|
1
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The Next Generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Fouad YA and Aanei C: Revisiting the
hallmarks of cancer. Am J Cancer Res. 7:1016–1036. 2017.PubMed/NCBI
|
|
3
|
Quail DF and Joyce JA: The
Microenvironmental landscape of brain tumors. Cancer Cell.
31:326–341. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Weiss N, Miller F, Cazaubon S and Couraud
P: The blood-brain barrier in brain homeostasis and neurological
diseases. Biochim Biophys. 1788:842–857. 2009. View Article : Google Scholar
|
|
5
|
Wolburg H, Wolburg-Buchholz K, Kraus J,
Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote E, Risau W
and Engelhardt B: Localization of claudin-3 in tight junctions of
the blood-brain barrier is selectively lost during experimental
autoimmune encephalomyelitis and human glioblastoma multiforme.
Acta Neuropathol. 105:586–592. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Jain RK, di Tomaso E, Duda DG, Loeffler
JS, Sorensen AG and Batchelor TT: Angiogenesis in brain tumours.
Nat Rev Neurosci. 8:610–622. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
7
|
Plate KH, Breier G, Weich HA and Risau W:
Vascular endothelial growth factor is a potential tumour
angiogenesis factor in human gliomas in vivo. Nature. 359:845–848.
1992. View
Article : Google Scholar : PubMed/NCBI
|
|
8
|
Gavard J and Gutkind JS: VEGF controls
endothelial-cell permeability by promoting the
beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol.
8:1223–1234. 2006. View
Article : Google Scholar : PubMed/NCBI
|
|
9
|
ENCODE Project Consortium, . Birney E,
Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH,
Weng Z, Snyder M, Dermitzakis ET, et al: Identification and
analysis of functional elements in 1% of the human genome by the
ENCODE pilot project. Nature. 447:799–816. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Djebali S, Davis CA, Merkel A, Dobin A,
Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F,
et al: Landscape of transcription in human cells. Nature.
489:101–108. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Wang DQ, Fu P, Yao C, Zhu LS, Hou TY, Chen
JG, Lu Y, Liu D and Zhu LQ: Long Non-coding RNAs, Novel culprits,
or bodyguards in neurodegenerative diseases. Mol Ther Nucleic
Acids. 10:269–276. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Rynkeviciene R, Simiene J, Strainiene E,
Stankevicius V, Usinskiene J, Miseikyte Kaubriene E, Meskinyte I,
Cicenas J and Suziedelis K: Non-coding RNAs in Glioma. Cancers
(Basel). 11:172018. View Article : Google Scholar
|
|
13
|
Kornienko AE, Guenzl PM, Barlow DP and
Pauler FM: Gene regulation by the act of long non-coding RNA
transcription. BMC Biol. 11:592013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Ulitsky I and Bartel DP: lincRNAs:
Genomics, evolution, and mechanisms. Cell. 154:26–46. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Tragante V, Moore JH and Asselbergs FW:
The ENCODE project and perspectives on pathways. Genet Epidemiol.
38:275–280. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bhan A and Mandal SS: Long noncoding RNAs:
Emerging stars in gene regulation, epigenetics and human disease.
ChemMedChem. 9:1932–1956. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Yuan J, Yue H, Zhang M, Luo J, Liu L, Wu
W, Xiao T, Chen X, Chen X, Zhang D, et al: Transcriptional
profiling analysis and functional prediction of long noncoding RNAs
in cancer. Oncotarget. 16:72016.
