Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
October-2020 Volume 20 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2020 Volume 20 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Eukaryotic translation initiation factor 5A in the pathogenesis of cancers (Review)

  • Authors:
    • Liang Ning
    • Lei Wang
    • Honglai Zhang
    • Xuelong Jiao
    • Dong Chen
  • View Affiliations / Copyright

    Affiliations: Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China, Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
    Copyright: © Ning et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 81
    |
    Published online on: August 3, 2020
       https://doi.org/10.3892/ol.2020.11942
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer is the leading cause of death worldwide. The absence of obvious symptoms and insufficiently sensitive biomarkers in early stages of carcinoma limits early diagnosis. Cancer therapy agents and targeted therapy have been used extensively against tissues or organs of specific cancers. However, the intrinsic and/or acquired resistance to the agents or targeted drugs as well as the serious toxic side effects of the drugs would limit their use. Therefore, identifying biomarkers involved in tumorigenesis and progression represents a challenge for cancer diagnosis and therapeutic strategy development. The eukaryotic translation factor 5A (eIF5A), originally identified as an initiation factor, was later shown to promote translation elongation of iterated proline sequences. There are two eIF5A isoforms (eIF5A1 and eIF5A2). eIF5A2 protein consists of 153 residues, and shares 84% amino acid identity with eIF5A1. However, the biological functions of these two isoforms may be significantly different. Recently, it was demonstrated that eIF5Ais widely involved in the pathogenesis of a number of diseases, including cancers. In particular, eIF5A plays an important role in regulating tumor growth, invasion, metastasis and tumor microenvironment. It was also shown to serve as a potential biomarker and target for the diagnosis and treatment of cancers. The present review briefly discusses the latest findings of eIF5A in the pathogenesis of certain malignant cancers and evolving clinical applications.
View Figures
View References

1 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Altorki NK, Markowitz GJ, Gao D, Port JL, Saxena A, Stiles B, McGraw T and Mittal V: The lung microenvironment: An important regulator of tumour growth and metastasis. Nat Rev Cancer. 19:9–31. 2019. View Article : Google Scholar : PubMed/NCBI

4 

Rawla P, Sunkara T and Gaduputi V: Epidemiology of pancreatic cancer: Global trends, etiology and risk factors. World J Oncol. 10:10–27. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Vaidyanathan R, Soon RH, Zhang P, Jiang K and Lim CT: Cancer diagnosis: From tumor to liquid biopsy and beyond. Lab Chip. 19:11–34. 2018.PubMed/NCBI

6 

Vadlapatla RK, Vadlapudi AD, Pal D and Mitra AK: Mechanisms of drug resistance in cancer chemotherapy: Coordinated role and regulation of efflux transporters and metabolizing enzymes. Curr Pharm Des. 19:7126–7140. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Dever TE, Gutierrez E and Shin BS: The hypusine-containing translation factor eIF5A. Crit Rev Biochem Mol Biol. 49:413–425. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Park MH and Wolff EC: Hypusine, a polyamine-derived amino acid critical for eukaryotic translation. J Biol Chem. 293:18710–18718. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Igarashi K and Kashiwagi K: The functional role of polyamines in eukaryotic cells. Int J Biochem Cell Biol. 107:104–115. 2019. View Article : Google Scholar : PubMed/NCBI

10 

Turpaev KT: Translation factor eIF5A, modification with hypusine and role in regulation of gene expression. eIF5A as a target for pharmacological interventions. Biochemistry (Mosc). 83:863–873. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Jenkins ZA, Hååg PG and Johansson HE: Human eIF5A2 on chromosome 3q25-q27 is a phylogenetically conserved vertebrate variant of eukaryotic translation initiation factor 5A with tissue-specific expression. Genomics. 71:101–109. 2001. View Article : Google Scholar : PubMed/NCBI

12 

Wu GQ, Xu YM and Lau ATY: Recent insights into eukaryotic translation initiation factors 5A1 and 5A2 and their roles in human health and disease. Cancer Cell Int. 20:1422020. View Article : Google Scholar : PubMed/NCBI

13 

Mathews MB and Hershey JW: The translation factor eIF5A and human cancer. Biochim Biophys Acta. 1849:836–844. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Caraglia M, Park MH, Wolff EC, Marra M and Abbruzzese A: eIF5A isoforms and cancer: Two brothers for two functions? Amino Acids. 44:103–109. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Cao TT, Lin SH, Fu L, Tang Z, Che CM, Zhang LY, Ming XY, Liu TF, Tang XM, Tan BB, et al: Eukaryotic translation initiation factor 5A2 promotes metabolic reprogramming in hepatocellular carcinoma cells. Carcinogenesis. 38:94–104. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Zhang H, Alsaleh G, Feltham J, Sun Y, Napolitano G, Riffelmacher T, Charles P, Frau L, Hublitz P, Yu Z, et al: Polyamines control eIF5A hypusination, TFEB translation, and autophagy to reverse B cell senescence. Mol Cell. 76:110–125.e9. 2019. View Article : Google Scholar : PubMed/NCBI

17 

Lubas M, Harder LM, Kumsta C, Tiessen I, Hansen M, Andersen JS, Lund AH and Frankel LB: eIF5A is required for autophagy by mediating ATG3 translation. EMBO Rep. 19:209–214. 2018. View Article : Google Scholar

18 

Puleston DJ, Buck MD, Klein Geltink RI, Kyle RL, Caputa G, O'Sullivan D, Cameron AM, Castoldi A, Musa Y, Kabat AM, et al: Polyamines and eIF5A hypusination modulate mitochondrial respiration and macrophage activation. Cell Metab. 30:352–363.e8. 2019. View Article : Google Scholar : PubMed/NCBI

