Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
October-2020 Volume 20 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2020 Volume 20 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Roles of long non‑coding RNAs in the hallmarks of glioma (Review)

  • Authors:
    • Bing-Zhou Xue
    • Wei Xiang
    • Qing Zhang
    • Yi-Hao Wang
    • Hao-Fei Wang
    • Dong-Ye Yi
    • Nan-Xiang Xiong
    • Xiao-Bing Jiang
    • Hong-Yang Zhao
    • Peng Fu
  • View Affiliations / Copyright

    Affiliations: Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
    Copyright: © Xue et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 83
    |
    Published online on: August 4, 2020
       https://doi.org/10.3892/ol.2020.11944
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Glioma is one of the most common types of tumor of the central nervous system. Due to the aggressiveness and invasiveness of high‑level gliomas, the survival time of patients with these tumors is short, at ~15 months, even after combined treatment with surgery, radiotherapy and/or chemotherapy. Recently, a number of studies have demonstrated that long non‑coding RNA (lncRNAs) serve crucial roles in the multistep development of human gliomas. Gliomas acquire numerous biological abilities during multistep development that collectively constitute the hallmarks of glioma. Thus, in this review, the roles of lncRNAs associated with glioma hallmarks and the current and future prospects for their development are summarized.
View Figures

Figure 1

View References

1 

Hanahan D and Weinberg RA: Hallmarks of cancer: The Next Generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Fouad YA and Aanei C: Revisiting the hallmarks of cancer. Am J Cancer Res. 7:1016–1036. 2017.PubMed/NCBI

3 

Quail DF and Joyce JA: The Microenvironmental landscape of brain tumors. Cancer Cell. 31:326–341. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Weiss N, Miller F, Cazaubon S and Couraud P: The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys. 1788:842–857. 2009. View Article : Google Scholar

5 

Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote E, Risau W and Engelhardt B: Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol. 105:586–592. 2003. View Article : Google Scholar : PubMed/NCBI

6 

Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG and Batchelor TT: Angiogenesis in brain tumours. Nat Rev Neurosci. 8:610–622. 2007. View Article : Google Scholar : PubMed/NCBI

7 

Plate KH, Breier G, Weich HA and Risau W: Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature. 359:845–848. 1992. View Article : Google Scholar : PubMed/NCBI

8 

Gavard J and Gutkind JS: VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol. 8:1223–1234. 2006. View Article : Google Scholar : PubMed/NCBI

9 

ENCODE Project Consortium, . Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, et al: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 447:799–816. 2007. View Article : Google Scholar : PubMed/NCBI

10 

Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, et al: Landscape of transcription in human cells. Nature. 489:101–108. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Wang DQ, Fu P, Yao C, Zhu LS, Hou TY, Chen JG, Lu Y, Liu D and Zhu LQ: Long Non-coding RNAs, Novel culprits, or bodyguards in neurodegenerative diseases. Mol Ther Nucleic Acids. 10:269–276. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Rynkeviciene R, Simiene J, Strainiene E, Stankevicius V, Usinskiene J, Miseikyte Kaubriene E, Meskinyte I, Cicenas J and Suziedelis K: Non-coding RNAs in Glioma. Cancers (Basel). 11:172018. View Article : Google Scholar

13 

Kornienko AE, Guenzl PM, Barlow DP and Pauler FM: Gene regulation by the act of long non-coding RNA transcription. BMC Biol. 11:592013. View Article : Google Scholar : PubMed/NCBI

14 

Ulitsky I and Bartel DP: lincRNAs: Genomics, evolution, and mechanisms. Cell. 154:26–46. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Tragante V, Moore JH and Asselbergs FW: The ENCODE project and perspectives on pathways. Genet Epidemiol. 38:275–280. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Bhan A and Mandal SS: Long noncoding RNAs: Emerging stars in gene regulation, epigenetics and human disease. ChemMedChem. 9:1932–1956. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Yuan J, Yue H, Zhang M, Luo J, Liu L, Wu W, Xiao T, Chen X, Chen X, Zhang D, et al: Transcriptional profiling analysis and functional prediction of long noncoding RNAs in cancer. Oncotarget. 16:72016.