|
|
18
|
Tsai M, Spitale RC and Chang HY: Long
intergenic noncoding RNAs: New links in cancer progression. Cancer
Res. 71:3–7. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Xie H, Ma H and Zhou D: Plasma HULC as a
promising novel biomarker for the detection of hepatocellular
carcinoma. Biomed Res Int. 2013:1361062013. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Parasramka MA, Maji S, Matsuda A, Yan IK
and Patel T: Long non-coding RNAs as novel targets for therapy in
hepatocellular carcinoma. Pharmacol Ther. 161:67–78. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Zhang L, Yang F, Yuan J, Yuan S, Zhou W,
Huo X, Xu D, Bi H, Wang F and Sun S: Epigenetic activation of the
MiR-200 family contributes to H19-mediated metastasis suppression
in hepatocellular carcinoma. Carcinogenesis. 34:577–586. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Dai M, Li S and Qin X: Colorectal
neoplasia differentially expressed: A long noncoding RNA with an
imperative role in cancer. Onco Targets Ther. 11:3755–3763. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Du P, Zhao H, Peng R, Liu Q, Yuan J, Peng
G and Liao Y: LncRNA-XIST interacts with miR-29c to modulate the
chemoresistance of glioma cell to TMZ through DNA mismatch repair
(MMR) pathway. Biosci Rep. 37:BSR201706962017. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Yu H, Xue Y, Wang P, Liu X, Ma J, Zheng J,
Li Z, Li Z, Cai H and Liu Y: Knockdown of long non-coding RNA XIST
increases blood-tumor barrier permeability and inhibits glioma
angiogenesis by targeting miR-137. Oncogenesis. 6:e3032017.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhou H, Ma Y, Zhong D and Yang L:
Knockdown of lncRNA HOXD-AS1 suppresses proliferation, migration
and invasion and enhances cisplatin sensitivity of glioma cells by
sponging miR-204. Biomed Pharmacother. 112:1086332019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Cui B, Li B, Liu Q and Cui Y: lncRNA CCAT1
promotes glioma tumorigenesis by sponging miR-181b. J Cell Biochem.
118:4548–4557. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wang O, Huang Y, Wu H, Zheng B, Lin J and
Jin P: LncRNA LOC728196/miR-513c axis facilitates glioma
carcinogenesis by targeting TCF7. Gene. 679:119–125. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wallmen B, Schrempp M and Hecht A:
Intrinsic properties of Tcf1 and Tcf4 splice variants determine
cell-type-specific Wnt/β-catenin target gene expression. Nucleic
Acids Res. 40:9455–9469. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Li X, Xue L and Peng Q: Tunicamycin
inhibits progression of glioma cells through downregulation of the
MEG-3-regulated wnt/β-catenin signaling pathway. Oncol Lett.
15:8470–8476. 2018.PubMed/NCBI
|
|
30
|
Li X, Shen F, Huang L, Hui L, Liu R, Ma Y
and Jin B: lncRNA small nucleolar RNA host gene 20 predicts poor
prognosis in glioma and promotes cell proliferation by silencing
P21. Oncotargets Ther. 12:805–814. 2019. View Article : Google Scholar
|
|
31
|
Hu Y, Kang C, Zhao J, Nie Y, Zheng L, Li
H, Li X, Wang Q and Qiu Y: LncRNA PLAC2 down-regulates RPL36
expression and blocks cell cycle progression in glioma through a
mechanism involving STAT1. J Cell Mol Med. 22:497–510. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Hu S, Xu L, Li L, Luo D, Zhao H, Li D and
Peng B: Overexpression of lncRNA PTENP1 suppresses glioma cell
proliferation and metastasis in vitro. Onco Targets Ther.
12:147–156. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wang Q, Zhang J, Liu Y, Zhang W, Zhou J,
Duan R, Pu P, Kang C and Han L: A novel cell cycle-associated
lncRNA, HOXA11-AS, is transcribed from the 5-prime end of the HOXA
transcript and is a biomarker of progression in glioma. Cancer
Lett. 373:251–259. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Cui Z, Ren S, Lu J, Wang F, Xu W, Sun Y,
Wei M, Chen J, Gao X, Xu C, et al: The prostate cancer-up-regulated
long noncoding RNA PlncRNA-1 modulates apoptosis and proliferation
through reciprocal regulation of androgen receptor. Urol Oncol.
31:1117–1123. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Fang Z, Xu C, Li Y, Cai X, Ren S, Liu H,
Wang Y, Wang F, Chen R, Qu M, et al: A feed-forward regulatory loop
between androgen receptor and PlncRNA-1 promotes prostate cancer
progression. Cancer Lett. 374:62–74. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Jin Y, Cui Z, Li X, Jin X and Peng J:
Upregulation of long non-coding RNA PlncRNA-1 promotes
proliferation and induces epithelial-mesenchymal transition in
prostate cancer. Oncotarget. 8:26090–26099. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang X, Yan Y, Zhang C, Wei W, Ai X, Pang
Y and Bian Y: Upregulation of lncRNA PlncRNA-1 indicates the poor
prognosis and promotes glioma progression by activation of Notch
signal pathway. Biomed Pharmacother. 103:216–221. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Yao J, Zhou B, Zhang J, Geng P, Liu K, Zhu
Y and Zhu W: A new tumor suppressor LncRNA ADAMTS9-AS2 is regulated
by DNMT1 and inhibits migration of glioma cells. Tumour Biol.