19 

Maier B, Ogihara T, Trace AP, Tersey SA, Robbins RD, Chakrabarti SK, Nunemaker CS, Stull ND, Taylor CA, Thompson JE, et al: The unique hypusine modification of eIF5A promotes islet beta cell inflammation and dysfunction in mice. J Clin Invest. 120:2156–2170. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Li Y, Fu L, Li JB, Qin Y, Zeng TT, Zhou J, Zeng ZL, Chen J, Cao TT, Ban X, et al: Increased expression of EIF5A2, via hypoxia or gene amplification, contributes to metastasis and angiogenesis of esophageal squamous cell carcinoma. Gastroenterology. 146:1701–13.e9. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Preukschas M, Hagel C, Schulte A, Weber K, Lamszus K, Sievert H, Pällmann N, Bokemeyer C, Hauber J, Braig M, et al: Expression of eukaryotic initiation factor 5A and hypusine forming enzymes in glioblastoma patient samples: Implications for new targeted therapies. PLoS One. 7:e434682012. View Article : Google Scholar : PubMed/NCBI

22 

Sievert H, Pällmann N, Miller KK, Hermans-Borgmeyer I, Venz S, Sendoel A, Preukschas M, Schweizer M, Boettcher S, Janiesch PC, et al: A novel mouse model for inhibition of DOHH-mediated hypusine modification reveals a crucial function in embryonic development, proliferation and oncogenic transformation. Dis Model Mech. 7:963–976. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Mémin E, Hoque M, Jain MR, Heller DS, Li H, Cracchiolo B, Hanauske-Abel HM, Pe'ery T and Mathews MB: Blocking eIF5A modification in cervical cancer cells alters the expression of cancer-related genes and suppresses cell proliferation. Cancer Res. 74:552–562. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, et al European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group, : Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI

25 

Omuro A and DeAngelis LM: Glioblastoma and other malignant gliomas: A clinical review. JAMA. 310:1842–1850. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Dolecek TA, Propp JM, Stroup NE and Kruchko C: CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol. 14 (Suppl 5):v1–v49. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Djuric U, Lam KHB, Kao J, Batruch I, Jevtic S, Papaioannou MD and Diamandis P: Defining protein pattern differences among molecular subtypes of diffuse gliomas using mass spectrometry. Mol Cell Proteomics. 18:2029–2043. 2019. View Article : Google Scholar : PubMed/NCBI

28 

Hallal S, Ebrahimkhani S, Shivalingam B, Graeber MB, Kaufman KL and Buckland ME: The emerging clinical potential of circulating extracellular vesicles for non-invasive glioma diagnosis and disease monitoring. Brain Tumor Pathol. 36:29–39. 2019.PubMed/NCBI

29 

Kim JE, Patel MA, Mangraviti A, Kim ES, Theodros D, Velarde E, Liu A, Sankey EW, Tam A, Xu H, et al: Combination therapy with anti-PD-1, anti-TIM-3, and focal radiation results in regression of murine gliomas. Clin Cancer Res. 23:124–136. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Park AK, Kim P, Ballester LY, Esquenazi Y and Zhao Z: Subtype-specific signaling pathways and genomic aberrations associated with prognosis of glioblastoma. Neuro Oncol. 21:59–70. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Cheng P, Wang J, Waghmare I, Sartini S, Coviello V, Zhang Z, Kim SH, Mohyeldin A, Pavlyukov MS, Minata M, et al: FOXD1-ALDH1A3 signaling is a determinant for the self-renewal and tumorigenicity of mesenchymal glioma stem cells. Cancer Res. 76:7219–7230. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Gao YF, Liu JY, Mao XY, He ZW, Zhu T, Wang ZB, Li X, Yin JY, Zhang W, Zhou HH, et al: LncRNA FOXD1-AS1 acts as a potential oncogenic biomarker in glioma. CNS Neurosci Ther. 26:66–75. 2020. View Article : Google Scholar : PubMed/NCBI

33 

Nakagawara A, Li Y, Izumi H, Muramori K, Inada H and Nishi M: Neuroblastoma. Jpn J Clin Oncol. 48:214–241. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Whittle SB, Smith V, Doherty E, Zhao S, McCarty S and Zage PE: Overview and recent advances in the treatment of neuroblastoma. Expert Rev Anticancer Ther. 17:369–386. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Park JR, Bagatell R, London WB, Maris JM, Cohn SL, Mattay KK and Hogarty M; COG Neuroblastoma Committee, : Children's Oncology Group's 2013 blueprint for research: Neuroblastoma. Pediatr Blood Cancer. 60:985–993. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX, Smith M, Anderson B, Villablanca JG, Matthay KK, et al Children's Oncology Group, : Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med. 363:1324–1334. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Bandino A, Geerts D, Koster J and Bachmann AS: Deoxyhypusine synthase (DHPS) inhibitor GC7 induces p21/Rb-mediated inhibition of tumor cell growth and DHPS expression correlates with poor prognosis in neuroblastoma patients. Cell Oncol (Dordr). 37:387–398. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Schultz CR, Geerts D, Mooney M, El-Khawaja R, Koster J and Bachmann AS: Synergistic drug combination GC7/DFMO suppresses hypusine/spermidine-dependent eIF5A activation and induces apoptotic cell death in neuroblastoma. Biochem J. 475:531–545. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Sakaguchi T, Valente R, Tanaka K, Satoi S and Del Chiaro M: Surgical treatment of metastatic pancreatic ductal adenocarcinoma: A review of current literature. Pancreatology. 19:672–680. 2019. View Article : Google Scholar : PubMed/NCBI

40 

Mangge H, Niedrist T, Renner W, Lyer S, Alexiou C and Haybaeck J: New diagnostic and therapeutic aspects of pancreatic ductal adenocarcinoma. Curr Med Chem. 24:3012–3024. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Fujimura K, Wang H, Watson F and Klemke RL: KRAS Oncoprotein expression is regulated by a self-governing eIF5A-PEAK1 feed-forward regulatory loop. Cancer Res. 78:1444–1456. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Strnadel J, Choi S, Fujimura K, Wang H, Zhang W, Wyse M, Wright T, Gross E, Peinado C, Park HW, et al: eIF5A-PEAK1 signaling regulates YAP1/TAZ protein expression and pancreatic cancer cell growth. Cancer Res. 77:1997–2007. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Amrutkar M and Gladhaug IP: Pancreatic cancer chemoresistance to gemcitabine. Cancers (Basel). 9:1572017. View Article : Google Scholar

