|
1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Altorki NK, Markowitz GJ, Gao D, Port JL,
Saxena A, Stiles B, McGraw T and Mittal V: The lung
microenvironment: An important regulator of tumour growth and
metastasis. Nat Rev Cancer. 19:9–31. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Rawla P, Sunkara T and Gaduputi V:
Epidemiology of pancreatic cancer: Global trends, etiology and risk
factors. World J Oncol. 10:10–27. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Vaidyanathan R, Soon RH, Zhang P, Jiang K
and Lim CT: Cancer diagnosis: From tumor to liquid biopsy and
beyond. Lab Chip. 19:11–34. 2018.PubMed/NCBI
|
|
6
|
Vadlapatla RK, Vadlapudi AD, Pal D and
Mitra AK: Mechanisms of drug resistance in cancer chemotherapy:
Coordinated role and regulation of efflux transporters and
metabolizing enzymes. Curr Pharm Des. 19:7126–7140. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Dever TE, Gutierrez E and Shin BS: The
hypusine-containing translation factor eIF5A. Crit Rev Biochem Mol
Biol. 49:413–425. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Park MH and Wolff EC: Hypusine, a
polyamine-derived amino acid critical for eukaryotic translation. J
Biol Chem. 293:18710–18718. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Igarashi K and Kashiwagi K: The functional
role of polyamines in eukaryotic cells. Int J Biochem Cell Biol.
107:104–115. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Turpaev KT: Translation factor eIF5A,
modification with hypusine and role in regulation of gene
expression. eIF5A as a target for pharmacological interventions.
Biochemistry (Mosc). 83:863–873. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Jenkins ZA, Hååg PG and Johansson HE:
Human eIF5A2 on chromosome 3q25-q27 is a phylogenetically conserved
vertebrate variant of eukaryotic translation initiation factor 5A
with tissue-specific expression. Genomics. 71:101–109. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wu GQ, Xu YM and Lau ATY: Recent insights
into eukaryotic translation initiation factors 5A1 and 5A2 and
their roles in human health and disease. Cancer Cell Int.
20:1422020. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Mathews MB and Hershey JW: The translation
factor eIF5A and human cancer. Biochim Biophys Acta. 1849:836–844.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Caraglia M, Park MH, Wolff EC, Marra M and
Abbruzzese A: eIF5A isoforms and cancer: Two brothers for two
functions? Amino Acids. 44:103–109. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Cao TT, Lin SH, Fu L, Tang Z, Che CM,
Zhang LY, Ming XY, Liu TF, Tang XM, Tan BB, et al: Eukaryotic
translation initiation factor 5A2 promotes metabolic reprogramming
in hepatocellular carcinoma cells. Carcinogenesis. 38:94–104. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zhang H, Alsaleh G, Feltham J, Sun Y,
Napolitano G, Riffelmacher T, Charles P, Frau L, Hublitz P, Yu Z,
et al: Polyamines control eIF5A hypusination, TFEB translation, and
autophagy to reverse B cell senescence. Mol Cell. 76:110–125.e9.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Lubas M, Harder LM, Kumsta C, Tiessen I,
Hansen M, Andersen JS, Lund AH and Frankel LB: eIF5A is required
for autophagy by mediating ATG3 translation. EMBO Rep. 19:209–214.
2018. View Article : Google Scholar
|
|
18
|
Puleston DJ, Buck MD, Klein Geltink RI,
Kyle RL, Caputa G, O'Sullivan D, Cameron AM, Castoldi A, Musa Y,
Kabat AM, et al: Polyamines and eIF5A hypusination modulate
mitochondrial respiration and macrophage activation. Cell Metab.
30:352–363.e8. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Maier B, Ogihara T, Trace AP, Tersey SA,
Robbins RD, Chakrabarti SK, Nunemaker CS, Stull ND, Taylor CA,
Thompson JE, et al: The unique hypusine modification of eIF5A
promotes islet beta cell inflammation and dysfunction in mice. J
Clin Invest. 120:2156–2170. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Li Y, Fu L, Li JB, Qin Y, Zeng TT, Zhou J,
Zeng ZL, Chen J, Cao TT, Ban X, et al: Increased expression of
EIF5A2, via hypoxia or gene amplification, contributes to
metastasis and angiogenesis of esophageal squamous cell carcinoma.
Gastroenterology. 146:1701–13.e9. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Preukschas M, Hagel C, Schulte A, Weber K,
Lamszus K, Sievert H, Pällmann N, Bokemeyer C, Hauber J, Braig M,
et al: Expression of eukaryotic initiation factor 5A and hypusine
forming enzymes in glioblastoma patient samples: Implications for
new targeted therapies. PLoS One. 7:e434682012. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Sievert H, Pällmann N, Miller KK,
Hermans-Borgmeyer I, Venz S, Sendoel A, Preukschas M, Schweizer M,
Boettcher S, Janiesch PC, et al: A novel mouse model for inhibition
of DOHH-mediated hypusine modification reveals a crucial function
in embryonic development, proliferation and oncogenic
transformation. Dis Model Mech. 7:963–976. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Mémin E, Hoque M, Jain MR, Heller DS, Li
H, Cracchiolo B, Hanauske-Abel HM, Pe'ery T and Mathews MB:
Blocking eIF5A modification in cervical cancer cells alters the
expression of cancer-related genes and suppresses cell
proliferation. Cancer Res. 74:552–562. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Stupp R, Mason WP, van den Bent MJ, Weller
M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn
U, et al European Organisation for Research and Treatment of Cancer
Brain Tumor and Radiotherapy Groups; National Cancer Institute of
Canada Clinical Trials Group, : Radiotherapy plus concomitant and
adjuvant temozolomide for glioblastoma. N Engl J Med. 352:987–996.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Omuro A and DeAngelis LM: Glioblastoma and
other malignant gliomas: A clinical review. JAMA. 310:1842–1850.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Dolecek TA, Propp JM, Stroup NE and
Kruchko C: CBTRUS statistical report: Primary brain and central
nervous system tumors diagnosed in the United States in 2005–2009.