35:7935–7944. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Liao Y, Shen L, Zhao H, Liu Q, Fu J, Guo
Y, Peng R and Cheng L: LncRNA CASC2 Interacts With miR-181a to
modulate glioma growth and resistance to TMZ Through PTEN pathway.
J Cell Biochem. 118:1889–1899. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Dorasamy MS, Choudhary B, Nellore K,
Subramanya H and Wong P: Dihydroorotate dehydrogenase Inhibitors
Target c-Myc and arrest melanoma, myeloma and lymphoma cells at
S-phase. J Cancer. 8:3086–3098. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kang M, Xia P, Hou T, Qi Z, Liao S and
Yang X: MicroRNA-190b inhibits tumor cell proliferation and induces
apoptosis by regulating Bcl-2 in U2OS osteosarcoma cells.
Pharmazie. 72:279–282. 2017.PubMed/NCBI
|
|
42
|
Liu Z, Liu H, Yuan X, Wang Y, Li L, Wang
G, Song J, Shao Z and Fu R: Downregulation of Pim-2 induces cell
cycle arrest in the G0/G1 phase via the p53-non-dependent p21
signaling pathway. Oncol Lett. 15:4079–4086. 2018.PubMed/NCBI
|
|
43
|
Ju X, Yu H, Liang D, Jiang T, Liu Y, Chen
L, Dong Q and Liu X: LDR reverses DDP resistance in ovarian cancer
cells by affecting ERCC-1, Bcl-2, Survivin and Caspase-3
expressions. Biomed Pharmacother. 102:549–554. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Dai W, Tian C and Jin S: Effect of lncRNA
ANRIL silencing on anoikis and cell cycle in human glioma via
microRNA-203a. Onco Targets Ther. 11:5103–5109. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Seward S, Semaan A, Qazi AM, Gruzdyn OV,
Chamala S, Bryant CC, Kumar S, Cameron D, Sethi S, Ali-Fehmi R, et
al: EZH2 blockade by RNA interference inhibits growth of ovarian
cancer by facilitating re-expression of p21(waf1/cip1) and by
inhibiting mutant p53. Cancer Lett. 336:53–60. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Taniguchi H, Jacinto FV, Villanueva A,
Fernandez AF, Yamamoto H, Carmona FJ, Puertas S, Marquez VE,
Shinomura Y, Imai K and Esteller M: Silencing of Kruppel-like
factor 2 by the histone methyltransferase EZH2 in human cancer.
Oncogene. 31:1988–1994. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Fei F, He Y, He S, He Z, Wang Y, Wu G and
Li M: LncRNA SNHG3 enhances the malignant progress of glioma
through silencing KLF2 and p21. Biosci Rep. 38:BSR201804202018.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Cai G, Zhu Q, Yuan L and Lan Q: LncRNA
SNHG6 acts as a prognostic factor to regulate cell proliferation in
glioma through targeting p21. Biomed Pharmacother. 102:452–457.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lu YF, Cai XL, Li ZZ, Lv J, Xiang YA, Chen
JJ, Chen WJ, Sun WY, Liu XM and Chen JB: LncRNA SNHG16 Functions as
an oncogene by sponging MiR-4518 and Up-regulating PRMT5 expression
in glioma. Cell Physiol Biochem. 45:1975–1985. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Guo LP, Zhang ZJ, Li RT, Li HY and Cui YQ:
Influences of LncRNA SNHG20 on proliferation and apoptosis of
glioma cells through regulating the PTEN/PI3K/AKT signaling
pathway. Eur Rev Med Pharmacol Sci. 23:253–261. 2019.PubMed/NCBI
|
|
51
|
Li J, Zhang M, An G and Ma Q: LncRNA TUG1
acts as a tumor suppressor in human glioma by promoting cell
apoptosis. Exp Biol Med (Maywood). 241:644–649. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Cai H, Liu X, Zheng J, Xue Y, Ma J, Li Z,
Xi Z, Li Z, Bao M and Liu Y: Long non-coding RNA taurine
upregulated 1 enhances tumor-induced angiogenesis through
inhibiting microRNA-299 in human glioblastoma. Oncogene.