44 

Wang Z, Jiang J, Qin T, Xiao Y and Han L: EIF5A regulates proliferation and chemoresistance in pancreatic cancer through the sHH signalling pathway. J Cell Mol Med. 23:2678–2688. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Yao M, Hong Y, Liu Y, Chen W and Wang W: GC7 enhances the sensitivity of pancreatic ductal adenocarcinoma cells to gemcitabine via the inhibition of eukaryotic translation initiation factor 5A2. Exp Ther Med. 14:2101–2107. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Xie Y and Hepatitis B: Hepatitis B virus-associated hepatocellular carcinoma. Adv Exp Med Biol. 1018:11–21. 2017. View Article : Google Scholar : PubMed/NCBI

47 

El-Serag HB: Hepatocellular carcinoma. N Engl J Med. 365:1118–1127. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Lee NP, Tsang FH, Shek FH, Mao M, Dai H, Zhang C, Dong S, Guan XY, Poon RT and Luk JM: Prognostic significance and therapeutic potential of eukaryotic translation initiation factor 5A (eIF5A) in hepatocellular carcinoma. Int J Cancer. 127:968–976. 2010.PubMed/NCBI

49 

Tang DJ, Dong SS, Ma NF, Xie D, Chen L, Fu L, Lau SH, Li Y, Li Y and Guan XY: Overexpression of eukaryotic initiation factor 5A2 enhances cell motility and promotes tumor metastasis in hepatocellular carcinoma. Hepatology. 51:1255–1263. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Liu RR, Lv YS, Tang YX, Wang YF, Chen XL, Zheng XX, Xie SZ, Cai Y, Yu J and Zhang XN: Eukaryotic translation initiation factor 5A2 regulates the migration and invasion of hepatocellular carcinoma cells via pathways involving reactive oxygen species. Oncotarget. 7:24348–24360. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Shek FH, Fatima S and Lee NP: Implications of the use of eukaryotic translation initiation factor 5A (eIF5A) for prognosis and treatment of hepatocellular carcinoma. Int J Hepatol. 2012:7609282012. View Article : Google Scholar : PubMed/NCBI

52 

Bai HY, Liao YJ, Cai MY, Ma NF, Zhang Q, Chen JW, Zhang JX, Wang FW, Wang CY, Chen WH, et al: Eukaryotic initiation factor 5A2 contributes to the maintenance of CD133(+) hepatocellular carcinoma cells via the c-Myc/microRNA-29b axis. Stem Cells. 36:180–191. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Tsang FH, Au V, Lu WJ, Shek FH, Liu AM, Luk JM, Fan ST, Poon RT and Lee NP: Prognostic marker microRNA-125b inhibits tumorigenic properties of hepatocellular carcinoma cells via suppressing tumorigenic molecule eIF5A2. Dig Dis Sci. 59:2477–2487. 2014. View Article : Google Scholar : PubMed/NCBI

54 

Wang FW, Cai MY, Mai SJ, Chen JW, Bai HY, Li Y, Liao YJ, Li CP, Tian XP, Kung HF, et al: Ablation of EIF5A2 induces tumor vasculature remodeling and improves tumor response to chemotherapy via regulation of matrix metalloproteinase 2 expression. Oncotarget. 5:6716–6733. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Balabanov S, Gontarewicz A, Ziegler P, Hartmann U, Kammer W, Copland M, Brassat U, Priemer M, Hauber I, Wilhelm T, et al: Hypusination of eukaryotic initiation factor 5A (eIF5A): A novel therapeutic target in BCR-ABL-positive leukemias identified by a proteomics approach. Blood. 109:1701–1711. 2007. View Article : Google Scholar : PubMed/NCBI

56 

Xue F, Liu Y, Chu H, Wen Y, Yan L, Tang Q, Xiao E, Zhang D and Zhang H: eIF5A2 is an alternative pathway for cell proliferation in cetuximab-treated epithelial hepatocellular carcinoma. Am J Transl Res. 8:4670–4681. 2016.PubMed/NCBI

57 

Lou B, Fan J, Wang K, Chen W, Zhou X, Zhang J, Lin S, Lv F and Chen Y: N1-guanyl-1,7-diaminoheptane (GC7) enhances the therapeutic efficacy of doxorubicin by inhibiting activation of eukaryotic translation initiation factor 5A2 (eIF5A2) and preventing the epithelial-mesenchymal transition in hepatocellular carcinoma cells. Exp Cell Res. 319:2708–2717. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Xue F, Liang Y, Li Z, Liu Y, Zhang H, Wen Y, Yan L, Tang Q, Xiao E and Zhang D: MicroRNA-9 enhances sensitivity to cetuximab in epithelial phenotype hepatocellular carcinoma cells through regulation of the eukaryotic translation initiation factor 5A-2. Oncol Lett. 15:813–820. 2018.PubMed/NCBI

59 

Bao Y, Zhang Y, Lu Y, Guo H, Dong Z, Chen Q, Zhang X, Shen W, Chen W and Wang X: Overexpression of microRNA-9 enhances cisplatin sensitivity in hepatocellular carcinoma by regulating EIF5A2-mediated epithelial-mesenchymal transition. Int J Biol Sci. 16:827–837. 2020. View Article : Google Scholar : PubMed/NCBI

60 

Tu C, Chen W, Wang S, Tan W, Guo J, Shao C and Wang W: MicroRNA-383 inhibits doxorubicin resistance in hepatocellular carcinoma by targeting eukaryotic translation initiation factor 5A2. J Cell Mol Med. 23:7190–7199. 2019. View Article : Google Scholar : PubMed/NCBI

61 

Ai J, Sun J, Zhou G, Zhu T and Jing L: Long non-coding RNA GAS6-AS1 acts as a ceRNA for microRNA-585, thereby increasing EIF5A2 expression and facilitating hepatocellular carcinoma oncogenicity. Cell Cycle. 19:742–757. 2020. View Article : Google Scholar : PubMed/NCBI

62 

Strong VE: Progress in gastric cancer. Updates Surg. 70:157–159. 2018. View Article : Google Scholar : PubMed/NCBI

63 

Oue N, Sentani K, Sakamoto N, Uraoka N and Yasui W: Molecular carcinogenesis of gastric cancer: Lauren classification, mucin phenotype expression, and cancer stem cells. Int J Clin Oncol. 24:771–778. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Meng QB, Kang WM, Yu JC, Liu YQ, Ma ZQ, Zhou L, Cui QC and Zhou WX: Overexpression of eukaryotic translation initiation factor 5A2 (EIF5A2) correlates with cell aggressiveness and poor survival in gastric cancer. PLoS One. 10:e01192292015. View Article : Google Scholar : PubMed/NCBI

