J Biol Chem. 291:7128–7141. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Feldman JL, Dittenhafer-Reed KE, Kudo N, Thelen JN, Ito A, Yoshida M and Denu JM: Kinetic and structural basis for Acyl-Group Selectivity and NAD(+) Dependence in Sirtuin-Catalyzed Deacylation. Biochemistry. 54:3037–3050. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Gorrini C, Harris IS and Mak TW: Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 12:931–947. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Fernandez-Marcos PJ and Serrano M: Sirt4: The glutamine gatekeeper. Cancer Cell. 23:427–428. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Altman BJ, Stine ZE and Dang CV: From Krebs to clinic: Glutamine metabolism to cancer therapy. Nat Rev Cancer. 16:7492016. View Article : Google Scholar : PubMed/NCBI

44 

Argmann C and Auwerx J: Insulin secretion: SIRT4 gets in on the act. Cell. 126:837–839. 2006. View Article : Google Scholar : PubMed/NCBI

45 

Lang J: Molecular mechanisms and regulation of insulin exocytosis as a paradigm of endocrine secretion. Eur J Biochem. 259:3–17. 1999. View Article : Google Scholar : PubMed/NCBI

46 

Ashcroft FM, Proks P, Smith PA, Ammala C, Bokvist K and Rorsman P: Stimulus-secretion coupling in pancreatic beta cells. J Cell Biochem. 55 (Suppl):S54–S65. 1994. View Article : Google Scholar

47 

Glozak MA, Sengupta N, Zhang X and Seto E: Acetylation and deacetylation of non-histone proteins. Gene. 363:15–23. 2005. View Article : Google Scholar : PubMed/NCBI

48 

Sauve AA, Wolberger C, Schramm VL and Boeke JD: The biochemistry of sirtuins. Annu Rev Biochem. 75:435–465. 2006. View Article : Google Scholar : PubMed/NCBI

49 

Feldman JL, Baeza J and Denu JM: Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J Biol Chem. 288:31350–31356. 2013. View Article : Google Scholar : PubMed/NCBI

50 

Nasrin N, Wu X, Fortier E, Feng Y, Bare' OC, Chen S, Ren X, Wu Z, Streeper RS and Bordone L: SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. J Biol Chem. 285:31995–32002. 2010. View Article : Google Scholar : PubMed/NCBI

51 

Hardie DG: Sensing of energy and nutrients by AMP-activated protein kinase. Am J Clin Nutr. 93:891S–896. 2011. View Article : Google Scholar : PubMed/NCBI

52 

Laurent G, German NJ, Saha AK, de Boer VC, Davies M, Koves TR, Dephoure N, Fischer F, Boanca G, Vaitheesvaran B, et al: SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol Cell. 50:686–698. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Saggerson D: Malonyl-CoA, a key signaling molecule in mammalian cells. Annu Rev Nutr. 28:253–272. 2008. View Article : Google Scholar : PubMed/NCBI

54 

Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B and Wahli W: Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest. 103:1489–1498. 1999. View Article : Google Scholar : PubMed/NCBI

55 

Laurent G, de Boer VC, Finley LW, Sweeney M, Lu H, Schug TT, Cen Y, Jeong SM, Li X, Sauve AA and Haigis MC: SIRT4 represses peroxisome proliferator-activated receptor α activity to suppress hepatic fat oxidation. Mol Cell Biol. 33:4552–4561. 2013. View Article : Google Scholar : PubMed/NCBI

56 

Ibdah JA, Paul H, Zhao Y, Binford S, Salleng K, Cline M, Matern D, Bennett MJ, Rinaldo P and Strauss AW: Lack of mitochondrial trifunctional protein in mice causes neonatal hypoglycemia and sudden death. J Clin Invest. 107:1403–1409. 2001. View Article : Google Scholar : PubMed/NCBI