Neuro Oncol. 14 (Suppl 5):v1–v49. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Djuric U, Lam KHB, Kao J, Batruch I,
Jevtic S, Papaioannou MD and Diamandis P: Defining protein pattern
differences among molecular subtypes of diffuse gliomas using mass
spectrometry. Mol Cell Proteomics. 18:2029–2043. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hallal S, Ebrahimkhani S, Shivalingam B,
Graeber MB, Kaufman KL and Buckland ME: The emerging clinical
potential of circulating extracellular vesicles for non-invasive
glioma diagnosis and disease monitoring. Brain Tumor Pathol.
36:29–39. 2019.PubMed/NCBI
|
|
29
|
Kim JE, Patel MA, Mangraviti A, Kim ES,
Theodros D, Velarde E, Liu A, Sankey EW, Tam A, Xu H, et al:
Combination therapy with anti-PD-1, anti-TIM-3, and focal radiation
results in regression of murine gliomas. Clin Cancer Res.
23:124–136. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Park AK, Kim P, Ballester LY, Esquenazi Y
and Zhao Z: Subtype-specific signaling pathways and genomic
aberrations associated with prognosis of glioblastoma. Neuro Oncol.
21:59–70. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Cheng P, Wang J, Waghmare I, Sartini S,
Coviello V, Zhang Z, Kim SH, Mohyeldin A, Pavlyukov MS, Minata M,
et al: FOXD1-ALDH1A3 signaling is a determinant for the
self-renewal and tumorigenicity of mesenchymal glioma stem cells.
Cancer Res. 76:7219–7230. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Gao YF, Liu JY, Mao XY, He ZW, Zhu T, Wang
ZB, Li X, Yin JY, Zhang W, Zhou HH, et al: LncRNA FOXD1-AS1 acts as
a potential oncogenic biomarker in glioma. CNS Neurosci Ther.
26:66–75. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Nakagawara A, Li Y, Izumi H, Muramori K,
Inada H and Nishi M: Neuroblastoma. Jpn J Clin Oncol. 48:214–241.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Whittle SB, Smith V, Doherty E, Zhao S,
McCarty S and Zage PE: Overview and recent advances in the
treatment of neuroblastoma. Expert Rev Anticancer Ther. 17:369–386.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Park JR, Bagatell R, London WB, Maris JM,
Cohn SL, Mattay KK and Hogarty M; COG Neuroblastoma Committee, :
Children's Oncology Group's 2013 blueprint for research:
Neuroblastoma. Pediatr Blood Cancer. 60:985–993. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Yu AL, Gilman AL, Ozkaynak MF, London WB,
Kreissman SG, Chen HX, Smith M, Anderson B, Villablanca JG, Matthay
KK, et al Children's Oncology Group, : Anti-GD2 antibody with
GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J
Med. 363:1324–1334. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Bandino A, Geerts D, Koster J and Bachmann
AS: Deoxyhypusine synthase (DHPS) inhibitor GC7 induces
p21/Rb-mediated inhibition of tumor cell growth and DHPS expression
correlates with poor prognosis in neuroblastoma patients. Cell
Oncol (Dordr). 37:387–398. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Schultz CR, Geerts D, Mooney M, El-Khawaja
R, Koster J and Bachmann AS: Synergistic drug combination GC7/DFMO
suppresses hypusine/spermidine-dependent eIF5A activation and
induces apoptotic cell death in neuroblastoma. Biochem J.
475:531–545. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Sakaguchi T, Valente R, Tanaka K, Satoi S
and Del Chiaro M: Surgical treatment of metastatic pancreatic
ductal adenocarcinoma: A review of current literature.
Pancreatology. 19:672–680. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Mangge H, Niedrist T, Renner W, Lyer S,
Alexiou C and Haybaeck J: New diagnostic and therapeutic aspects of
pancreatic ductal adenocarcinoma. Curr Med Chem. 24:3012–3024.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Fujimura K, Wang H, Watson F and Klemke
RL: KRAS Oncoprotein expression is regulated by a self-governing
eIF5A-PEAK1 feed-forward regulatory loop. Cancer Res. 78:1444–1456.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Strnadel J, Choi S, Fujimura K, Wang H,
Zhang W, Wyse M, Wright T, Gross E, Peinado C, Park HW, et al:
eIF5A-PEAK1 signaling regulates YAP1/TAZ protein expression and
pancreatic cancer cell growth. Cancer Res. 77:1997–2007. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Amrutkar M and Gladhaug IP: Pancreatic
cancer chemoresistance to gemcitabine. Cancers (Basel). 9:1572017.
