|
1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Lampe JW: Dairy products and cancer. J Am
Coll Nutr. 30 (5 Suppl 1):464S–470S. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Lambert M, Jambon S, Depauw S and
David-Cordonnier MH: Targeting transcription factors for cancer
treatment. Molecules. 23:14792018. View Article : Google Scholar
|
|
5
|
Bushweller JH: Targeting transcription
factors in cancer-from undruggable to reality. Nat Rev Cancer.
19:611–624. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Shioda T, Fenner MH and Isselbacher KJ:
MSG1 and its related protein MRG1 share a transcription activating
domain. Gene. 204:235–241. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Sun HB, Zhu YX, Yin T, Sledge G and Yang
YC: MRG1, the product of a melanocyte-specific gene related gene,
is a cytokine-inducible transcription factor with transformation
activity. Proc Natl Acad Sci USA. 95:13555–13560. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Bamforth SD, Braganca J, Eloranta JJ,
Murdoch JN, Marques FI, Kranc KR, Farza H, Henderson DJ, Hurst HC
and Bhattacharya S: Cardiac malformations, adrenal agenesis, neural
crest defects and exencephaly in mice lacking Cited2, a new Tfap2
co-activator. Nat Genet. 29:469–474. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Yin Z, Haynie J, Yang X, Han B,
Kiatchoosakun S, Restivo J, Yuan S, Prabhakar NR, Herrup K, Conlon
RA, et al: The essential role of Cited2, a negative regulator for
HIF-1alpha, in heart development and neurulation. Proc Natl Acad
Sci USA. 99:10488–10493. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Qu X, Lam E, Doughman YQ, Chen Y, Chou YT,
Lam M, Turakhia M, Dunwoodie SL, Watanabe M, Xu B, et al: Cited2, a
coactivator of HNF4alpha, is essential for liver development. EMBO
J. 26:4445–4456. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Xu B, Qu X, Gu S, Doughman YQ, Watanabe M,
Dunwoodie SL and Yang YC: Cited2 is required for fetal lung
maturation. Dev Biol. 317:95–105. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Bamforth SD, Braganca J, Farthing CR,
Schneider JE, Broadbent C, Michell AC, Clarke K, Neubauer S, Norris
D, Brown NA, et al: Cited2 controls left-right patterning and heart
development through a Nodal-Pitx2c pathway. Nat Genet.
36:1189–1196. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
13
|
Huang TQ, Wang Y, Ebrahem Q, Chen Y, Cheng
C, Doughman YQ, Watanabe M, Dunwoodie SL and Yang YC: Deletion of
HIF-1α partially rescues the abnormal hyaloid vascular system in
Cited2 conditional knockout mouse eyes. Mol Vis. 18:1260–1270.
2012.PubMed/NCBI
|
|
14
|
Bhattacharya S, Michels CL, Leung MK,
Arany ZP, Kung AL and Livingston DM: Functional role of p35srj, a
novel p300/CBP binding protein, during transactivation by HIF-1.
Genes Dev. 13:64–75. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Glenn DJ and Maurer RA: MRG1 binds to the
LIM domain of Lhx2 and may function as a coactivator to stimulate
glycoprotein hormone alpha-subunit gene expression. J Biol Chem.
274:36159–36167. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bragança J, Eloranta JJ, Bamforth SD,
Ibbitt JC, Hurst HC and Bhattacharya S: Physical and functional
interactions among AP-2 transcription factors, p300/CREB-binding
protein, and CITED2. J Biol Chem. 278:16021–16029. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Tien ES, Davis JW and Vanden Heuvel JP:
Identification of the CREB-binding protein/p300-interacting protein
CITED2 as a peroxisome proliferator-activated receptor alpha
coregulator. J Biol Chem. 279:24053–24063. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Chou YT, Wang H, Chen Y, Danielpour D and
Yang YC: Cited2 modulates TGF-beta-mediated upregulation of MMP9.
Oncogene. 25:5547–5560. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Lau WM, Doucet M, Huang D, Weber KL and
Kominsky SL: CITED2 modulates estrogen receptor transcriptional
activity in breast cancer cells. Biochem Biophys Res Commun.