57 

Guo L, Zhou SR, Wei XB, Liu Y, Chang XX, Liu Y, Ge X, Dou X, Huang HY, Qian SW, et al: Acetylation of mitochondrial trifunctional protein α-subunit enhances its stability to promote fatty acid oxidation and is decreased in nonalcoholic fatty liver disease. Mol Cell Biol. 36:2553–2567. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Zhou ZH, McCarthy DB, O'Connor CM, Reed LJ and Stoops JK: The remarkable structural and functional organization of the eukaryotic pyruvate dehydrogenase complexes. Proc Natl Acad Sci USA. 98:14802–14807. 2001. View Article : Google Scholar : PubMed/NCBI

59 

Mathias RA, Greco TM, Oberstein A, Budayeva HG, Chakrabarti R, Rowland EA, Kang Y, Shenk T and Cristea IM: Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell. 159:1615–1625. 2014. View Article : Google Scholar : PubMed/NCBI

60 

MacDonald MJ, Fahien LA, Brown LJ, Hasan NM, Buss JD and Kendrick MA: Perspective: Emerging evidence for signaling roles of mitochondrial anaplerotic products in insulin secretion. Am J Physiol Endocrinol Metab. 288:E1–E15. 2005. View Article : Google Scholar : PubMed/NCBI

61 

Sener A and Malaisse WJ: L-leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase. Nature. 288:187–189. 1980. View Article : Google Scholar : PubMed/NCBI

62 

Anderson KA, Huynh FK, Fisher-Wellman K, Stuart JD, Peterson BS, Douros JD, Wagner GR, Thompson JW, Madsen AS, Green MF, et al: SIRT4 is a lysine deacylase that controls leucine metabolism and insulin secretion. Cell Metab. 25:838–855 e15. 2017. View Article : Google Scholar : PubMed/NCBI

63 

Huynh FK, Hu X, Lin Z, Johnson JD and Hirschey MD: Loss of sirtuin 4 leads to elevated glucose- and leucine-stimulated insulin levels and accelerated age-induced insulin resistance in multiple murine genetic backgrounds. J Inherit Metab Dis. 41:59–72. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Zaganjor E, Vyas S and Haigis MC: SIRT4 is a regulator of insulin secretion. Cell Chem Biol. 24:656–658. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Klingenberg M: The ADP and ATP transport in mitochondria and its carrier. Biochim Biophys Acta. 1778:1978–2021. 2008. View Article : Google Scholar : PubMed/NCBI

66 

Ho L, Titus AS, Banerjee KK, George S, Lin W, Deota S, Saha AK, Nakamura K, Gut P, Verdin E and Kolthur-Seetharam U: SIRT4 regulates ATP homeostasis and mediates a retrograde signaling via AMPK. Aging (Albany NY). 5:835–849. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Warburg O, Wind F and Negelein E: The metabolism of tumors in the body. J Gen Physiol. 8:519–530. 1927. View Article : Google Scholar : PubMed/NCBI

68 

Vander Heiden MG, Lunt SY, Dayton TL, Fiske BP, Israelsen WJ, Mattaini KR, Vokes NI, Stephanopoulos G, Cantley LC, Metallo CM and Locasale JW: Metabolic pathway alterations that support cell proliferation. Cold Spring Harb Symp Quant Biol. 76:325–334. 2011. View Article : Google Scholar

69 

Fuchs BC and Bode BP: Stressing out over survival: Glutamine as an apoptotic modulator. J Surg Res. 131:26–40. 2006. View Article : Google Scholar : PubMed/NCBI

70 

Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB and Thompson CB: Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA. 105:18782–18787. 2008. View Article : Google Scholar : PubMed/NCBI

71 

DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S and Thompson CB: Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA. 104:19345–19350. 2007. View Article : Google Scholar : PubMed/NCBI

72 

Daye D and Wellen KE: Metabolic reprogramming in cancer: Unraveling the role of glutamine in tumorigenesis. Semin Cell Dev Biol. 23:362–369. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Lukey MJ, Wilson KF and Cerione RA: Therapeutic strategies impacting cancer cell glutamine metabolism. Future Med Chem. 5:1685–1700. 2013. View Article : Google Scholar : PubMed/NCBI