18 

Tsai M, Spitale RC and Chang HY: Long intergenic noncoding RNAs: New links in cancer progression. Cancer Res. 71:3–7. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Xie H, Ma H and Zhou D: Plasma HULC as a promising novel biomarker for the detection of hepatocellular carcinoma. Biomed Res Int. 2013:1361062013. View Article : Google Scholar : PubMed/NCBI

20 

Parasramka MA, Maji S, Matsuda A, Yan IK and Patel T: Long non-coding RNAs as novel targets for therapy in hepatocellular carcinoma. Pharmacol Ther. 161:67–78. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Zhang L, Yang F, Yuan J, Yuan S, Zhou W, Huo X, Xu D, Bi H, Wang F and Sun S: Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis. 34:577–586. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Dai M, Li S and Qin X: Colorectal neoplasia differentially expressed: A long noncoding RNA with an imperative role in cancer. Onco Targets Ther. 11:3755–3763. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Du P, Zhao H, Peng R, Liu Q, Yuan J, Peng G and Liao Y: LncRNA-XIST interacts with miR-29c to modulate the chemoresistance of glioma cell to TMZ through DNA mismatch repair (MMR) pathway. Biosci Rep. 37:BSR201706962017. View Article : Google Scholar : PubMed/NCBI

24 

Yu H, Xue Y, Wang P, Liu X, Ma J, Zheng J, Li Z, Li Z, Cai H and Liu Y: Knockdown of long non-coding RNA XIST increases blood-tumor barrier permeability and inhibits glioma angiogenesis by targeting miR-137. Oncogenesis. 6:e3032017. View Article : Google Scholar : PubMed/NCBI

25 

Zhou H, Ma Y, Zhong D and Yang L: Knockdown of lncRNA HOXD-AS1 suppresses proliferation, migration and invasion and enhances cisplatin sensitivity of glioma cells by sponging miR-204. Biomed Pharmacother. 112:1086332019. View Article : Google Scholar : PubMed/NCBI

26 

Cui B, Li B, Liu Q and Cui Y: lncRNA CCAT1 promotes glioma tumorigenesis by sponging miR-181b. J Cell Biochem. 118:4548–4557. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Wang O, Huang Y, Wu H, Zheng B, Lin J and Jin P: LncRNA LOC728196/miR-513c axis facilitates glioma carcinogenesis by targeting TCF7. Gene. 679:119–125. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Wallmen B, Schrempp M and Hecht A: Intrinsic properties of Tcf1 and Tcf4 splice variants determine cell-type-specific Wnt/β-catenin target gene expression. Nucleic Acids Res. 40:9455–9469. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Li X, Xue L and Peng Q: Tunicamycin inhibits progression of glioma cells through downregulation of the MEG-3-regulated wnt/β-catenin signaling pathway. Oncol Lett. 15:8470–8476. 2018.PubMed/NCBI

30 

Li X, Shen F, Huang L, Hui L, Liu R, Ma Y and Jin B: lncRNA small nucleolar RNA host gene 20 predicts poor prognosis in glioma and promotes cell proliferation by silencing P21. Oncotargets Ther. 12:805–814. 2019. View Article : Google Scholar

31 

Hu Y, Kang C, Zhao J, Nie Y, Zheng L, Li H, Li X, Wang Q and Qiu Y: LncRNA PLAC2 down-regulates RPL36 expression and blocks cell cycle progression in glioma through a mechanism involving STAT1. J Cell Mol Med. 22:497–510. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Hu S, Xu L, Li L, Luo D, Zhao H, Li D and Peng B: Overexpression of lncRNA PTENP1 suppresses glioma cell proliferation and metastasis in vitro. Onco Targets Ther. 12:147–156. 2019. View Article : Google Scholar : PubMed/NCBI