65 

Yang Q, Ye Z, Zhang Q, Zhao Z and Yuan H: Expression of eukaryotic translation initiation factor 5A-2 (eIF5A-2) associated with poor survival in gastric cancer. Tumour Biol. 37:1189–1195. 2016. View Article : Google Scholar : PubMed/NCBI

66 

Wang X, Jin Y, Zhang H, Huang X, Zhang Y and Zhu J: MicroRNA-599 inhibits metastasis and epithelial-mesenchymal transition via targeting EIF5A2 in gastric cancer. Biomed Pharmacother. 97:473–480. 2018. View Article : Google Scholar : PubMed/NCBI

67 

Hu ML, Xiong SW, Zhu SX, Xue XX and Zhou XD: MicroRNAs in gastric cancer: From bench to bedside. Neoplasma. 66:176–186. 2019. View Article : Google Scholar : PubMed/NCBI

68 

Tian SB, Yu JC, Liu YQ, Kang WM, Ma ZQ, Ye X and Yan C: MiR-30b suppresses tumor migration and invasion by targeting EIF5A2 in gastric cancer. World J Gastroenterol. 21:9337–9347. 2015. View Article : Google Scholar : PubMed/NCBI

69 

Sun J, Xu Z, Lv H, Wang Y, Wang L, Ni Y, Wang X, Hu C, Chen S, Teng F, et al: eIF5A2 regulates the resistance of gastric cancer cells to cisplatin via induction of EMT. Am J Transl Res. 10:4269–4279. 2018.PubMed/NCBI

70 

Zhu W, Cai MY, Tong ZT, Dong SS, Mai SJ, Liao YJ, Bian XW, Lin MC, Kung HF, Zeng YX, et al: Overexpression of EIF5A2 promotes colorectal carcinoma cell aggressiveness by upregulating MTA1 through C-myc to induce epithelial-mesenchymaltransition. Gut. 61:562–575. 2012. View Article : Google Scholar : PubMed/NCBI

71 

Takeda H, Kataoka S, Nakayama M, Ali MAE, Oshima H, Yamamoto D, Park JW, Takegami Y, An T, Jenkins NA, et al: CRISPR-Cas9-mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes. Proc Natl Acad Sci USA. 116:15635–15644. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Yan W and Guo M: Epigenetics of colorectal cancer. Methods Mol Biol. 1238:405–424. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Tunca B, Tezcan G, Cecener G, Egeli U, Zorluoglu A, Yilmazlar T, Ak S, Yerci O, Ozturk E, Umut G, et al: Overexpression of CK20, MAP3K8 and EIF5A correlates with poor prognosis in early-onset colorectal cancer patients. J Cancer Res Clin Oncol. 139:691–702. 2013. View Article : Google Scholar : PubMed/NCBI

74 

Xie D, Ma NF, Pan ZZ, Wu HX, Liu YD, Wu GQ, Kung HF and Guan XY: Overexpression of EIF-5A2 is associated with metastasis of human colorectal carcinoma. Hum Pathol. 39:80–86. 2008. View Article : Google Scholar : PubMed/NCBI

75 

Park JH, Aravind L, Wolff EC, Kaevel J, Kim YS and Park MH: Molecular cloning, expression, and structural prediction of deoxyhypusine hydroxylase: A HEAT-repeat-containing metalloenzyme. Proc Natl Acad Sci USA. 103:51–56. 2006. View Article : Google Scholar : PubMed/NCBI

76 

Deng B, Wang B, Fang J, Zhu X, Cao Z, Lin Q, Zhou L and Sun X: MiRNA-203 suppresses cell proliferation, migration and invasion in colorectal cancer via targeting of EIF5A2. Sci Rep. 6:283012016. View Article : Google Scholar : PubMed/NCBI

77 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

78 

Wu C, Wang Z, Song X, Feng XS, Abnet CC, He J, Hu N, Zuo XB, Tan W, Zhan Q, et al: Joint analysis of three genome-wide association studies of esophageal squamous cell carcinoma in Chinese populations. Nat Genet. 46:1001–1006. 2014. View Article : Google Scholar : PubMed/NCBI

79 

Pennathur A, Gibson MK, Jobe BA and Luketich JD: Oesophageal carcinoma. Lancet. 381:400–412. 2013. View Article : Google Scholar : PubMed/NCBI

80 

Yang H, Li XD, Zhou Y, Ban X, Zeng TT, Li L, Zhang BZ, Yun J, Xie D, Guan XY, et al: Stemness and chemotherapeutic drug resistance induced by EIF5A2 overexpression in esophageal squamous cell carcinoma. Oncotarget. 6:26079–26089. 2015. View Article : Google Scholar : PubMed/NCBI

81 

Cai X, Yang X, Jin C, Li L, Cui Q, Guo Y, Dong Y, Yang X, Guo L and Zhang M: Identification and verification of differentially expressed microRNAs and their target genes for the diagnosis of esophageal cancer. Oncol Lett. 16:3642–3650. 2018.PubMed/NCBI

82 

Moghanibashi M, Rastgar Jazii F, Soheili ZS, Zare M, Karkhane A, Parivar K and Mohamadynejad P: Esophageal cancer alters the expression of nuclear pore complex binding protein Hsc70 and eIF5A-1. Funct Integr Genomics. 13:253–260. 2013. View Article : Google Scholar : PubMed/NCBI

83 

Libson S and Lippman M: A review of clinical aspects of breast cancer. Int Rev Psychiatry. 26:4–15. 2014. View Article : Google Scholar : PubMed/NCBI

84 

Hsieh SM, Lintell NA and Hunter KW: Germline polymorphisms are potential metastasis risk and prognosis markers in breast cancer. Breast Dis. 26:157–162. 2007. View Article : Google Scholar

85 

Pan ST, Li ZL, He ZX, Qiu JX and Zhou SF: Molecular mechanisms for tumour resistance to chemotherapy. Clin Exp Pharmacol Physiol. 43:723–737. 2016. View Article : Google Scholar : PubMed/NCBI