437:261–266. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Fujita M, Takasaki T, Nakajima N, Kawano
T, Shimura Y and Sakamoto H: MRG-1, a mortality factor-related
chromodomain protein, is required maternally for primordial germ
cells to initiate mitotic proliferation in C. Elegans. Mech Dev.
114:61–69. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chou YT, Hsieh CH, Chiou SH, Hsu CF, Kao
YR, Lee CC, Chung CH, Wang YH, Hsu HS, Pang ST, et al: CITED2
functions as a molecular switch of cytokine-induced proliferation
and quiescence. Cell Death Differ. 19:2015–2028. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Shin SH, Lee GY, Lee M, Kang J, Shin HW,
Chun YS and Park JW: Aberrant expression of CITED2 promotes
prostate cancer metastasis by activating the nucleolin-AKT pathway.
Nat Commun. 9:41132018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kranc KR, Bamforth SD, Braganca J, Norbury
C, van Lohuizen M and Bhattacharya S: Transcriptional coactivator
Cited2 induces Bmi1 and Mel18 and controls fibroblast proliferation
via Ink4a/ARF. Mol Cell Biol. 23:7658–7666. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Regel I, Merkl L, Friedrich T,
Burgermeister E, Zimmermann W, Einwächter H, Herrmann K, Langer R,
Röcken C, Hofheinz R, et al: Pan-histone deacetylase inhibitor
panobinostat sensitizes gastric cancer cells to anthracyclines via
induction of CITED2. Gastroenterology. 143:99–109.e10. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lau WM, Weber KL, Doucet M, Chou YT, Brady
K, Kowalski J, Tsai HL, Yang J and Kominsky SL: Identification of
prospective factors promoting osteotropism in breast cancer: A
potential role for CITED2. Int J Cancer. 126:876–884.
2010.PubMed/NCBI
|
|
26
|
Jayaraman S, Doucet M, Lau WM and Kominsky
SL: CITED2 modulates breast cancer metastatic ability through
effects on IKKα. Mol Cancer Res. 14:730–739. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Reya T, Morrison SJ, Clarke MF and
Weissman IL: Stem cells, cancer, and cancer stem cells. Nature.
414:105–111. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Chen W, Dong J, Haiech J, Kilhoffer MC and
Zeniou M: Cancer stem cell quiescence and plasticity as major
challenges in cancer therapy. Stem Cells Int. 2016:17409362016.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang
J, Zhang G, Wang X, Dong Z, Chen F and Cui H: Targeting cancer stem
cell pathways for cancer therapy. Signal Transduct Target Ther.
5:82020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Bjerkvig R, Tysnes BB, Aboody KS, Najbauer
J and Terzis AJ: Opinion: The origin of the cancer stem cell:
Current controversies and new insights. Nat Rev Cancer. 5:899–904.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Pugh CW: Modulation of the hypoxic
response. Adv Exp Med Biol. 903:259–271. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Gezer D, Vukovic M, Soga T, Pollard PJ and
Kranc KR: Concise review: genetic dissection of hypoxia signaling
pathways in normal and leukemic stem cells. Stem Cells.