33 

Wang Q, Zhang J, Liu Y, Zhang W, Zhou J, Duan R, Pu P, Kang C and Han L: A novel cell cycle-associated lncRNA, HOXA11-AS, is transcribed from the 5-prime end of the HOXA transcript and is a biomarker of progression in glioma. Cancer Lett. 373:251–259. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Cui Z, Ren S, Lu J, Wang F, Xu W, Sun Y, Wei M, Chen J, Gao X, Xu C, et al: The prostate cancer-up-regulated long noncoding RNA PlncRNA-1 modulates apoptosis and proliferation through reciprocal regulation of androgen receptor. Urol Oncol. 31:1117–1123. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Fang Z, Xu C, Li Y, Cai X, Ren S, Liu H, Wang Y, Wang F, Chen R, Qu M, et al: A feed-forward regulatory loop between androgen receptor and PlncRNA-1 promotes prostate cancer progression. Cancer Lett. 374:62–74. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Jin Y, Cui Z, Li X, Jin X and Peng J: Upregulation of long non-coding RNA PlncRNA-1 promotes proliferation and induces epithelial-mesenchymal transition in prostate cancer. Oncotarget. 8:26090–26099. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Wang X, Yan Y, Zhang C, Wei W, Ai X, Pang Y and Bian Y: Upregulation of lncRNA PlncRNA-1 indicates the poor prognosis and promotes glioma progression by activation of Notch signal pathway. Biomed Pharmacother. 103:216–221. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Yao J, Zhou B, Zhang J, Geng P, Liu K, Zhu Y and Zhu W: A new tumor suppressor LncRNA ADAMTS9-AS2 is regulated by DNMT1 and inhibits migration of glioma cells. Tumour Biol. 35:7935–7944. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Liao Y, Shen L, Zhao H, Liu Q, Fu J, Guo Y, Peng R and Cheng L: LncRNA CASC2 Interacts With miR-181a to modulate glioma growth and resistance to TMZ Through PTEN pathway. J Cell Biochem. 118:1889–1899. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Dorasamy MS, Choudhary B, Nellore K, Subramanya H and Wong P: Dihydroorotate dehydrogenase Inhibitors Target c-Myc and arrest melanoma, myeloma and lymphoma cells at S-phase. J Cancer. 8:3086–3098. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Kang M, Xia P, Hou T, Qi Z, Liao S and Yang X: MicroRNA-190b inhibits tumor cell proliferation and induces apoptosis by regulating Bcl-2 in U2OS osteosarcoma cells. Pharmazie. 72:279–282. 2017.PubMed/NCBI

42 

Liu Z, Liu H, Yuan X, Wang Y, Li L, Wang G, Song J, Shao Z and Fu R: Downregulation of Pim-2 induces cell cycle arrest in the G0/G1 phase via the p53-non-dependent p21 signaling pathway. Oncol Lett. 15:4079–4086. 2018.PubMed/NCBI

43 

Ju X, Yu H, Liang D, Jiang T, Liu Y, Chen L, Dong Q and Liu X: LDR reverses DDP resistance in ovarian cancer cells by affecting ERCC-1, Bcl-2, Survivin and Caspase-3 expressions. Biomed Pharmacother. 102:549–554. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Dai W, Tian C and Jin S: Effect of lncRNA ANRIL silencing on anoikis and cell cycle in human glioma via microRNA-203a. Onco Targets Ther. 11:5103–5109. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Seward S, Semaan A, Qazi AM, Gruzdyn OV, Chamala S, Bryant CC, Kumar S, Cameron D, Sethi S, Ali-Fehmi R, et al: EZH2 blockade by RNA interference inhibits growth of ovarian cancer by facilitating re-expression of p21(waf1/cip1) and by inhibiting mutant p53. Cancer Lett. 336:53–60. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Taniguchi H, Jacinto FV, Villanueva A, Fernandez AF, Yamamoto H, Carmona FJ, Puertas S, Marquez VE, Shinomura Y, Imai K and Esteller M: Silencing of Kruppel-like factor 2 by the histone methyltransferase EZH2 in human cancer. Oncogene. 31:1988–1994. 2012. View Article : Google Scholar : PubMed/NCBI