View Article : Google Scholar
|
|
44
|
Wang Z, Jiang J, Qin T, Xiao Y and Han L:
EIF5A regulates proliferation and chemoresistance in pancreatic
cancer through the sHH signalling pathway. J Cell Mol Med.
23:2678–2688. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Yao M, Hong Y, Liu Y, Chen W and Wang W:
GC7 enhances the sensitivity of pancreatic ductal adenocarcinoma
cells to gemcitabine via the inhibition of eukaryotic translation
initiation factor 5A2. Exp Ther Med. 14:2101–2107. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Xie Y and Hepatitis B: Hepatitis B
virus-associated hepatocellular carcinoma. Adv Exp Med Biol.
1018:11–21. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
El-Serag HB: Hepatocellular carcinoma. N
Engl J Med. 365:1118–1127. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lee NP, Tsang FH, Shek FH, Mao M, Dai H,
Zhang C, Dong S, Guan XY, Poon RT and Luk JM: Prognostic
significance and therapeutic potential of eukaryotic translation
initiation factor 5A (eIF5A) in hepatocellular carcinoma. Int J
Cancer. 127:968–976. 2010.PubMed/NCBI
|
|
49
|
Tang DJ, Dong SS, Ma NF, Xie D, Chen L, Fu
L, Lau SH, Li Y, Li Y and Guan XY: Overexpression of eukaryotic
initiation factor 5A2 enhances cell motility and promotes tumor
metastasis in hepatocellular carcinoma. Hepatology. 51:1255–1263.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Liu RR, Lv YS, Tang YX, Wang YF, Chen XL,
Zheng XX, Xie SZ, Cai Y, Yu J and Zhang XN: Eukaryotic translation
initiation factor 5A2 regulates the migration and invasion of
hepatocellular carcinoma cells via pathways involving reactive
oxygen species. Oncotarget. 7:24348–24360. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Shek FH, Fatima S and Lee NP: Implications
of the use of eukaryotic translation initiation factor 5A (eIF5A)
for prognosis and treatment of hepatocellular carcinoma. Int J
Hepatol. 2012:7609282012. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Bai HY, Liao YJ, Cai MY, Ma NF, Zhang Q,
Chen JW, Zhang JX, Wang FW, Wang CY, Chen WH, et al: Eukaryotic
initiation factor 5A2 contributes to the maintenance of CD133(+)
hepatocellular carcinoma cells via the c-Myc/microRNA-29b axis.
Stem Cells. 36:180–191. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Tsang FH, Au V, Lu WJ, Shek FH, Liu AM,
Luk JM, Fan ST, Poon RT and Lee NP: Prognostic marker microRNA-125b
inhibits tumorigenic properties of hepatocellular carcinoma cells
via suppressing tumorigenic molecule eIF5A2. Dig Dis Sci.
59:2477–2487. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wang FW, Cai MY, Mai SJ, Chen JW, Bai HY,
Li Y, Liao YJ, Li CP, Tian XP, Kung HF, et al: Ablation of EIF5A2
induces tumor vasculature remodeling and improves tumor response to
chemotherapy via regulation of matrix metalloproteinase 2
expression. Oncotarget. 5:6716–6733. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Balabanov S, Gontarewicz A, Ziegler P,
Hartmann U, Kammer W, Copland M, Brassat U, Priemer M, Hauber I,
Wilhelm T, et al: Hypusination of eukaryotic initiation factor 5A
(eIF5A): A novel therapeutic target in BCR-ABL-positive leukemias
identified by a proteomics approach. Blood. 109:1701–1711. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Xue F, Liu Y, Chu H, Wen Y, Yan L, Tang Q,
Xiao E, Zhang D and Zhang H: eIF5A2 is an alternative pathway for
cell proliferation in cetuximab-treated epithelial hepatocellular
carcinoma. Am J Transl Res. 8:4670–4681. 2016.PubMed/NCBI
|
|
57
|
Lou B, Fan J, Wang K, Chen W, Zhou X,
Zhang J, Lin S, Lv F and Chen Y: N1-guanyl-1,7-diaminoheptane (GC7)
enhances the therapeutic efficacy of doxorubicin by inhibiting
activation of eukaryotic translation initiation factor 5A2 (eIF5A2)
and preventing the epithelial-mesenchymal transition in
hepatocellular carcinoma cells. Exp Cell Res. 319:2708–2717. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Xue F, Liang Y, Li Z, Liu Y, Zhang H, Wen
Y, Yan L, Tang Q, Xiao E and Zhang D: MicroRNA-9 enhances
sensitivity to cetuximab in epithelial phenotype hepatocellular
carcinoma cells through regulation of the eukaryotic translation
initiation factor 5A-2. Oncol Lett. 15:813–820. 2018.PubMed/NCBI
|
|
59
|
Bao Y, Zhang Y, Lu Y, Guo H, Dong Z, Chen
Q, Zhang X, Shen W, Chen W and Wang X: Overexpression of microRNA-9
enhances cisplatin sensitivity in hepatocellular carcinoma by
regulating EIF5A2-mediated epithelial-mesenchymal transition. Int J
Biol Sci. 16:827–837. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Tu C, Chen W, Wang S, Tan W, Guo J, Shao C
and Wang W: MicroRNA-383 inhibits doxorubicin resistance in
hepatocellular carcinoma by targeting eukaryotic translation
initiation factor 5A2. J Cell Mol Med. 23:7190–7199. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Ai J, Sun J, Zhou G, Zhu T and Jing L:
Long non-coding RNA GAS6-AS1 acts as a ceRNA for microRNA-585,
thereby increasing EIF5A2 expression and facilitating
hepatocellular carcinoma oncogenicity. Cell Cycle. 19:742–757.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Strong VE: Progress in gastric cancer.