36:318–331. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Gong X, Liao X and Huang M: LncRNA CASC7
inhibits the progression of glioma via regulating Wnt/β-catenin
signaling pathway. Pathol Res Pract. 215:564–570. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ni W, Luo L, Zuo P, Li R, Xu X, Wen F and
Hu D: lncRNA GHET1 down-regulation suppresses the cell activities
of glioma. Cancer Biomark. 23:9–22. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
He Z, Wang Y, Huang G, Wang Q, Zhao D and
Chen L: The lncRNA UCA1 interacts with miR-182 to modulate glioma
proliferation and migration by targeting iASPP. Arch Biochem
Biophys 623–624. 1–8. 2017. View Article : Google Scholar
|
|
56
|
Horn S, Figl A, Rachakonda PS, Fischer C,
Sucker A, Gast A, Kadel S, Moll I, Nagore E, Hemminki K, et al:
TERT promoter mutations in familial and sporadic melanoma. Science.
339:959–961. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Tan Y, Tang L, OuYang W, Jiang T, Zhang H
and Li S: β-catenin-coordinated lncRNA MALAT1 up-regulation of
ZEB-1 could enhance the telomerase activity in HGF-mediated
differentiation of bone marrow mesenchymal stem cells into
hepatocytes. Pathol Res Pract. 215:546–554. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Fu Z, Luo W, Wang J, Peng T, Sun G, Shi J,
Li Z and Zhang B: Malat1 activates autophagy and promotes cell
proliferation by sponging miR-101 and upregulating STMN1, RAB5A and
ATG4D expression in glioma. Biochem Biophys Res Commun.
492:480–486. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Liu X, Fu Q, Li S, Liang N, Li F, Li C,
Sui C, Dionigi G and Sun H: LncRNA FOXD2-AS1 Functions as a
Competing Endogenous RNA to Regulate TERT Expression by Sponging
miR-7-5p in Thyroid Cancer. Front Endocrinol (Lausanne).
10:2072019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Dong H, Cao W and Xue J: Long noncoding
FOXD2-AS1 is activated by CREB1 and promotes cell proliferation and
metastasis in glioma by sponging miR-185 through targeting AKT1.
Biochem Biophys Res Commun. 508:1074–1081. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Ni W, Xia Y, Bi Y, Wen F, Hu D and Luo L:
FoxD2-AS1 promotes glioma progression by regulating
miR-185-5P/HMGA2 axis and PI3K/AKT signaling pathway. Aging (Albany
NY). 11:1427–1439. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Jiang X, Yan Y, Hu M, Chen X, Wang Y, Dai
Y, Wu D, Wang Y, Zhuang Z and Xia H: Increased level of H19 long
noncoding RNA promotes invasion, angiogenesis, and stemness of
glioblastoma cells. J Neurosurg. 2016:129–136. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yan K, Wu Q, Yan DH, Lee CH, Rahim N,
Tritschler I, DeVecchio J, Kalady MF, Hjelmeland AB and Rich JN:
Glioma cancer stem cells secrete Gremlin1 to promote their
maintenance within the tumor hierarchy. Gene Dev. 28:1085–1100.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Fu C, Li D, Zhang X, Liu N, Chi G and Jin
X: LncRNA PVT1 Facilitates Tumorigenesis and progression of glioma
via regulation of MiR-128-3p/GREM1 Axis and BMP signaling pathway.
Neurotherapeutics. 15:1139–1157. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Han Y, Li X, Yan J, Ma C, Zheng X, Zhang
J, Zhang D, Meng C, Zhang Z, Ji X, et al: Knockdown of LncRNA PVT1
inhibits glioma progression by regulating miR-424 expression. Oncol
Res. 27:681–690. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zheng J, Hu L, Cheng J, Xu J, Zhong Z,
Yang Y and Yuan Z: lncRNA PVT1 promotes the angiogenesis of
vascular endothelial cell by targeting miR26b to activate
CTGF/ANGPT2. Int J Mol Med. 42:489–496. 2018.PubMed/NCBI
|
|
67
|
Hu L, Lv Q, Chen S, Sun B, Qu Q, Cheng L,
Guo Y, Zhou H and Fan L: Up-Regulation of long Non-coding RNA
AB073614 predicts a poor prognosis in patients with glioma. Int J
Environ Res Public Health. 13:4332016. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Li J, Wang Y and Song Y: Knockdown of long
noncoding RNA AB073614 inhibits glioma cell proliferation and
migration via affecting epithelial-mesenchymal transition. Eur Rev
Med Pharmaco. 20:3997–4002. 2016.
|
|
69
|
Qin X, Yao J, Geng P, Fu X, Xue J and
Zhang Z: LncRNA TSLC1-AS1 is a novel tumor suppressor in glioma.