47 

Fei F, He Y, He S, He Z, Wang Y, Wu G and Li M: LncRNA SNHG3 enhances the malignant progress of glioma through silencing KLF2 and p21. Biosci Rep. 38:BSR201804202018. View Article : Google Scholar : PubMed/NCBI

48 

Cai G, Zhu Q, Yuan L and Lan Q: LncRNA SNHG6 acts as a prognostic factor to regulate cell proliferation in glioma through targeting p21. Biomed Pharmacother. 102:452–457. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Lu YF, Cai XL, Li ZZ, Lv J, Xiang YA, Chen JJ, Chen WJ, Sun WY, Liu XM and Chen JB: LncRNA SNHG16 Functions as an oncogene by sponging MiR-4518 and Up-regulating PRMT5 expression in glioma. Cell Physiol Biochem. 45:1975–1985. 2018. View Article : Google Scholar : PubMed/NCBI

50 

Guo LP, Zhang ZJ, Li RT, Li HY and Cui YQ: Influences of LncRNA SNHG20 on proliferation and apoptosis of glioma cells through regulating the PTEN/PI3K/AKT signaling pathway. Eur Rev Med Pharmacol Sci. 23:253–261. 2019.PubMed/NCBI

51 

Li J, Zhang M, An G and Ma Q: LncRNA TUG1 acts as a tumor suppressor in human glioma by promoting cell apoptosis. Exp Biol Med (Maywood). 241:644–649. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Cai H, Liu X, Zheng J, Xue Y, Ma J, Li Z, Xi Z, Li Z, Bao M and Liu Y: Long non-coding RNA taurine upregulated 1 enhances tumor-induced angiogenesis through inhibiting microRNA-299 in human glioblastoma. Oncogene. 36:318–331. 2017. View Article : Google Scholar : PubMed/NCBI

53 

Gong X, Liao X and Huang M: LncRNA CASC7 inhibits the progression of glioma via regulating Wnt/β-catenin signaling pathway. Pathol Res Pract. 215:564–570. 2019. View Article : Google Scholar : PubMed/NCBI

54 

Ni W, Luo L, Zuo P, Li R, Xu X, Wen F and Hu D: lncRNA GHET1 down-regulation suppresses the cell activities of glioma. Cancer Biomark. 23:9–22. 2018. View Article : Google Scholar : PubMed/NCBI

55 

He Z, Wang Y, Huang G, Wang Q, Zhao D and Chen L: The lncRNA UCA1 interacts with miR-182 to modulate glioma proliferation and migration by targeting iASPP. Arch Biochem Biophys 623–624. 1–8. 2017. View Article : Google Scholar

56 

Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, Gast A, Kadel S, Moll I, Nagore E, Hemminki K, et al: TERT promoter mutations in familial and sporadic melanoma. Science. 339:959–961. 2013. View Article : Google Scholar : PubMed/NCBI

57 

Tan Y, Tang L, OuYang W, Jiang T, Zhang H and Li S: β-catenin-coordinated lncRNA MALAT1 up-regulation of ZEB-1 could enhance the telomerase activity in HGF-mediated differentiation of bone marrow mesenchymal stem cells into hepatocytes. Pathol Res Pract. 215:546–554. 2019. View Article : Google Scholar : PubMed/NCBI