Updates Surg. 70:157–159. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Oue N, Sentani K, Sakamoto N, Uraoka N and
Yasui W: Molecular carcinogenesis of gastric cancer: Lauren
classification, mucin phenotype expression, and cancer stem cells.
Int J Clin Oncol. 24:771–778. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Meng QB, Kang WM, Yu JC, Liu YQ, Ma ZQ,
Zhou L, Cui QC and Zhou WX: Overexpression of eukaryotic
translation initiation factor 5A2 (EIF5A2) correlates with cell
aggressiveness and poor survival in gastric cancer. PLoS One.
10:e01192292015. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Yang Q, Ye Z, Zhang Q, Zhao Z and Yuan H:
Expression of eukaryotic translation initiation factor 5A-2
(eIF5A-2) associated with poor survival in gastric cancer. Tumour
Biol. 37:1189–1195. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wang X, Jin Y, Zhang H, Huang X, Zhang Y
and Zhu J: MicroRNA-599 inhibits metastasis and
epithelial-mesenchymal transition via targeting EIF5A2 in gastric
cancer. Biomed Pharmacother. 97:473–480. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hu ML, Xiong SW, Zhu SX, Xue XX and Zhou
XD: MicroRNAs in gastric cancer: From bench to bedside. Neoplasma.
66:176–186. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Tian SB, Yu JC, Liu YQ, Kang WM, Ma ZQ, Ye
X and Yan C: MiR-30b suppresses tumor migration and invasion by
targeting EIF5A2 in gastric cancer. World J Gastroenterol.
21:9337–9347. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Sun J, Xu Z, Lv H, Wang Y, Wang L, Ni Y,
Wang X, Hu C, Chen S, Teng F, et al: eIF5A2 regulates the
resistance of gastric cancer cells to cisplatin via induction of
EMT. Am J Transl Res. 10:4269–4279. 2018.PubMed/NCBI
|
|
70
|
Zhu W, Cai MY, Tong ZT, Dong SS, Mai SJ,
Liao YJ, Bian XW, Lin MC, Kung HF, Zeng YX, et al: Overexpression
of EIF5A2 promotes colorectal carcinoma cell aggressiveness by
upregulating MTA1 through C-myc to induce
epithelial-mesenchymaltransition. Gut. 61:562–575. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Takeda H, Kataoka S, Nakayama M, Ali MAE,
Oshima H, Yamamoto D, Park JW, Takegami Y, An T, Jenkins NA, et al:
CRISPR-Cas9-mediated gene knockout in intestinal tumor organoids
provides functional validation for colorectal cancer driver genes.
Proc Natl Acad Sci USA. 116:15635–15644. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yan W and Guo M: Epigenetics of colorectal
cancer. Methods Mol Biol. 1238:405–424. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Tunca B, Tezcan G, Cecener G, Egeli U,
Zorluoglu A, Yilmazlar T, Ak S, Yerci O, Ozturk E, Umut G, et al:
Overexpression of CK20, MAP3K8 and EIF5A correlates with poor
prognosis in early-onset colorectal cancer patients. J Cancer Res
Clin Oncol. 139:691–702. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Xie D, Ma NF, Pan ZZ, Wu HX, Liu YD, Wu
GQ, Kung HF and Guan XY: Overexpression of EIF-5A2 is associated
with metastasis of human colorectal carcinoma. Hum Pathol.
39:80–86. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Park JH, Aravind L, Wolff EC, Kaevel J,
Kim YS and Park MH: Molecular cloning, expression, and structural
prediction of deoxyhypusine hydroxylase: A HEAT-repeat-containing
metalloenzyme. Proc Natl Acad Sci USA. 103:51–56. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Deng B, Wang B, Fang J, Zhu X, Cao Z, Lin
Q, Zhou L and Sun X: MiRNA-203 suppresses cell proliferation,
migration and invasion in colorectal cancer via targeting of
EIF5A2. Sci Rep. 6:283012016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Wu C, Wang Z, Song X, Feng XS, Abnet CC,
He J, Hu N, Zuo XB, Tan W, Zhan Q, et al: Joint analysis of three
genome-wide association studies of esophageal squamous cell
carcinoma in Chinese populations. Nat Genet. 46:1001–1006. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Pennathur A, Gibson MK, Jobe BA and
Luketich JD: Oesophageal carcinoma. Lancet. 381:400–412. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Yang H, Li XD, Zhou Y, Ban X, Zeng TT, Li
L, Zhang BZ, Yun J, Xie D, Guan XY, et al: Stemness and
chemotherapeutic drug resistance induced by EIF5A2 overexpression
in esophageal squamous cell carcinoma. Oncotarget. 6:26079–26089.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Cai X, Yang X, Jin C, Li L, Cui Q, Guo Y,
Dong Y, Yang X, Guo L and Zhang M: Identification and verification
of differentially expressed microRNAs and their target genes for
the diagnosis of esophageal cancer. Oncol Lett. 16:3642–3650.