86 

Liu Y, Du F, Chen W, Yao M, Lv K and Fu P: EIF5A2 is a novel chemoresistance gene in breast cancer. Breast Cancer. 22:602–607. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Schemies J, Sippl W and Jung M: Histone deacetylase inhibitors that target tubulin. Cancer Lett. 280:222–232. 2009. View Article : Google Scholar : PubMed/NCBI

88 

Zhang LL, Zhan L, Jin YD, Min ZL, Wei C, Wang Q, Chen YJ, Wu QM, Hu XM and Yuan Q: SIRT2 mediated antitumor effects of shikonin on metastatic colorectal cancer. Eur J Pharmacol. 797:1–8. 2017. View Article : Google Scholar : PubMed/NCBI

89 

Li Y, Zhang M, Dorfman RG, Pan Y, Tang D, Xu L, Zhao Z, Zhou Q, Zhou L, Wang Y, et al: SIRT2 promotes the migration and invasion of gastric cancer through RAS/ERK/JNK/MMP-9 pathway by increasing PEPCK1-related metabolism. Neoplasia. 20:745–756. 2018. View Article : Google Scholar : PubMed/NCBI

90 

Fiskus W, Coothankandaswamy V, Chen J, Ma H, Ha K, Saenz DT, Krieger SS, Mill CP, Sun B, Huang P, et al: SIRT2 deacetylates and inhibits the peroxidase activity of peroxiredoxin-1 to sensitize breast cancer cells to oxidant stress-inducing agents. Cancer Res. 76:5467–5478. 2016. View Article : Google Scholar : PubMed/NCBI

91 

Negrón Abril YL, Fernández I and Weiss RS: Assessment of SIRT2 inhibitors in mouse models of cancer. Methods Mol Biol. 1983:151–171. 2019. View Article : Google Scholar : PubMed/NCBI

92 

Shah AA, Ito A, Nakata A and Yoshida M: Identification of a selective SIRT2 inhibitor and its anti-breast cancer activity. Biol Pharm Bull. 39:1739–1742. 2016. View Article : Google Scholar : PubMed/NCBI

93 

Liu J, Wang P, Zhang P, Zhang X, Du H, Liu Q, Huang B, Qian C, Zhang S, Zhu W, et al: An integrative bioinformatics analysis identified miR-375 as a candidate key regulator of malignant breast cancer. J Appl Genet. 60:335–346. 2019. View Article : Google Scholar : PubMed/NCBI

94 

Meyer T and Rustin GJ: Role of tumour markers in monitoring epithelial ovarian cancer. Br J Cancer. 82:1535–1538. 2000.PubMed/NCBI

95 

Partridge E, Kreimer AR, Greenlee RT, Williams C, Xu JL, Church TR, Kessel B, Johnson CC, Weissfeld JL, Isaacs C, et al PLCO Project Team, : Results from four rounds of ovarian cancer screening in a randomized trial. Obstet Gynecol. 113:775–782. 2009. View Article : Google Scholar : PubMed/NCBI

96 

Takahashi K, Shibukawa T, Moriyama M, Shirai T, Kijima S, Iwanari O, Matsunaga I and Kitao M: Clinical usefulness and false-positive results of CA 125 as a tumor marker of ovarian cancer - a study on 674 patients. Jpn J Surg. 16:305–310. 1986. View Article : Google Scholar : PubMed/NCBI

97 

Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J and Karlan BY: Ovarian cancer. Nat Rev Dis Primers. 2:160612016. View Article : Google Scholar : PubMed/NCBI

98 

Fahad Ullah M: Breast cancer: Current perspectives on the disease status. Adv Exp Med Biol. 1152:51–64. 2019. View Article : Google Scholar : PubMed/NCBI

99 

Guan XY, Fung JM, Ma NF, Lau SH, Tai LS, Xie D, Zhang Y, Hu L, Wu QL, Fang Y, et al: Oncogenic role of eIF-5A2 in the development of ovarian cancer. Cancer Res. 64:4197–4200. 2004. View Article : Google Scholar : PubMed/NCBI

100 

Yang GF, Xie D, Liu JH, Luo JH, Li LJ, Hua WF, Wu HM, Kung HF, Zeng YX and Guan XY: Expression and amplification of eIF-5A2 in human epithelial ovarian tumors and overexpression of EIF-5A2 is a new independent predictor of outcome in patients with ovarian carcinoma. Gynecol Oncol. 112:314–318. 2009. View Article : Google Scholar : PubMed/NCBI

101 

Chatterjee M, Mohapatra S, Ionan A, Bawa G, Ali-Fehmi R, Wang X, Nowak J, Ye B, Nahhas FA, Lu K, et al: Diagnostic markers of ovarian cancer by high-throughput antigen cloning and detection on arrays. Cancer Res. 66:1181–1190. 2006. View Article : Google Scholar : PubMed/NCBI

102 

Yu L, Zhao Y, Quan C, Ji W, Zhu J, Huang Y, Guan R, Sun D, Jin Y, Meng X, et al: Gemcitabine eliminates double minute chromosomes from human ovarian cancer cells. PLoS One. 8:e719882013. View Article : Google Scholar : PubMed/NCBI

103 

Miyake T, Pradeep S, Wu SY, Rupaimoole R, Zand B, Wen Y, Gharpure KM, Nagaraja AS, Hu W, Cho MS, et al: XPO1/CRM1 inhibition causes antitumor effects by mitochondrial accumulation of eIF5A. Clin Cancer Res. 21:3286–3297. 2015. View Article : Google Scholar : PubMed/NCBI

104 

Zhang J, Li X, Liu X, Tian F, Zeng W, Xi X and Lin Y: EIF5A1 promotes epithelial ovarian cancer proliferation and progression. Biomed Pharmacother. 100:168–175. 2018. View Article : Google Scholar : PubMed/NCBI

105 

Vora C and Gupta S: Targeted therapy in cervical cancer. ESMO Open. 3 (Suppl 1):e0004622019. View Article : Google Scholar : PubMed/NCBI

106 

Schiffman M, Castle PE, Jeronimo J, Rodriguez AC and Wacholder S: Human papillomavirus and cervical cancer. Lancet. 370:890–907. 2007. View Article : Google Scholar : PubMed/NCBI