58 

Fu Z, Luo W, Wang J, Peng T, Sun G, Shi J, Li Z and Zhang B: Malat1 activates autophagy and promotes cell proliferation by sponging miR-101 and upregulating STMN1, RAB5A and ATG4D expression in glioma. Biochem Biophys Res Commun. 492:480–486. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Liu X, Fu Q, Li S, Liang N, Li F, Li C, Sui C, Dionigi G and Sun H: LncRNA FOXD2-AS1 Functions as a Competing Endogenous RNA to Regulate TERT Expression by Sponging miR-7-5p in Thyroid Cancer. Front Endocrinol (Lausanne). 10:2072019. View Article : Google Scholar : PubMed/NCBI

60 

Dong H, Cao W and Xue J: Long noncoding FOXD2-AS1 is activated by CREB1 and promotes cell proliferation and metastasis in glioma by sponging miR-185 through targeting AKT1. Biochem Biophys Res Commun. 508:1074–1081. 2019. View Article : Google Scholar : PubMed/NCBI

61 

Ni W, Xia Y, Bi Y, Wen F, Hu D and Luo L: FoxD2-AS1 promotes glioma progression by regulating miR-185-5P/HMGA2 axis and PI3K/AKT signaling pathway. Aging (Albany NY). 11:1427–1439. 2019. View Article : Google Scholar : PubMed/NCBI

62 

Jiang X, Yan Y, Hu M, Chen X, Wang Y, Dai Y, Wu D, Wang Y, Zhuang Z and Xia H: Increased level of H19 long noncoding RNA promotes invasion, angiogenesis, and stemness of glioblastoma cells. J Neurosurg. 2016:129–136. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Yan K, Wu Q, Yan DH, Lee CH, Rahim N, Tritschler I, DeVecchio J, Kalady MF, Hjelmeland AB and Rich JN: Glioma cancer stem cells secrete Gremlin1 to promote their maintenance within the tumor hierarchy. Gene Dev. 28:1085–1100. 2014. View Article : Google Scholar : PubMed/NCBI

64 

Fu C, Li D, Zhang X, Liu N, Chi G and Jin X: LncRNA PVT1 Facilitates Tumorigenesis and progression of glioma via regulation of MiR-128-3p/GREM1 Axis and BMP signaling pathway. Neurotherapeutics. 15:1139–1157. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Han Y, Li X, Yan J, Ma C, Zheng X, Zhang J, Zhang D, Meng C, Zhang Z, Ji X, et al: Knockdown of LncRNA PVT1 inhibits glioma progression by regulating miR-424 expression. Oncol Res. 27:681–690. 2019. View Article : Google Scholar : PubMed/NCBI

66 

Zheng J, Hu L, Cheng J, Xu J, Zhong Z, Yang Y and Yuan Z: lncRNA PVT1 promotes the angiogenesis of vascular endothelial cell by targeting miR26b to activate CTGF/ANGPT2. Int J Mol Med. 42:489–496. 2018.PubMed/NCBI

67 

Hu L, Lv Q, Chen S, Sun B, Qu Q, Cheng L, Guo Y, Zhou H and Fan L: Up-Regulation of long Non-coding RNA AB073614 predicts a poor prognosis in patients with glioma. Int J Environ Res Public Health. 13:4332016. View Article : Google Scholar : PubMed/NCBI

68 

Li J, Wang Y and Song Y: Knockdown of long noncoding RNA AB073614 inhibits glioma cell proliferation and migration via affecting epithelial-mesenchymal transition. Eur Rev Med Pharmaco. 20:3997–4002. 2016.

69 

Qin X, Yao J, Geng P, Fu X, Xue J and Zhang Z: LncRNA TSLC1-AS1 is a novel tumor suppressor in glioma. Int J Clin Exp Patho. 7:3065–3072. 2014.