2018.PubMed/NCBI
|
|
82
|
Moghanibashi M, Rastgar Jazii F, Soheili
ZS, Zare M, Karkhane A, Parivar K and Mohamadynejad P: Esophageal
cancer alters the expression of nuclear pore complex binding
protein Hsc70 and eIF5A-1. Funct Integr Genomics. 13:253–260. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Libson S and Lippman M: A review of
clinical aspects of breast cancer. Int Rev Psychiatry. 26:4–15.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Hsieh SM, Lintell NA and Hunter KW:
Germline polymorphisms are potential metastasis risk and prognosis
markers in breast cancer. Breast Dis. 26:157–162. 2007. View Article : Google Scholar
|
|
85
|
Pan ST, Li ZL, He ZX, Qiu JX and Zhou SF:
Molecular mechanisms for tumour resistance to chemotherapy. Clin
Exp Pharmacol Physiol. 43:723–737. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Liu Y, Du F, Chen W, Yao M, Lv K and Fu P:
EIF5A2 is a novel chemoresistance gene in breast cancer. Breast
Cancer. 22:602–607. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Schemies J, Sippl W and Jung M: Histone
deacetylase inhibitors that target tubulin. Cancer Lett.
280:222–232. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zhang LL, Zhan L, Jin YD, Min ZL, Wei C,
Wang Q, Chen YJ, Wu QM, Hu XM and Yuan Q: SIRT2 mediated antitumor
effects of shikonin on metastatic colorectal cancer. Eur J
Pharmacol. 797:1–8. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Li Y, Zhang M, Dorfman RG, Pan Y, Tang D,
Xu L, Zhao Z, Zhou Q, Zhou L, Wang Y, et al: SIRT2 promotes the
migration and invasion of gastric cancer through RAS/ERK/JNK/MMP-9
pathway by increasing PEPCK1-related metabolism. Neoplasia.
20:745–756. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Fiskus W, Coothankandaswamy V, Chen J, Ma
H, Ha K, Saenz DT, Krieger SS, Mill CP, Sun B, Huang P, et al:
SIRT2 deacetylates and inhibits the peroxidase activity of
peroxiredoxin-1 to sensitize breast cancer cells to oxidant
stress-inducing agents. Cancer Res. 76:5467–5478. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Negrón Abril YL, Fernández I and Weiss RS:
Assessment of SIRT2 inhibitors in mouse models of cancer. Methods
Mol Biol. 1983:151–171. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Shah AA, Ito A, Nakata A and Yoshida M:
Identification of a selective SIRT2 inhibitor and its anti-breast
cancer activity. Biol Pharm Bull. 39:1739–1742. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Liu J, Wang P, Zhang P, Zhang X, Du H, Liu
Q, Huang B, Qian C, Zhang S, Zhu W, et al: An integrative
bioinformatics analysis identified miR-375 as a candidate key
regulator of malignant breast cancer. J Appl Genet. 60:335–346.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Meyer T and Rustin GJ: Role of tumour
markers in monitoring epithelial ovarian cancer. Br J Cancer.
82:1535–1538. 2000.PubMed/NCBI
|
|
95
|
Partridge E, Kreimer AR, Greenlee RT,
Williams C, Xu JL, Church TR, Kessel B, Johnson CC, Weissfeld JL,
Isaacs C, et al PLCO Project Team, : Results from four rounds of
ovarian cancer screening in a randomized trial. Obstet Gynecol.
113:775–782. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Takahashi K, Shibukawa T, Moriyama M,
Shirai T, Kijima S, Iwanari O, Matsunaga I and Kitao M: Clinical
usefulness and false-positive results of CA 125 as a tumor marker
of ovarian cancer - a study on 674 patients. Jpn J Surg.
16:305–310. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Matulonis UA, Sood AK, Fallowfield L,
Howitt BE, Sehouli J and Karlan BY: Ovarian cancer. Nat Rev Dis
Primers. 2:160612016. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Fahad Ullah M: Breast cancer: Current
perspectives on the disease status. Adv Exp Med Biol. 1152:51–64.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Guan XY, Fung JM, Ma NF, Lau SH, Tai LS,
Xie D, Zhang Y, Hu L, Wu QL, Fang Y, et al: Oncogenic role of
eIF-5A2 in the development of ovarian cancer. Cancer Res.