Int J Clin Exp Patho. 7:3065–3072. 2014.
|
|
70
|
Jia L, Tian Y, Chen Y and Zhang G: The
silencing of LncRNA-H19 decreases chemoresistance of human glioma
cells to temozolomide by suppressing epithelial-mesenchymal
transition via the Wnt/β-catenin pathway. Onco Targets Ther.
11:313–321. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Li J and Zhou L: Overexpression of lncRNA
DANCR positively affects progression of glioma via activating
Wnt/β-catenin signaling. Biomed Pharmacother. 102:602–607. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhang H, Wei D, Wan L, Yan S and Sun Y:
Highly expressed lncRNA CCND2-AS1 promotes glioma cell
proliferation through Wnt/β-catenin signaling. Biochem Bioph Res
Commun. 482:1219–1225. 2017. View Article : Google Scholar
|
|
73
|
Zhang T and Wang Y, Zeng F, Cao H, Zhou H
and Wang Y: LncRNA H19 is overexpressed in glioma tissue, is
negatively associated with patient survival, and promotes tumor
growth through its derivative miR-675. Eur Rev Med Pharmaco.
20:4891–4897. 2016.
|
|
74
|
Zhao H, Peng R, Liu Q, Liu D, Du P, Yuan
J, Peng G and Liao Y: The lncRNA H19 interacts with miR-140 to
modulate glioma growth by targeting iASPP. Arch Biochem Biophys.
610:1–7. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Jiang N, Wang X, Xie X, Liao Y, Liu N, Liu
J, Miao N, Shen J and Peng T: lncRNA DANCR promotes tumor
progression and cancer stemness features in osteosarcoma by
upregulating AXL via miR-33a-5p inhibition. Cancer Lett. 405:46–55.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Yang Y, Hou N, Wang X, Wang L, Chang S, He
K, Zhao Z, Zhao X, Song T and Huang C: miR-15b-5p induces
endoplasmic reticulum stress and apoptosis in human hepatocellular
carcinoma, both in vitro and in vivo, by suppressing Rab1A.
Oncotarget. 6:16227–16238. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Xu C, Xiao L, Liu Y, Chen L, Zheng S, Zeng
E and Li D: The lncRNA HOXA11-AS promotes glioma cell growth and
metastasis by targeting miR-130a-5p/HMGB2. Eur Rev Med Pharmaco.
23:241–252. 2019.
|
|
78
|
Liang C, Yang Y, Guan J, Lv T, Qu S, Fu Q
and Zhao H: LncRNA UCA1 sponges miR-204-5p to promote migration,
invasion and epithelial-mesenchymal transition of glioma cells via
upregulation of ZEB1. Pathol Res Pract. 214:1474–1481. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Chen X, Gao Y, Li D, Hao B and Cao Y:
LncRNA-TP53TG1 participated in the stress response under glucose
deprivation in glioma. J Cell Biochem. 118:4897–4904. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Anastasiou D, Poulogiannis G, Asara JM,
Boxer MB, Jiang J, Shen M, Bellinger G, Sasaki AT, Locasale JW,
Auld DS, et al: Inhibition of pyruvate kinase M2 by reactive oxygen
species contributes to cellular antioxidant responses. Science.
334:1278–1283. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang
P, Yu W, Li Z, Gong L, Peng Y, et al: Glioma-derived mutations in
IDH1 dominantly inhibit IDH1 catalytic activity and induce
HIF-1alpha. Science. 324:261–265. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wang W, Wu F, Zhao Z, Wang K, Huang R,
Wang H, Lan Q, Wang J and Zhao J: Long noncoding RNA LINC00152 is a
potential prognostic biomarker in patients with high-grade glioma.
CNS Neurosci Ther. 24:957–966. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Wang W, Zhao Z, Yang F, Wang H, Wu F,
Liang T, Yan X, Li J, Lan Q, Wang J and Zhao J: An immune-related
lncRNA signature for patients with anaplastic gliomas. J
Neurooncol. 136:263–271. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhang EB, Yin DD, Sun M, Kong R, Liu XH,
You LH, Han L, Xia R, Wang KM, Yang JS, et al: P53-regulated long
non-coding RNA TUG1 affects cell proliferation in human non-small
cell lung cancer, partly through epigenetically regulating HOXB7
expression. Cell Death Dis. 5:e12432014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Xu Y, Wang J, Qiu M and Xu L, Li M, Jiang
F, Yin R and Xu L: Upregulation of the long noncoding RNA TUG1
promotes proliferation and migration of esophageal squamous cell
carcinoma. Tumour Biol. 36:1643–1651. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Gong W, Zheng J, Liu X, Ma J, Liu Y and
Xue Y: Knockdown of NEAT1 restrained the malignant progression of
glioma stem cells by activating microRNA let-7e. Oncotarget.