70 

Jia L, Tian Y, Chen Y and Zhang G: The silencing of LncRNA-H19 decreases chemoresistance of human glioma cells to temozolomide by suppressing epithelial-mesenchymal transition via the Wnt/β-catenin pathway. Onco Targets Ther. 11:313–321. 2018. View Article : Google Scholar : PubMed/NCBI

71 

Li J and Zhou L: Overexpression of lncRNA DANCR positively affects progression of glioma via activating Wnt/β-catenin signaling. Biomed Pharmacother. 102:602–607. 2018. View Article : Google Scholar : PubMed/NCBI

72 

Zhang H, Wei D, Wan L, Yan S and Sun Y: Highly expressed lncRNA CCND2-AS1 promotes glioma cell proliferation through Wnt/β-catenin signaling. Biochem Bioph Res Commun. 482:1219–1225. 2017. View Article : Google Scholar

73 

Zhang T and Wang Y, Zeng F, Cao H, Zhou H and Wang Y: LncRNA H19 is overexpressed in glioma tissue, is negatively associated with patient survival, and promotes tumor growth through its derivative miR-675. Eur Rev Med Pharmaco. 20:4891–4897. 2016.

74 

Zhao H, Peng R, Liu Q, Liu D, Du P, Yuan J, Peng G and Liao Y: The lncRNA H19 interacts with miR-140 to modulate glioma growth by targeting iASPP. Arch Biochem Biophys. 610:1–7. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Jiang N, Wang X, Xie X, Liao Y, Liu N, Liu J, Miao N, Shen J and Peng T: lncRNA DANCR promotes tumor progression and cancer stemness features in osteosarcoma by upregulating AXL via miR-33a-5p inhibition. Cancer Lett. 405:46–55. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Yang Y, Hou N, Wang X, Wang L, Chang S, He K, Zhao Z, Zhao X, Song T and Huang C: miR-15b-5p induces endoplasmic reticulum stress and apoptosis in human hepatocellular carcinoma, both in vitro and in vivo, by suppressing Rab1A. Oncotarget. 6:16227–16238. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Xu C, Xiao L, Liu Y, Chen L, Zheng S, Zeng E and Li D: The lncRNA HOXA11-AS promotes glioma cell growth and metastasis by targeting miR-130a-5p/HMGB2. Eur Rev Med Pharmaco. 23:241–252. 2019.

78 

Liang C, Yang Y, Guan J, Lv T, Qu S, Fu Q and Zhao H: LncRNA UCA1 sponges miR-204-5p to promote migration, invasion and epithelial-mesenchymal transition of glioma cells via upregulation of ZEB1. Pathol Res Pract. 214:1474–1481. 2018. View Article : Google Scholar : PubMed/NCBI

79 

Chen X, Gao Y, Li D, Hao B and Cao Y: LncRNA-TP53TG1 participated in the stress response under glucose deprivation in glioma. J Cell Biochem. 118:4897–4904. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang J, Shen M, Bellinger G, Sasaki AT, Locasale JW, Auld DS, et al: Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science. 334:1278–1283. 2011. View Article : Google Scholar : PubMed/NCBI

81 

Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, Yu W, Li Z, Gong L, Peng Y, et al: Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science. 324:261–265. 2009. View Article : Google Scholar : PubMed/NCBI

82 

Wang W, Wu F, Zhao Z, Wang K, Huang R, Wang H, Lan Q, Wang J and Zhao J: Long noncoding RNA LINC00152 is a potential prognostic biomarker in patients with high-grade glioma. CNS Neurosci Ther. 24:957–966. 2018. View Article : Google Scholar : PubMed/NCBI

83 

Wang W, Zhao Z, Yang F, Wang H, Wu F, Liang T, Yan X, Li J, Lan Q, Wang J and Zhao J: An immune-related lncRNA signature for patients with anaplastic gliomas. J Neurooncol. 136:263–271. 2018. View Article : Google Scholar : PubMed/NCBI

84 

Zhang EB, Yin DD, Sun M, Kong R, Liu XH, You LH, Han L, Xia R, Wang KM, Yang JS, et al: P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression. Cell Death Dis. 5:e12432014. View Article : Google Scholar : PubMed/NCBI