64:4197–4200. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Yang GF, Xie D, Liu JH, Luo JH, Li LJ, Hua
WF, Wu HM, Kung HF, Zeng YX and Guan XY: Expression and
amplification of eIF-5A2 in human epithelial ovarian tumors and
overexpression of EIF-5A2 is a new independent predictor of outcome
in patients with ovarian carcinoma. Gynecol Oncol. 112:314–318.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Chatterjee M, Mohapatra S, Ionan A, Bawa
G, Ali-Fehmi R, Wang X, Nowak J, Ye B, Nahhas FA, Lu K, et al:
Diagnostic markers of ovarian cancer by high-throughput antigen
cloning and detection on arrays. Cancer Res. 66:1181–1190. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Yu L, Zhao Y, Quan C, Ji W, Zhu J, Huang
Y, Guan R, Sun D, Jin Y, Meng X, et al: Gemcitabine eliminates
double minute chromosomes from human ovarian cancer cells. PLoS
One. 8:e719882013. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Miyake T, Pradeep S, Wu SY, Rupaimoole R,
Zand B, Wen Y, Gharpure KM, Nagaraja AS, Hu W, Cho MS, et al:
XPO1/CRM1 inhibition causes antitumor effects by mitochondrial
accumulation of eIF5A. Clin Cancer Res. 21:3286–3297. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zhang J, Li X, Liu X, Tian F, Zeng W, Xi X
and Lin Y: EIF5A1 promotes epithelial ovarian cancer proliferation
and progression. Biomed Pharmacother. 100:168–175. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Vora C and Gupta S: Targeted therapy in
cervical cancer. ESMO Open. 3 (Suppl 1):e0004622019. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Schiffman M, Castle PE, Jeronimo J,
Rodriguez AC and Wacholder S: Human papillomavirus and cervical
cancer. Lancet. 370:890–907. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Seol HJ, Ulak R, Ki KD and Lee JM:
Cytotoxic and targeted systemic therapy in advanced and recurrent
cervical cancer: Experience from clinical trials. Tohoku J Exp Med.
232:269–276. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Mabuchi S, Yokoi E, Shimura K, Komura N,
Matsumoto Y, Sawada K, Isobe A, Tsutsui T, Kitada F and Kimura T: A
phase II study of irinotecan combined with S-1 in patients with
advanced or recurrent cervical cancer previously treated with
platinum based chemotherapy. Int J Gynecol Cancer. 29:474–479.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Yang SS, Gao Y, Wang DY, Xia BR, Liu YD,
Qin Y, Ning XM, Li GY, Hao LX, Xiao M, et al: Overexpression of
eukaryotic initiation factor 5A2 (EIF5A2) is associated with cancer
progression and poor prognosis in patients with early-stage
cervical cancer. Histopathology. 69:276–287. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Liu X, Chen D, Liu J, Chu Z and Liu D:
Blocking Modification of eukaryotic initiation 5A2 antagonizes
cervical carcinoma via inhibition of RhoA/ROCK signal transduction
pathway. Technol Cancer Res Treat. 16:630–638. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Liu Z, Teng L, Gao L, Wang H, Su Y and Li
J: The role of eukaryotic translation initiation factor 5A-1
(eIF5A-1) gene in HPV 16 E6 induces cell growth in human cervical
squamous carcinoma cells. Biochem Biophys Res Commun. 504:6–12.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Hirsch FR, Scagliotti GV, Mulshine JL,
Kwon R, Curran WJ Jr, Wu YL and Paz-Ares L: Lung cancer: Current
therapies and new targeted treatments. Lancet. 389:299–311. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Arbour KC and Riely GJ: Systemic therapy
for locally advanced and metastatic non-small cell lung cancer: A
Review. JAMA. 322:764–774. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Chen G, Gharib TG, Thomas DG, Huang CC,
Misek DE, Kuick RD, Giordano TJ, Iannettoni MD, Orringer MB, Hanash
SM, et al: Proteomic analysis of eIF-5A in lung adenocarcinomas.
Proteomics. 3:496–504. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Jin S, Taylor CA, Liu Z, Sun Z, Ye B and
Thompson JE: Suppression of primary and disseminated murine tumor
growth with eIF5A1 gene therapy. Gene Ther Mol Biol. 12:207–218.
2008.
|
|
116
|
Chan YY, Chang CS, Chien LH and Wu TF:
Apoptotic effects of a high performance liquid chromatography
(HPLC) fraction of Antrodia camphorata mycelia are mediated
by down-regulation of the expressions of four tumor-related genes
in human non-small cell lung carcinoma A549 cell. J Ethnopharmacol.
127:652–661. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Taylor CA, Zheng Q, Liu Z and Thompson JE:
Role of p38 and JNK MAPK signaling pathways and tumor suppressor
p53 on induction of apoptosis in response to Ad-eIF5A1 in A549 lung
cancer cells. Mol Cancer. 12:352013. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
He LR, Zhao HY, Li BK, Liu YH, Liu MZ,
Guan XY, Bian XW, Zeng YX and Xie D: Overexpression of eIF5A-2 is
an adverse prognostic marker of survival in stage I non-small cell
lung cancer patients. Int J Cancer. 129:143–150. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Xu GD, Shi XB, Sun LB, Zhou QY, Zheng DW,
Shi HS, Che YL, Wang ZS and Shao GF: Down-regulation of eIF5A-2
prevents epithelial-mesenchymal transition in non-small-cell lung
cancer cells. J Zhejiang Univ Sci B. 14:460–467. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Xu G, Yu H, Shi X, Sun L, Zhou Q, Zheng D,
Shi H, Li N, Zhang X and Shao G: Cisplatin sensitivity is enhanced
in non-small cell lung cancer cells by regulating
epithelial-mesenchymal transition through inhibition of eukaryotic
translation initiation factor 5A2. BMC Pulm Med. 14:1742014.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Wang X, Jiang R, Cui EH, Feng WM, Guo HH,
Gu DH, Tang CW, Xue T and Bao Y: N1-guanyl-1,7-diaminoheptane
enhances the chemosensitivity of NSCLC cells to cetuximab through
inhibition of eukaryotic translation initiation factor 5A2
activation. Eur Rev Med Pharmacol Sci. 20:1244–1250.