74 

Yuan H, Su L and Chen WY: The emerging and diverse roles of sirtuins in cancer: A clinical perspective. Onco Targets Ther. 6:1399–1416. 2013.PubMed/NCBI

75 

Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M, van de Rijn M, Rosen GD, Perou CM, Whyte RI, et al: Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA. 98:13784–13789. 2001. View Article : Google Scholar : PubMed/NCBI

76 

Blaveri E, Simko JP, Korkola JE, Brewer JL, Baehner F, Mehta K, Devries S, Koppie T, Pejavar S, Carroll P and Waldman FM: Bladder cancer outcome and subtype classification by gene expression. Clin Cancer Res. 11:4044–4055. 2005. View Article : Google Scholar : PubMed/NCBI

77 

Choi YL, Tsukasaki K, O'Neill MC, Yamada Y, Onimaru Y, Matsumoto K, Ohashi J, Yamashita Y, Tsutsumi S, Kaneda R, et al: A genomic analysis of adult T-cell leukemia. Oncogene. 26:1245–1255. 2007. View Article : Google Scholar : PubMed/NCBI

78 

Jeong SM, Xiao C, Finley LW, Lahusen T, Souza AL, Pierce K, Li YH, Wang X, Laurent G, German NJ, et al: SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell. 23:450–463. 2013. View Article : Google Scholar : PubMed/NCBI

79 

Mahjabeen I and Kayani MA: Loss of mitochondrial tumor suppressor genes expression is associated with unfavorable clinical outcome in head and neck squamous cell carcinoma: Data from retrospective study. PLoS One. 11:e01469482016. View Article : Google Scholar : PubMed/NCBI

80 

Wang YS, Du L, Liang X, Meng P, Bi L, Wang YL, Wang C and Tang B: Sirtuin 4 depletion promotes hepatocellular carcinoma tumorigenesis through regulating adenosine-monophosphate-activated protein kinase alpha/mammalian target of rapamycin axis in mice. Hepatology. 69:1614–1631. 2019. View Article : Google Scholar : PubMed/NCBI

81 

Fu L, Dong Q, He J, Wang X, Xing J, Wang E, Qiu X and Li Q: SIRT4 inhibits malignancy progression of NSCLCs, through mitochondrial dynamics mediated by the ERK-Drp1 pathway. Oncogene. 36:2724–2736. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Chen X, Lai X, Wu C, Tian Q, Lei T, Pan J and Huang G: Decreased SIRT4 protein levels in endometrioid adenocarcinoma tissues are associated with advanced AJCC stage. Cancer Biomark. 19:419–424. 2017. View Article : Google Scholar : PubMed/NCBI

83 

Wang Y, Guo Y, Gao J and Yuan X: Tumor-suppressive function of SIRT4 in neuroblastoma through mitochondrial damage. Cancer Manag Res. 10:5591–5603. 2018. View Article : Google Scholar : PubMed/NCBI

84 

Sun H, Huang D, Liu G, Jian F, Zhu J and Zhang L: SIRT4 acts as a tumor suppressor in gastric cancer by inhibiting cell proliferation, migration, and invasion. Onco Targets Ther. 11:3959–3968. 2018. View Article : Google Scholar : PubMed/NCBI

85 

Huang G, Cui F, Yu F, Lu H, Zhang M, Tang H and Peng Z: Sirtuin-4 (SIRT4) is downregulated and associated with some clinicopathological features in gastric adenocarcinoma. Biomed Pharmacother. 72:135–139. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Shen X, Li P, Xu Y, Chen X, Sun H, Zhao Y, Liu M and Zhang W: Association of sirtuins with clinicopathological parameters and overall survival in gastric cancer. Oncotarget. 8:74359–74370. 2017. View Article : Google Scholar : PubMed/NCBI