107 

Seol HJ, Ulak R, Ki KD and Lee JM: Cytotoxic and targeted systemic therapy in advanced and recurrent cervical cancer: Experience from clinical trials. Tohoku J Exp Med. 232:269–276. 2014. View Article : Google Scholar : PubMed/NCBI

108 

Mabuchi S, Yokoi E, Shimura K, Komura N, Matsumoto Y, Sawada K, Isobe A, Tsutsui T, Kitada F and Kimura T: A phase II study of irinotecan combined with S-1 in patients with advanced or recurrent cervical cancer previously treated with platinum based chemotherapy. Int J Gynecol Cancer. 29:474–479. 2019. View Article : Google Scholar : PubMed/NCBI

109 

Yang SS, Gao Y, Wang DY, Xia BR, Liu YD, Qin Y, Ning XM, Li GY, Hao LX, Xiao M, et al: Overexpression of eukaryotic initiation factor 5A2 (EIF5A2) is associated with cancer progression and poor prognosis in patients with early-stage cervical cancer. Histopathology. 69:276–287. 2016. View Article : Google Scholar : PubMed/NCBI

110 

Liu X, Chen D, Liu J, Chu Z and Liu D: Blocking Modification of eukaryotic initiation 5A2 antagonizes cervical carcinoma via inhibition of RhoA/ROCK signal transduction pathway. Technol Cancer Res Treat. 16:630–638. 2017. View Article : Google Scholar : PubMed/NCBI

111 

Liu Z, Teng L, Gao L, Wang H, Su Y and Li J: The role of eukaryotic translation initiation factor 5A-1 (eIF5A-1) gene in HPV 16 E6 induces cell growth in human cervical squamous carcinoma cells. Biochem Biophys Res Commun. 504:6–12. 2018. View Article : Google Scholar : PubMed/NCBI

112 

Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL and Paz-Ares L: Lung cancer: Current therapies and new targeted treatments. Lancet. 389:299–311. 2017. View Article : Google Scholar : PubMed/NCBI

113 

Arbour KC and Riely GJ: Systemic therapy for locally advanced and metastatic non-small cell lung cancer: A Review. JAMA. 322:764–774. 2019. View Article : Google Scholar : PubMed/NCBI

114 

Chen G, Gharib TG, Thomas DG, Huang CC, Misek DE, Kuick RD, Giordano TJ, Iannettoni MD, Orringer MB, Hanash SM, et al: Proteomic analysis of eIF-5A in lung adenocarcinomas. Proteomics. 3:496–504. 2003. View Article : Google Scholar : PubMed/NCBI

115 

Jin S, Taylor CA, Liu Z, Sun Z, Ye B and Thompson JE: Suppression of primary and disseminated murine tumor growth with eIF5A1 gene therapy. Gene Ther Mol Biol. 12:207–218. 2008.

116 

Chan YY, Chang CS, Chien LH and Wu TF: Apoptotic effects of a high performance liquid chromatography (HPLC) fraction of Antrodia camphorata mycelia are mediated by down-regulation of the expressions of four tumor-related genes in human non-small cell lung carcinoma A549 cell. J Ethnopharmacol. 127:652–661. 2010. View Article : Google Scholar : PubMed/NCBI

117 

Taylor CA, Zheng Q, Liu Z and Thompson JE: Role of p38 and JNK MAPK signaling pathways and tumor suppressor p53 on induction of apoptosis in response to Ad-eIF5A1 in A549 lung cancer cells. Mol Cancer. 12:352013. View Article : Google Scholar : PubMed/NCBI

118 

He LR, Zhao HY, Li BK, Liu YH, Liu MZ, Guan XY, Bian XW, Zeng YX and Xie D: Overexpression of eIF5A-2 is an adverse prognostic marker of survival in stage I non-small cell lung cancer patients. Int J Cancer. 129:143–150. 2011. View Article : Google Scholar : PubMed/NCBI

119 

Xu GD, Shi XB, Sun LB, Zhou QY, Zheng DW, Shi HS, Che YL, Wang ZS and Shao GF: Down-regulation of eIF5A-2 prevents epithelial-mesenchymal transition in non-small-cell lung cancer cells. J Zhejiang Univ Sci B. 14:460–467. 2013. View Article : Google Scholar : PubMed/NCBI

120 

Xu G, Yu H, Shi X, Sun L, Zhou Q, Zheng D, Shi H, Li N, Zhang X and Shao G: Cisplatin sensitivity is enhanced in non-small cell lung cancer cells by regulating epithelial-mesenchymal transition through inhibition of eukaryotic translation initiation factor 5A2. BMC Pulm Med. 14:1742014. View Article : Google Scholar : PubMed/NCBI

121 

Wang X, Jiang R, Cui EH, Feng WM, Guo HH, Gu DH, Tang CW, Xue T and Bao Y: N1-guanyl-1,7-diaminoheptane enhances the chemosensitivity of NSCLC cells to cetuximab through inhibition of eukaryotic translation initiation factor 5A2 activation. Eur Rev Med Pharmacol Sci. 20:1244–1250. 2016.PubMed/NCBI

122 

Pan Q, Sun L, Zheng D, Li N, Shi H, Song J, Shao G and Xu G: MicroRNA-9 enhanced cisplatin sensitivity in nonsmall cell lung cancer cells by regulating eukaryotic translation initiation factor 5A2. Biomed Res Int. 2018:17690402018. View Article : Google Scholar : PubMed/NCBI

123 

Xu G, Shao G, Pan Q, Sun L, Zheng D, Li M, Li N, Shi H and Ni Y: MicroRNA-9 regulates non-small cell lung cancer cell invasion and migration by targeting eukaryotic translation initiation factor 5A2. Am J Transl Res. 9:478–488. 2017.PubMed/NCBI

124 

Martínez-Bosch N, Rodriguez-Vida A, Juanpere N, Lloreta J, Rovira A, Albanell J, Bellmunt J and Navarro P: Galectins in prostate and bladder cancer: Tumorigenic roles and clinical opportunities. Nat Rev Urol. 16:433–445. 2019. View Article : Google Scholar : PubMed/NCBI