2016.PubMed/NCBI
|
|
122
|
Pan Q, Sun L, Zheng D, Li N, Shi H, Song
J, Shao G and Xu G: MicroRNA-9 enhanced cisplatin sensitivity in
nonsmall cell lung cancer cells by regulating eukaryotic
translation initiation factor 5A2. Biomed Res Int.
2018:17690402018. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Xu G, Shao G, Pan Q, Sun L, Zheng D, Li M,
Li N, Shi H and Ni Y: MicroRNA-9 regulates non-small cell lung
cancer cell invasion and migration by targeting eukaryotic
translation initiation factor 5A2. Am J Transl Res. 9:478–488.
2017.PubMed/NCBI
|
|
124
|
Martínez-Bosch N, Rodriguez-Vida A,
Juanpere N, Lloreta J, Rovira A, Albanell J, Bellmunt J and Navarro
P: Galectins in prostate and bladder cancer: Tumorigenic roles and
clinical opportunities. Nat Rev Urol. 16:433–445. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Font A, Luque R, Villa JC, Domenech M,
Vázquez S, Gallardo E, Virizuela JA, Beato C, Morales-Barrera R,
Gelabert A, et al: The challenge of managing bladder cancer and
upper tract urothelial carcinoma: A review with treatment
recommendations from the Spanish Oncology Genitourinary Group
(SOGUG). Target Oncol. 14:15–32. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Siegel R, Ma J, Zou Z and Jemal A: Cancer
statistics, 2014. CA Cancer J Clin. 64:9–29. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Kaufman DS, Shipley WU and Feldman AS:
Bladder cancer. Lancet. 374:239–249. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Malmström PU, Agrawal S, Bläckberg M,
Boström PJ, Malavaud B, Zaak D and Hermann GG: Non-muscle-invasive
bladder cancer: A vision for the future. Scand J Urol. 51:87–94.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Chou R, Gore JL, Buckley D, Fu R,
Gustafson K, Griffin JC, Grusing S and Selph S: Urinary biomarkers
for diagnosis of bladder cancer: A systematic review and
meta-analysis. Ann Intern Med. 163:922–931. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Anderson B: Bladder cancer: overview and
management. Part 2: muscle-invasive and metastatic bladder cancer.
Br J Nurs. 27:S8–S20. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Wei JH, Cao JZ, Zhang D, Liao B, Zhong WM,
Lu J, Zhao HW, Zhang JX, Tong ZT, Fan S, et al: EIF5A2 predicts
outcome in localised invasive bladder cancer and promotes bladder
cancer cell aggressiveness in vitro and in vivo. Br J Cancer.
110:1767–1777. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Luo JH, Hua WF, Rao HL, Liao YJ, Kung HF,
Zeng YX, Guan XY, Chen W and Xie D: Overexpression of EIF-5A2
predicts tumor recurrence and progression in pTa/pT1 urothelial
carcinoma of the bladder. Cancer Sci. 100:896–902. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Huang Y, Wei J, Fang Y, Chen Z, Cen J,
Feng Z, Lu J, Liang Y, Luo J and Chen W: Prognostic value of AIB1
and EIF5A2 in intravesical recurrence after surgery for bladder
carcinoma. Cancer Manag Res. 10:6997–7011. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Fang Y, Cen JJ, Cao JZ, Huang Y, Feng ZH,
Lu J, Wei JH, Chen ZH, Liang YP, Liao B, et al: Overexpression of
EIF5A2 in upper urinary tract urothelial carcinoma is a new
independent prognostic marker of survival. Future Oncol.
15:2009–2018. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Chen Z, Yu T, Zhou B, Wei J, Fang Y, Lu J,
Guo L, Chen W, Liu ZP and Luo J: Mg(II)-catechin nanoparticles
delivering siRNA targeting EIF5A2 inhibit bladder cancer cell
growth in vitro and in vivo. Biomaterials. 81:125–134. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Yang J, Yu H, Shen M, Wei W, Xia L and
Zhao P: N1-guanyl-1,7-diaminoheptane sensitizes bladder cancer
cells to doxorubicin by preventing epithelial-mesenchymal
transition through inhibition of eukaryotic translation initiation
factor 5A2 activation. Cancer Sci. 105:219–227. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
De Visschere PJ, Standaert C, Fütterer JJ,
Villeirs GM, Panebianco V, Walz J, Maurer T, Hadaschik BA, Lecouvet
FE, Giannarini G, et al: A systematic review on the role of imaging
in early recurrent prostate cancer. Eur Urol Oncol. 2:47–76. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Loeb S and Catalona WJ: What to do with an
abnormal PSA test. Oncologist. 13:299–305. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Schröder FH, Hugosson J, Carlsson S,
Tammela T, Määttänen L, Auvinen A, Kwiatkowski M, Recker F and
Roobol MJ: Screening for prostate cancer decreases the risk of
developing metastatic disease: Findings from the European
Randomized Study of Screening for Prostate Cancer (ERSPC). Eur
Urol. 62:745–752. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Schröder FH, Hugosson J, Roobol MJ,
Tammela TL, Zappa M, Nelen V, Kwiatkowski M, Lujan M, Määttänen L,
Lilja H, et al ERSPC Investigators, : Screening and prostate cancer
mortality: Results of the European Randomised Study of Screening
for Prostate Cancer (ERSPC) at 13 years of follow-up. Lancet.