85 

Xu Y, Wang J, Qiu M and Xu L, Li M, Jiang F, Yin R and Xu L: Upregulation of the long noncoding RNA TUG1 promotes proliferation and migration of esophageal squamous cell carcinoma. Tumour Biol. 36:1643–1651. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Gong W, Zheng J, Liu X, Ma J, Liu Y and Xue Y: Knockdown of NEAT1 restrained the malignant progression of glioma stem cells by activating microRNA let-7e. Oncotarget. 7:62208–62223. 2016. View Article : Google Scholar : PubMed/NCBI

87 

Yang X, Xiao Z, Du X, Huang L and Du G: Silencing of the long non-coding RNA NEAT1 suppresses glioma stem-like properties through modulation of the miR-107/CDK6 pathway. Oncol Rep. 37:555–562. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Mineo M, Ricklefs F, Rooj AK, Lyons SM, Ivanov P, Ansari KI, Nakano I, Chiocca EA, Godlewski J and Bronisz A: The long Non-coding RNA HIF1A-AS2 facilitates the maintenance of mesenchymal glioblastoma Stem-like cells in hypoxic niches. Cell Rep. 15:2500–2509. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Yu M, Xue Y, Zheng J, Liu X, Yu H, Liu L, Li Z and Liu Y: Linc00152 promotes malignant progression of glioma stem cells by regulating miR-103a-3p/FEZF1/CDC25A pathway. Mol Cancer. 16:1102017. View Article : Google Scholar : PubMed/NCBI

90 

Coccia EM, Cicala C, Charlesworth A, Ciccarelli C, Rossi GB, Philipson L and Sorrentino V: Regulation and expression of a growth arrest-specific gene (gas5) during growth, differentiation, and development. Mol Cell Biol. 12:3514–3521. 1992. View Article : Google Scholar : PubMed/NCBI

91 

Zhao X, Liu Y, Zheng J, Liu X, Chen J, Liu L, Wang P and Xue Y: GAS5 suppresses malignancy of human glioma stem cells via a miR-196a-5p/FOXO1 feedback loop. Biochim Biophys Acta Mol Cell Res. 1864:1605–1617. 2017. View Article : Google Scholar : PubMed/NCBI

92 

Jia P, Cai H, Liu X, Chen J, Ma J, Wang P, Liu Y, Zheng J and Xue Y: Long non-coding RNA H19 regulates glioma angiogenesis and the biological behavior of glioma-associated endothelial cells by inhibiting microRNA-29a. Cancer Lett. 381:359–369. 2016. View Article : Google Scholar : PubMed/NCBI

93 

Ma Y, Wang P, Xue Y, Qu C, Zheng J, Liu X, Ma J and Liu Y: PVT1 affects growth of glioma microvascular endothelial cells by negatively regulating miR-186. Tumour Biol. 39:13933953382017. View Article : Google Scholar

94 

Ma Y, Xue Y, Liu X, Qu C, Cai H, Wang P, Li Z, Li Z and Liu Y: SNHG15 affects the growth of glioma microvascular endothelial cells by negatively regulating miR-153. Oncol Rep. 38:3265–3277. 2017. View Article : Google Scholar : PubMed/NCBI

95 

Wu T and Dai Y: Tumor microenvironment and therapeutic response. Cancer Lett. 387:61–68. 2017. View Article : Google Scholar : PubMed/NCBI

96 

Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, deCarvalho AC, Lyu S, Li P, Li Y, et al: Tumor evolution of Glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 32:42–56.e6. 2017. View Article : Google Scholar : PubMed/NCBI

97 

Hanahan D and Coussens LM: Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell. 21:309–322. 2012. View Article : Google Scholar : PubMed/NCBI