32:1390–1397. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Du J and Yang YC: HIF-1 and its antagonist
Cited2: Regulators of HSC quiescence. Cell Cycle. 11:2413–2414.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Henze AT and Acker T: Feedback regulators
of hypoxia-inducible factors and their role in cancer biology. Cell
Cycle. 9:2749–2763. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
De Guzman RN, Martinez-Yamout MA, Dyson HJ
and Wright PE: Interaction of the TAZ1 domain of the CREB-binding
protein with the activation domain of CITED2: Regulation by
competition between intrinsically unstructured ligands for
non-identical binding sites. J Biol Chem. 279:3042–3049. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Matt T, Martinez-Yamout MA, Dyson HJ and
Wright PE: The CBP/p300 TAZ1 domain in its native state is not a
binding partner of MDM2. Biochem J. 381:685–691. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yoon H, Lim JH, Cho CH, Huang LE and Park
JW: CITED2 controls the hypoxic signaling by snatching p300 from
the two distinct activation domains of HIF-1α. Biochim Biophys
Acta. 1813:2008–2016. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Berlow RB, Martinez-Yamout MA, Dyson HJ
and Wright PE: Role of backbone dynamics in modulating the
interactions of disordered ligands with the TAZ1 domain of the
CREB-binding protein. Biochemistry. 58:1354–1362. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ruiz-Ortiz I and De Sancho D: Competitive
binding of HIF-1α and CITED2 to the TAZ1 domain of CBP from
molecular simulations. Phys Chem Chem Phys. 22:8118–8127. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Chen CM, Bentham J, Cosgrove C, Braganca
J, Cuenda A, Bamforth SD, Schneider JE, Watkins H, Keavney B,
Davies B and Bhattacharya S: Functional significance of SRJ domain
mutations in CITED2. PLoS One. 7:e462562012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
MacDonald ST, Bamforth SD, Braganca J,
Chen CM, Broadbent C, Schneider JE, Schwartz RJ and Bhattacharya S:
A cell-autonomous role of Cited2 in controlling myocardial and
coronary vascular development. Eur Heart J. 34:2557–2565. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Jayaraman S, Doucet M and Kominsky SL:
Down-regulation of CITED2 attenuates breast tumor growth, vessel
formation and TGF-β-induced expression of VEGFA. Oncotarget.
8:6169–6178. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Gonzalez YR, Zhang Y, Behzadpoor D, Cregan
S, Bamforth S, Slack RS and Park DS: CITED2 signals through
peroxisome proliferator-activated receptor-gamma to regulate death
of cortical neurons after DNA damage. J Neurosci. 28:5559–5569.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Kim GD, Das R, Rao X, Zhong J, Deiuliis
JA, Ramirez-Bergeron DL, Rajagopalan S and Mahabeleshwar GH: CITED2
restrains proinflammatory macrophage activation and response. Mol
Cell Biol. 38:e00452–17. 2018.PubMed/NCBI
|
|
45
|
Liu Z, Wang Y, Dou C, Sun L, Li Q, Wang L,
Xu Q, Yang W, Liu Q and Tu K: MicroRNA-1468 promotes tumor
progression by activating PPAR-γ-mediated AKT signaling in human
hepatocellular carcinoma. J Exp Clin Cancer Res. 37:492018.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Buaas FW, Val P and Swain A: The
transcription co-factor CITED2 functions during sex determination
and early gonad development. Hum Mol Genet. 18:2989–3001. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Val P, Martinez-Barbera JP and Swain A:
Adrenal development is initiated by Cited2 and Wt1 through
modulation of Sf-1 dosage. Development. 134:2349–2358. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Weninger WJ, Lopes Floro K, Bennett MB,
Withington SL, Preis JI, Barbera JP, Mohun TJ and Dunwoodie SL:
Cited2 is required both for heart morphogenesis and establishment
of the left-right axis in mouse development. Development.
132:1337–1348. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Bentham J, Michell AC, Lockstone H, Andrew
D, Schneider JE, Brown NA and Bhattacharya S: Maternal high-fat
diet interacts with embryonic Cited2 genotype to reduce Pitx2c
expression and enhance penetrance of left-right patterning defects.
Hum Mol Genet. 19:3394–3401. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Lopes Floro K, Artap ST, Preis JI, Fatkin
D, Chapman G, Furtado MB, Harvey RP, Hamada H, Sparrow DB and
Dunwoodie SL: Loss of Cited2 causes congenital heart disease by
perturbing left-right patterning of the body axis. Hum Mol Genet.