87 

Hu Y, Lin J, Lin Y, Chen X, Zhu G and Huang G: Overexpression of SIRT4 inhibits the proliferation of gastric cancer cells through cell cycle arrest. Oncol Lett. 17:2171–2176. 2019.PubMed/NCBI

88 

Miyo M, Yamamoto H, Konno M, Colvin H, Nishida N, Koseki J, Kawamoto K, Ogawa H, Hamabe A, Uemura M, et al: Tumour-suppressive function of SIRT4 in human colorectal cancer. Br J Cancer. 113:492–499. 2015. View Article : Google Scholar : PubMed/NCBI

89 

Huang G, Cheng J, Yu F, Liu X, Yuan C, Liu C, Chen X and Peng Z: Clinical and therapeutic significance of sirtuin-4 expression in colorectal cancer. Oncol Rep. 35:2801–2810. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Zhu Y, Wang G, Li X, Wang T, Weng M and Zhang Y: Knockout of SIRT4 decreases chemosensitivity to 5-FU in colorectal cancer cells. Oncol Lett. 16:1675–1681. 2018.PubMed/NCBI

91 

Shi Q, Liu T, Zhang X, Geng J, He X, Nu M and Pang D: Decreased sirtuin 4 expression is associated with poor prognosis in patients with invasive breast cancer. Oncol Lett. 12:2606–2612. 2016. View Article : Google Scholar : PubMed/NCBI

92 

Nakahara Y, Yamasaki M, Sawada G, Miyazaki Y, Makino T, Takahashi T, Kurokawa Y, Nakajima K, Takiguchi S, Mimori K, et al: Downregulation of SIRT4 expression is associated with poor prognosis in esophageal squamous cell carcinoma. Oncology. 90:347–355. 2016. View Article : Google Scholar : PubMed/NCBI

93 

Jeong SM, Lee A, Lee J and Haigis MC: SIRT4 protein suppresses tumor formation in genetic models of Myc-induced B cell lymphoma. J Biol Chem. 289:4135–4144. 2014. View Article : Google Scholar : PubMed/NCBI

94 

Chen Z, Lin J, Feng S, Chen X, Huang H, Wang C, Yu Y, He Y, Han S, Zheng L and Huang G: SIRT4 inhibits the proliferation, migration, and invasion abilities of thyroid cancer cells by inhibiting glutamine metabolism. Onco Targets Ther. 12:2397–2408. 2019. View Article : Google Scholar : PubMed/NCBI

95 

Hu Q, Qin Y, Ji S, Xu W, Liu W, Sun Q, Zhang Z, Liu M, Ni Q, Yu X and Xu X: UHRF1 promotes aerobic glycolysis and proliferation via suppression of SIRT4 in pancreatic cancer. Cancer Lett. 452:226–236. 2019. View Article : Google Scholar : PubMed/NCBI

96 

Negrini S, Gorgoulis VG and Halazonetis TD: Genomic instability-an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 11:220–228. 2010. View Article : Google Scholar : PubMed/NCBI

97 

Colombo SL, Palacios-Callender M, Frakich N, Carcamo S, Kovacs I, Tudzarova S and Moncada S: Molecular basis for the differential use of glucose and glutamine in cell proliferation as revealed by synchronized HeLa cells. Proc Natl Acad Sci USA. 108:21069–21074. 2011. View Article : Google Scholar : PubMed/NCBI

98 

Wang L, Zhou H, Wang Y, Cui G and Di LJ: CtBP maintains cancer cell growth and metabolic homeostasis via regulating SIRT4. Cell Death Dis. 6:e16202015. View Article : Google Scholar : PubMed/NCBI

99 

Wang L, Li JJ, Guo LY, Li P, Zhao Z, Zhou H and Di LJ: Molecular link between glucose and glutamine consumption in cancer cells mediated by CtBP and SIRT4. Oncogenesis. 7:262018. View Article : Google Scholar : PubMed/NCBI