98 

Shahar T, Rozovski U, Hess KR, Hossain A, Gumin J, Gao F, Fuller GN, Goodman L, Sulman EP and Lang FF: Percentage of mesenchymal stem cells in high-grade glioma tumor samples correlates with patient survival. Neuro Oncol. 19:660–668. 2017.PubMed/NCBI

99 

Yi D, Xiang W, Zhang Q, Cen Y, Su Q, Zhang F, Lu Y, Zhao H and Fu P: Human Glioblastoma-derived mesenchymal stem cell to pericytes transition and angiogenic capacity in glioblastoma microenvironment. Cellular physiology and Biochemistry. 46:279–290. 2018. View Article : Google Scholar : PubMed/NCBI

100 

Zhang Q, Yi D, Xue B, Wen WW, Lu YP, Abdelmaksou A, Sun MX, Yuan DT, Zhao HY, Xiong NX, et al: CD90 determined two subpopulations of glioma-associated mesenchymal stem cells with different roles in tumour progression. Cell Death Dis. 9:11012018. View Article : Google Scholar : PubMed/NCBI

101 

Zhang Q, Xiang W, Yi D, Xue B, Wen W, Abdelmaksoud A, Xiong N, Jiang X, Zhao H and Fu P: Current status and potential challenges of mesenchymal stem cell-based therapy for malignant gliomas. Stem Cell Res Ther. 9:2282018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Xue B, Xiang W, Zhang Q, Wang Y, Wang H, Yi D, Xiong N, Jiang X, Zhao H, Fu P, Fu P, et al: Roles of long non‑coding RNAs in the hallmarks of glioma (Review). Oncol Lett 20: 83, 2020.
APA
Xue, B., Xiang, W., Zhang, Q., Wang, Y., Wang, H., Yi, D. ... Fu, P. (2020). Roles of long non‑coding RNAs in the hallmarks of glioma (Review). Oncology Letters, 20, 83. https://doi.org/10.3892/ol.2020.11944
MLA
Xue, B., Xiang, W., Zhang, Q., Wang, Y., Wang, H., Yi, D., Xiong, N., Jiang, X., Zhao, H., Fu, P."Roles of long non‑coding RNAs in the hallmarks of glioma (Review)". Oncology Letters 20.4 (2020): 83.
Chicago
Xue, B., Xiang, W., Zhang, Q., Wang, Y., Wang, H., Yi, D., Xiong, N., Jiang, X., Zhao, H., Fu, P."Roles of long non‑coding RNAs in the hallmarks of glioma (Review)". Oncology Letters 20, no. 4 (2020): 83. https://doi.org/10.3892/ol.2020.11944
Copy and paste a formatted citation
x
Spandidos Publications style
Xue B, Xiang W, Zhang Q, Wang Y, Wang H, Yi D, Xiong N, Jiang X, Zhao H, Fu P, Fu P, et al: Roles of long non‑coding RNAs in the hallmarks of glioma (Review). Oncol Lett 20: 83, 2020.
APA
Xue, B., Xiang, W., Zhang, Q., Wang, Y., Wang, H., Yi, D. ... Fu, P. (2020). Roles of long non‑coding RNAs in the hallmarks of glioma (Review). Oncology Letters, 20, 83. https://doi.org/10.3892/ol.2020.11944
MLA
Xue, B., Xiang, W., Zhang, Q., Wang, Y., Wang, H., Yi, D., Xiong, N., Jiang, X., Zhao, H., Fu, P."Roles of long non‑coding RNAs in the hallmarks of glioma (Review)". Oncology Letters 20.4 (2020): 83.
Chicago
Xue, B., Xiang, W., Zhang, Q., Wang, Y., Wang, H., Yi, D., Xiong, N., Jiang, X., Zhao, H., Fu, P."Roles of long non‑coding RNAs in the hallmarks of glioma (Review)". Oncology Letters 20, no. 4 (2020): 83. https://doi.org/10.3892/ol.2020.11944
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team