384:2027–2035. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Crawford ED, Heidenreich A, Lawrentschuk
N, Tombal B, Pompeo AC, Mendoza-Valdes A, Miller K, Debruyne FM and
Klotz L: Androgen-targeted therapy in men with prostate cancer:
Evolving practice and future considerations. Prostate Cancer
Prostatic Dis. 22:24–38. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Spratt DE, Alshalalfa M, Fishbane N,
Weiner AB, Mehra R, Mahal BA, Lehrer J, Liu Y, Zhao SG, Speers C,
et al: Transcriptomic heterogeneity of androgen receptor activity
defines a de novo low AR-active subclass in treatment naïve primary
prostate cancer. Clin Cancer Res. 25:6721–6730. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Lu J, Zhao HW, Chen Y, Wei JH, Chen ZH,
Feng ZH, Huang Y, Chen W, Luo JH and Fang Y: Eukaryotic translation
initiation factor 5A2 is highly expressed in prostate cancer and
predicts poor prognosis. Exp Ther Med. 17:3741–3747.
2019.PubMed/NCBI
|
|
145
|
Epis MR, Giles KM, Barker A, Kendrick TS
and Leedman PJ: miR-331-3p regulates ERBB-2 expression and androgen
receptor signaling in prostate cancer. J Biol Chem.
284:24696–24704. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Epis MR, Giles KM, Kalinowski FC, Barker
A, Cohen RJ and Leedman PJ: Regulation of expression of
deoxyhypusine hydroxylase (DOHH), the enzyme that catalyzes the
activation of eIF5A, by miR-331-3p and miR-642-5p in prostate
cancer cells. J Biol Chem. 287:35251–35259. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Yamaguchi H: Pathological roles of
invadopodia in cancer invasion and metastasis. Eur J Cell Biol.
91:902–907. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Meurette O and Mehlen P: Notch signaling
in the tumor microenvironment. Cancer Cell. 34:536–548. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Kim J and Bae JS: Tumor-associated
macrophages and neutrophils in tumor microenvironment. Mediators
Inflamm. 2016:60581472016. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Meng W, Xue S and Chen Y: The role of
CXCL12 in tumor microenvironment. Gene. 641:105–110. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Ngambenjawong C, Gustafson HH and Pun SH:
Progress in tumor-associated macrophage (TAM)-targeted
therapeutics. Adv Drug Deliv Rev. 114:206–221. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Chen W, Jiang J, Xia W and Huang J:
Tumor-related exosomes contribute to tumor-promoting
microenvironment: An immunological perspective. J Immunol Res.
2017:10739472017. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Vaupel P and Multhoff G:
Hypoxia-/HIF-1α-driven factors of the tumor microenvironment
impeding antitumor immune responses and promoting malignant
progression. Adv Exp Med Biol. 1072:171–175. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Kessenbrock K, Plaks V and Werb Z: Matrix
metalloproteinases: Regulators of the tumor microenvironment. Cell.
141:52–67. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Wu T and Dai Y: Tumor microenvironment and
therapeutic response. Cancer Lett. 387:61–68. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Denton AE, Roberts EW and Fearon DT:
Stromal cells in the tumor microenvironment. Adv Exp Med Biol.
1060:99–114. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Guo S and Deng CX: Effect of stromal cells
in tumor microenvironment on metastasis initiation. Int J Biol Sci.
14:2083–2093. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Sounni NE and Noel A: Targeting the tumor
microenvironment for cancer therapy. Clin Chem. 59:85–93. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Khosravi S, Wong RP, Ardekani GS, Zhang G,
Martinka M, Ong CJ and Li G: Role of EIF5A2, a downstream target of
Akt, in promoting melanoma cell invasion. Br J Cancer. 110:399–408.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
161
|
Huang Y, Zhu Q, Lu L, Sun S, Hao F, Zhang
J, Liu Z, Miao Y, Jiao X and Chen D: EIF5A2 is highly expressed in
anaplastic thyroid carcinoma and is associated with tumor growth by
modulating TGF-β signals. Oncol Res. Mar 5–2020.doi:
10.3727/096504020X15834065061807. View Article : Google Scholar
|
|
162
|
Kolligs FT: An alternative way for
epithelial-to-mesenchymal transition in colorectal cancer via
EIF5A2? Gut. 61:473–474. 2012. View Article : Google Scholar : PubMed/NCBI
|