100 

Csibi A, Fendt SM, Li C, Poulogiannis G, Choo AY, Chapski DJ, Jeong SM, Dempsey JM, Parkhitko A, Morrison T, et al: The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell. 153:840–854. 2013. View Article : Google Scholar : PubMed/NCBI

101 

van de Ven RAH, Santos D and Haigis MC: Mitochondrial Sirtuins and molecular mechanisms of aging. Trends Mol Med. 23:320–331. 2017. View Article : Google Scholar

102 

Xing J, Li J, Fu L, Gai J, Guan J and Li Q: SIRT4 enhances the sensitivity of ER-positive breast cancer to tamoxifen by inhibiting the IL-6/STAT3 signal pathway. Cancer Med. 8:7086–7097. 2019. View Article : Google Scholar : PubMed/NCBI

103 

Jeong SM, Hwang S and Seong RH: SIRT4 regulates cancer cell survival and growth after stress. Biochem Biophys Res Commun. 470:251–256. 2016. View Article : Google Scholar : PubMed/NCBI

104 

Liu M, Wang Z, Ren M, Yang X, Liu B, Qi H, Yu M, Song S, Chen S, Liu L, et al: SIRT4 regulates PTEN stability through IDE in response to cellular stresses. FASEB J. 33:5535–5547. 2019. View Article : Google Scholar : PubMed/NCBI

105 

Lee JO, Yang H, Georgescu MM, Di Cristofano A, Maehama T, Shi Y, Dixon JE, Pandolfi P and Pavletich NP: Crystal structure of the PTEN tumor suppressor: Implications for its phosphoinositide phosphatase activity and membrane association. Cell. 99:323–334. 1999. View Article : Google Scholar : PubMed/NCBI

106 

Georgescu MM, Kirsch KH, Kaloudis P, Yang H, Pavletich NP and Hanafusa H: Stabilization and productive positioning roles of the C2 domain of PTEN tumor suppressor. Cancer Res. 60:7033–7038. 2000.PubMed/NCBI

107 

Mizushima N and Klionsky DJ: Protein turnover via autophagy: Implications for metabolism. Annu Rev Nutr. 27:19–40. 2007. View Article : Google Scholar : PubMed/NCBI

108 

Luo YX, Tang X, An XZ, Xie XM, Chen XF, Zhao X, Hao DL, Chen HZ and Liu DP: SIRT4 accelerates Ang II-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity. Eur Heart J. 38:1389–1398. 2017.PubMed/NCBI

109 

Xiao Y, Zhang X, Fan S, Cui G and Shen Z: MicroRNA-497 inhibits cardiac hypertrophy by targeting Sirt4. PLoS One. 11:e01680782016. View Article : Google Scholar : PubMed/NCBI

110 

Zeng G, Liu H and Wang H: Amelioration of myocardial ischemia-reperfusion injury by SIRT4 involves mitochondrial protection and reduced apoptosis. Biochem Biophys Res Commun. 502:15–21. 2018. View Article : Google Scholar : PubMed/NCBI

111 

Shih J, Liu L, Mason A, Higashimori H and Donmez G: Loss of SIRT4 decreases GLT-1-dependent glutamate uptake and increases sensitivity to kainic acid. J Neurochem. 131:573–581. 2014. View Article : Google Scholar : PubMed/NCBI

112 

Komlos D, Mann KD, Zhuo Y, Ricupero CL, Hart RP, Liu AY and Firestein BL: Glutamate dehydrogenase 1 and SIRT4 regulate glial development. Glia. 61:394–408. 2013. View Article : Google Scholar : PubMed/NCBI

113 

Ramatchandirin B, Sadasivam M, Kannan A and Prahalathan C: Sirtuin 4 regulates lipopolysaccharide mediated leydig cell dysfunction. J Cell Biochem. 117:904–916. 2016. View Article : Google Scholar : PubMed/NCBI

114 

Zeng J, Jiang M, Wu X, Diao F, Qiu D, Hou X, Wang H, Li L, Li C, Ge J, et al: SIRT4 is essential for metabolic control and meiotic structure during mouse oocyte maturation. Aging Cell. 17:e127892018. View Article : Google Scholar : PubMed/NCBI