7:62208–62223. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Yang X, Xiao Z, Du X, Huang L and Du G:
Silencing of the long non-coding RNA NEAT1 suppresses glioma
stem-like properties through modulation of the miR-107/CDK6
pathway. Oncol Rep. 37:555–562. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Mineo M, Ricklefs F, Rooj AK, Lyons SM,
Ivanov P, Ansari KI, Nakano I, Chiocca EA, Godlewski J and Bronisz
A: The long Non-coding RNA HIF1A-AS2 facilitates the maintenance of
mesenchymal glioblastoma Stem-like cells in hypoxic niches. Cell
Rep. 15:2500–2509. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Yu M, Xue Y, Zheng J, Liu X, Yu H, Liu L,
Li Z and Liu Y: Linc00152 promotes malignant progression of glioma
stem cells by regulating miR-103a-3p/FEZF1/CDC25A pathway. Mol
Cancer. 16:1102017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Coccia EM, Cicala C, Charlesworth A,
Ciccarelli C, Rossi GB, Philipson L and Sorrentino V: Regulation
and expression of a growth arrest-specific gene (gas5) during
growth, differentiation, and development. Mol Cell Biol.
12:3514–3521. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Zhao X, Liu Y, Zheng J, Liu X, Chen J, Liu
L, Wang P and Xue Y: GAS5 suppresses malignancy of human glioma
stem cells via a miR-196a-5p/FOXO1 feedback loop. Biochim Biophys
Acta Mol Cell Res. 1864:1605–1617. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Jia P, Cai H, Liu X, Chen J, Ma J, Wang P,
Liu Y, Zheng J and Xue Y: Long non-coding RNA H19 regulates glioma
angiogenesis and the biological behavior of glioma-associated
endothelial cells by inhibiting microRNA-29a. Cancer Lett.
381:359–369. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Ma Y, Wang P, Xue Y, Qu C, Zheng J, Liu X,
Ma J and Liu Y: PVT1 affects growth of glioma microvascular
endothelial cells by negatively regulating miR-186. Tumour Biol.
39:13933953382017. View Article : Google Scholar
|
|
94
|
Ma Y, Xue Y, Liu X, Qu C, Cai H, Wang P,
Li Z, Li Z and Liu Y: SNHG15 affects the growth of glioma
microvascular endothelial cells by negatively regulating miR-153.
Oncol Rep. 38:3265–3277. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Wu T and Dai Y: Tumor microenvironment and
therapeutic response. Cancer Lett. 387:61–68. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wang Q, Hu B, Hu X, Kim H, Squatrito M,
Scarpace L, deCarvalho AC, Lyu S, Li P, Li Y, et al: Tumor
evolution of Glioma-intrinsic gene expression subtypes associates
with immunological changes in the microenvironment. Cancer Cell.
32:42–56.e6. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Hanahan D and Coussens LM: Accessories to
the crime: Functions of cells recruited to the tumor
microenvironment. Cancer Cell. 21:309–322. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Shahar T, Rozovski U, Hess KR, Hossain A,
Gumin J, Gao F, Fuller GN, Goodman L, Sulman EP and Lang FF:
Percentage of mesenchymal stem cells in high-grade glioma tumor
samples correlates with patient survival. Neuro Oncol. 19:660–668.
2017.PubMed/NCBI
|
|
99
|
Yi D, Xiang W, Zhang Q, Cen Y, Su Q, Zhang
F, Lu Y, Zhao H and Fu P: Human Glioblastoma-derived mesenchymal
stem cell to pericytes transition and angiogenic capacity in
glioblastoma microenvironment. Cellular physiology and
Biochemistry. 46:279–290. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhang Q, Yi D, Xue B, Wen WW, Lu YP,
Abdelmaksou A, Sun MX, Yuan DT, Zhao HY, Xiong NX, et al: CD90
determined two subpopulations of glioma-associated mesenchymal stem
cells with different roles in tumour progression. Cell Death Dis.
9:11012018. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Zhang Q, Xiang W, Yi D, Xue B, Wen W,
Abdelmaksoud A, Xiong N, Jiang X, Zhao H and Fu P: Current status
and potential challenges of mesenchymal stem cell-based therapy for
malignant gliomas. Stem Cell Res Ther. 9:2282018. View Article : Google Scholar : PubMed/NCBI
|