125 

Font A, Luque R, Villa JC, Domenech M, Vázquez S, Gallardo E, Virizuela JA, Beato C, Morales-Barrera R, Gelabert A, et al: The challenge of managing bladder cancer and upper tract urothelial carcinoma: A review with treatment recommendations from the Spanish Oncology Genitourinary Group (SOGUG). Target Oncol. 14:15–32. 2019. View Article : Google Scholar : PubMed/NCBI

126 

Siegel R, Ma J, Zou Z and Jemal A: Cancer statistics, 2014. CA Cancer J Clin. 64:9–29. 2014. View Article : Google Scholar : PubMed/NCBI

127 

Kaufman DS, Shipley WU and Feldman AS: Bladder cancer. Lancet. 374:239–249. 2009. View Article : Google Scholar : PubMed/NCBI

128 

Malmström PU, Agrawal S, Bläckberg M, Boström PJ, Malavaud B, Zaak D and Hermann GG: Non-muscle-invasive bladder cancer: A vision for the future. Scand J Urol. 51:87–94. 2017. View Article : Google Scholar : PubMed/NCBI

129 

Chou R, Gore JL, Buckley D, Fu R, Gustafson K, Griffin JC, Grusing S and Selph S: Urinary biomarkers for diagnosis of bladder cancer: A systematic review and meta-analysis. Ann Intern Med. 163:922–931. 2015. View Article : Google Scholar : PubMed/NCBI

130 

Anderson B: Bladder cancer: overview and management. Part 2: muscle-invasive and metastatic bladder cancer. Br J Nurs. 27:S8–S20. 2018. View Article : Google Scholar : PubMed/NCBI

131 

Wei JH, Cao JZ, Zhang D, Liao B, Zhong WM, Lu J, Zhao HW, Zhang JX, Tong ZT, Fan S, et al: EIF5A2 predicts outcome in localised invasive bladder cancer and promotes bladder cancer cell aggressiveness in vitro and in vivo. Br J Cancer. 110:1767–1777. 2014. View Article : Google Scholar : PubMed/NCBI

132 

Luo JH, Hua WF, Rao HL, Liao YJ, Kung HF, Zeng YX, Guan XY, Chen W and Xie D: Overexpression of EIF-5A2 predicts tumor recurrence and progression in pTa/pT1 urothelial carcinoma of the bladder. Cancer Sci. 100:896–902. 2009. View Article : Google Scholar : PubMed/NCBI

133 

Huang Y, Wei J, Fang Y, Chen Z, Cen J, Feng Z, Lu J, Liang Y, Luo J and Chen W: Prognostic value of AIB1 and EIF5A2 in intravesical recurrence after surgery for bladder carcinoma. Cancer Manag Res. 10:6997–7011. 2018. View Article : Google Scholar : PubMed/NCBI

134 

Fang Y, Cen JJ, Cao JZ, Huang Y, Feng ZH, Lu J, Wei JH, Chen ZH, Liang YP, Liao B, et al: Overexpression of EIF5A2 in upper urinary tract urothelial carcinoma is a new independent prognostic marker of survival. Future Oncol. 15:2009–2018. 2019. View Article : Google Scholar : PubMed/NCBI

135 

Chen Z, Yu T, Zhou B, Wei J, Fang Y, Lu J, Guo L, Chen W, Liu ZP and Luo J: Mg(II)-catechin nanoparticles delivering siRNA targeting EIF5A2 inhibit bladder cancer cell growth in vitro and in vivo. Biomaterials. 81:125–134. 2016. View Article : Google Scholar : PubMed/NCBI

136 

Yang J, Yu H, Shen M, Wei W, Xia L and Zhao P: N1-guanyl-1,7-diaminoheptane sensitizes bladder cancer cells to doxorubicin by preventing epithelial-mesenchymal transition through inhibition of eukaryotic translation initiation factor 5A2 activation. Cancer Sci. 105:219–227. 2014. View Article : Google Scholar : PubMed/NCBI

137 

Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI

138 

De Visschere PJ, Standaert C, Fütterer JJ, Villeirs GM, Panebianco V, Walz J, Maurer T, Hadaschik BA, Lecouvet FE, Giannarini G, et al: A systematic review on the role of imaging in early recurrent prostate cancer. Eur Urol Oncol. 2:47–76. 2019. View Article : Google Scholar : PubMed/NCBI

139 

Loeb S and Catalona WJ: What to do with an abnormal PSA test. Oncologist. 13:299–305. 2008. View Article : Google Scholar : PubMed/NCBI

140 

Schröder FH, Hugosson J, Carlsson S, Tammela T, Määttänen L, Auvinen A, Kwiatkowski M, Recker F and Roobol MJ: Screening for prostate cancer decreases the risk of developing metastatic disease: Findings from the European Randomized Study of Screening for Prostate Cancer (ERSPC). Eur Urol. 62:745–752. 2012. View Article : Google Scholar : PubMed/NCBI

141 

Schröder FH, Hugosson J, Roobol MJ, Tammela TL, Zappa M, Nelen V, Kwiatkowski M, Lujan M, Määttänen L, Lilja H, et al ERSPC Investigators, : Screening and prostate cancer mortality: Results of the European Randomised Study of Screening for Prostate Cancer (ERSPC) at 13 years of follow-up. Lancet. 384:2027–2035. 2014. View Article : Google Scholar : PubMed/NCBI

142 

Crawford ED, Heidenreich A, Lawrentschuk N, Tombal B, Pompeo AC, Mendoza-Valdes A, Miller K, Debruyne FM and Klotz L: Androgen-targeted therapy in men with prostate cancer: Evolving practice and future considerations. Prostate Cancer Prostatic Dis. 22:24–38. 2019. View Article : Google Scholar : PubMed/NCBI

143 

Spratt DE, Alshalalfa M, Fishbane N, Weiner AB, Mehra R, Mahal BA, Lehrer J, Liu Y, Zhao SG, Speers C, et al: Transcriptomic heterogeneity of androgen receptor activity defines a de novo low AR-active subclass in treatment naïve primary prostate cancer. Clin Cancer Res. 25:6721–6730. 2019. View Article : Google Scholar : PubMed/NCBI