115 

Nunnari J and Suomalainen A: Mitochondria: In sickness and in health. Cell. 148:1145–1159. 2012. View Article : Google Scholar : PubMed/NCBI

116 

Han Y, Zhou S, Coetzee S and Chen A: SIRT4 and its roles in energy and redox metabolism in health, disease and during exercise. Front Physiol. 10:10062019. View Article : Google Scholar : PubMed/NCBI

117 

Min Z, Gao J and Yu Y: The roles of mitochondrial SIRT4 in cellular metabolism. Front Endocrinol (Lausanne). 9:7832019. View Article : Google Scholar : PubMed/NCBI

118 

Li S and Zheng W: Mammalian Sirtuins SIRT4 and SIRT7. Prog Mol Biol Transl Sci. 154:147–168. 2018. View Article : Google Scholar : PubMed/NCBI

119 

Song R, Xu W, Chen Y, Li Z, Zeng Y and Fu Y: The expression of Sirtuins 1 and 4 in peripheral blood leukocytes from patients with type 2 diabetes. Eur J Histochem. 55:e102011. View Article : Google Scholar : PubMed/NCBI

120 

Kim EA, Yang SJ, Choi SY, Lee WJ and Cho SW: Inhibition of glutamate dehydrogenase and insulin secretion by KHG26377 does not involve ADP-ribosylation by SIRT4 or deacetylation by SIRT3. BMB Rep. 45:458–463. 2012. View Article : Google Scholar : PubMed/NCBI

121 

Lappas M: Anti-inflammatory properties of sirtuin 6 in human umbilical vein endothelial cells. Mediators Inflamm. 2012:5975142012. View Article : Google Scholar : PubMed/NCBI

122 

Sebastian C, Satterstrom FK, Haigis MC and Mostoslavsky R: From sirtuin biology to human diseases: An update. J Biol Chem. 287:42444–42452. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang C, Liu Y, Zhu Y and Kong C: Functions of mammalian SIRT4 in cellular metabolism and research progress in human cancer (Review). Oncol Lett 20: 11, 2020.
APA
Wang, C., Liu, Y., Zhu, Y., & Kong, C. (2020). Functions of mammalian SIRT4 in cellular metabolism and research progress in human cancer (Review). Oncology Letters, 20, 11. https://doi.org/10.3892/ol.2020.11872
MLA
Wang, C., Liu, Y., Zhu, Y., Kong, C."Functions of mammalian SIRT4 in cellular metabolism and research progress in human cancer (Review)". Oncology Letters 20.4 (2020): 11.
Chicago
Wang, C., Liu, Y., Zhu, Y., Kong, C."Functions of mammalian SIRT4 in cellular metabolism and research progress in human cancer (Review)". Oncology Letters 20, no. 4 (2020): 11. https://doi.org/10.3892/ol.2020.11872
Copy and paste a formatted citation
x
Spandidos Publications style
Wang C, Liu Y, Zhu Y and Kong C: Functions of mammalian SIRT4 in cellular metabolism and research progress in human cancer (Review). Oncol Lett 20: 11, 2020.
APA
Wang, C., Liu, Y., Zhu, Y., & Kong, C. (2020). Functions of mammalian SIRT4 in cellular metabolism and research progress in human cancer (Review). Oncology Letters, 20, 11. https://doi.org/10.3892/ol.2020.11872
MLA
Wang, C., Liu, Y., Zhu, Y., Kong, C."Functions of mammalian SIRT4 in cellular metabolism and research progress in human cancer (Review)". Oncology Letters 20.4 (2020): 11.
Chicago
Wang, C., Liu, Y., Zhu, Y., Kong, C."Functions of mammalian SIRT4 in cellular metabolism and research progress in human cancer (Review)". Oncology Letters 20, no. 4 (2020): 11. https://doi.org/10.3892/ol.2020.11872
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team