144 

Lu J, Zhao HW, Chen Y, Wei JH, Chen ZH, Feng ZH, Huang Y, Chen W, Luo JH and Fang Y: Eukaryotic translation initiation factor 5A2 is highly expressed in prostate cancer and predicts poor prognosis. Exp Ther Med. 17:3741–3747. 2019.PubMed/NCBI

145 

Epis MR, Giles KM, Barker A, Kendrick TS and Leedman PJ: miR-331-3p regulates ERBB-2 expression and androgen receptor signaling in prostate cancer. J Biol Chem. 284:24696–24704. 2009. View Article : Google Scholar : PubMed/NCBI

146 

Epis MR, Giles KM, Kalinowski FC, Barker A, Cohen RJ and Leedman PJ: Regulation of expression of deoxyhypusine hydroxylase (DOHH), the enzyme that catalyzes the activation of eIF5A, by miR-331-3p and miR-642-5p in prostate cancer cells. J Biol Chem. 287:35251–35259. 2012. View Article : Google Scholar : PubMed/NCBI

147 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

148 

Yamaguchi H: Pathological roles of invadopodia in cancer invasion and metastasis. Eur J Cell Biol. 91:902–907. 2012. View Article : Google Scholar : PubMed/NCBI

149 

Meurette O and Mehlen P: Notch signaling in the tumor microenvironment. Cancer Cell. 34:536–548. 2018. View Article : Google Scholar : PubMed/NCBI

150 

Kim J and Bae JS: Tumor-associated macrophages and neutrophils in tumor microenvironment. Mediators Inflamm. 2016:60581472016. View Article : Google Scholar : PubMed/NCBI

151 

Meng W, Xue S and Chen Y: The role of CXCL12 in tumor microenvironment. Gene. 641:105–110. 2018. View Article : Google Scholar : PubMed/NCBI

152 

Ngambenjawong C, Gustafson HH and Pun SH: Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev. 114:206–221. 2017. View Article : Google Scholar : PubMed/NCBI

153 

Chen W, Jiang J, Xia W and Huang J: Tumor-related exosomes contribute to tumor-promoting microenvironment: An immunological perspective. J Immunol Res. 2017:10739472017. View Article : Google Scholar : PubMed/NCBI

154 

Vaupel P and Multhoff G: Hypoxia-/HIF-1α-driven factors of the tumor microenvironment impeding antitumor immune responses and promoting malignant progression. Adv Exp Med Biol. 1072:171–175. 2018. View Article : Google Scholar : PubMed/NCBI

155 

Kessenbrock K, Plaks V and Werb Z: Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell. 141:52–67. 2010. View Article : Google Scholar : PubMed/NCBI

156 

Wu T and Dai Y: Tumor microenvironment and therapeutic response. Cancer Lett. 387:61–68. 2017. View Article : Google Scholar : PubMed/NCBI

157 

Denton AE, Roberts EW and Fearon DT: Stromal cells in the tumor microenvironment. Adv Exp Med Biol. 1060:99–114. 2018. View Article : Google Scholar : PubMed/NCBI

158 

Guo S and Deng CX: Effect of stromal cells in tumor microenvironment on metastasis initiation. Int J Biol Sci. 14:2083–2093. 2018. View Article : Google Scholar : PubMed/NCBI

159 

Sounni NE and Noel A: Targeting the tumor microenvironment for cancer therapy. Clin Chem. 59:85–93. 2013. View Article : Google Scholar : PubMed/NCBI

160 

Khosravi S, Wong RP, Ardekani GS, Zhang G, Martinka M, Ong CJ and Li G: Role of EIF5A2, a downstream target of Akt, in promoting melanoma cell invasion. Br J Cancer. 110:399–408. 2014. View Article : Google Scholar : PubMed/NCBI

161 

Huang Y, Zhu Q, Lu L, Sun S, Hao F, Zhang J, Liu Z, Miao Y, Jiao X and Chen D: EIF5A2 is highly expressed in anaplastic thyroid carcinoma and is associated with tumor growth by modulating TGF-β signals. Oncol Res. Mar 5–2020.doi: 10.3727/096504020X15834065061807. View Article : Google Scholar

162 

Kolligs FT: An alternative way for epithelial-to-mesenchymal transition in colorectal cancer via EIF5A2? Gut. 61:473–474. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ning L, Wang L, Zhang H, Jiao X and Chen D: Eukaryotic translation initiation factor 5A in the pathogenesis of cancers (Review). Oncol Lett 20: 81, 2020.
APA
Ning, L., Wang, L., Zhang, H., Jiao, X., & Chen, D. (2020). Eukaryotic translation initiation factor 5A in the pathogenesis of cancers (Review). Oncology Letters, 20, 81. https://doi.org/10.3892/ol.2020.11942
MLA
Ning, L., Wang, L., Zhang, H., Jiao, X., Chen, D."Eukaryotic translation initiation factor 5A in the pathogenesis of cancers (Review)". Oncology Letters 20.4 (2020): 81.
Chicago
Ning, L., Wang, L., Zhang, H., Jiao, X., Chen, D."Eukaryotic translation initiation factor 5A in the pathogenesis of cancers (Review)". Oncology Letters 20, no. 4 (2020): 81. https://doi.org/10.3892/ol.2020.11942
Copy and paste a formatted citation
x
Spandidos Publications style
Ning L, Wang L, Zhang H, Jiao X and Chen D: Eukaryotic translation initiation factor 5A in the pathogenesis of cancers (Review). Oncol Lett 20: 81, 2020.
APA
Ning, L., Wang, L., Zhang, H., Jiao, X., & Chen, D. (2020). Eukaryotic translation initiation factor 5A in the pathogenesis of cancers (Review). Oncology Letters, 20, 81. https://doi.org/10.3892/ol.2020.11942
MLA
Ning, L., Wang, L., Zhang, H., Jiao, X., Chen, D."Eukaryotic translation initiation factor 5A in the pathogenesis of cancers (Review)". Oncology Letters 20.4 (2020): 81.
Chicago
Ning, L., Wang, L., Zhang, H., Jiao, X., Chen, D."Eukaryotic translation initiation factor 5A in the pathogenesis of cancers (Review)". Oncology Letters 20, no. 4 (2020): 81. https://doi.org/10.3892/ol.2020.11942
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team