20:1097–1110. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Combes AN, Spiller CM, Harley VR, Sinclair
AH, Dunwoodie SL, Wilhelm D and Koopman P: Gonadal defects in
Cited2-mutant mice indicate a role for SF1 in both testis and ovary
differentiation. Int J Dev Biol. 54:683–689. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Berlow RB, Dyson HJ and Wright PE:
Hypersensitive termination of the hypoxic response by a disordered
protein switch. Nature. 543:447–451. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Shin DH, Li SH, Chun YS, Huang LE, Kim MS
and Park JW: CITED2 mediates the paradoxical responses of
HIF-1alpha to proteasome inhibition. Oncogene. 27:1939–1944. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Freedman SJ, Sun ZY, Kung AL, France DS,
Wagner G and Eck MJ: Structural basis for negative regulation of
hypoxia-inducible factor-1alpha by CITED2. Nat Struct Biol.
10:504–512. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
55
|
Yokota H, Goldring MB and Sun HB:
CITED2-mediated regulation of MMP-1 and MMP-13 in human
chondrocytes under flow shear. J Biol Chem. 278:47275–47280. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
He Z, Leong DJ, Zhuo Z, Majeska RJ,
Cardoso L, Spray DC, Goldring MB, Cobelli NJ and Sun HB:
Strain-induced mechanotransduction through primary cilia,
extracellular ATP, purinergic calcium signaling, and ERK1/2
transactivates CITED2 and downregulates MMP-1 and MMP-13 gene
expression in chondrocytes. Osteoarthritis Cartilage. 24:892–901.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
He Z, Leong DJ, Xu L, Hardin JA, Majeska
RJ, Schaffler MB, Thi MM, Yang L, Goldring MB, Cobelli NJ and Sun
HB: CITED2 mediates the cross-talk between mechanical loading and
IL-4 to promote chondroprotection. Ann N Y Acad Sci. 1442:128–137.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Pacheco-Leyva I, Matias AC, Oliveira DV,
Santos JM, Nascimento R, Guerreiro E, Michell AC, van De Vrugt AM,
Machado-Oliveira G, Ferreira G, et al: CITED2 cooperates with ISL1
and promotes cardiac differentiation of mouse embryonic stem cells.
Stem Cell Reports. 7:1037–1049. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Guo T, Wen XZ, Li ZY, Han HB, Zhang CG,
Bai YH, Xing XF, Cheng XJ, Du H, Hu Y, et al: ISL1 predicts poor
outcomes for patients with gastric cancer and drives tumor
progression through binding to the ZEB1 promoter together with
SETD7. Cell Death Dis. 10:332019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhang Y, Wang L, Gao P, Sun Z, Li N, Lu Y,
Shen J, Sun J, Yang Y, Dai H and Cai H: ISL1 promotes cancer
progression and inhibits cisplatin sensitivity in triple-negative
breast cancer cells. Int J Mol Med. 42:2343–2352. 2018.PubMed/NCBI
|
|
61
|
Li L, Sun F, Chen X and Zhang M: ISL1 is
upregulated in breast cancer and promotes cell proliferation,
invasion, and angiogenesis. Onco Targets Ther. 11:781–789. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Chen Y, Haviernik P, Bunting KD and Yang
YC: Cited2 is required for normal hematopoiesis in the murine fetal
liver. Blood. 110:2889–2898. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Kranc KR, Schepers H, Rodrigues NP,
Bamforth S, Villadsen E, Ferry H, Bouriez-Jones T, Sigvardsson M,
Bhattacharya S, Jacobsen SE and Enver T: Cited2 is an essential
regulator of adult hematopoietic stem cells. Cell Stem Cell.
5:659–665. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Du J and Yang YC: Cited2 in hematopoietic
stem cell function. Curr Opin Hematol. 20:301–307. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Korthuis PM, Berger G, Bakker B,
Rozenveld-Geugien M, Jaques J, de Haan G, Schuringa JJ, Vellenga E
and Schepers H: CITED2-mediated human hematopoietic stem cell
maintenance is critical for acute myeloid leukemia. Leukemia.
29:625–635. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Mattes K, Geugien M, Korthuis PM,
Brouwers-Vos AZ, Fehrmann RSN, Todorova TI, Steidl U, Vellenga E
and Schepers H: Transcriptional regulators CITED2 and PU.1
cooperate in maintaining hematopoietic stem cells. Exp Hematol.
73:38–49.e7. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Bi Y, Ehirchiou D, Kilts TM, Inkson CA,
Embree MC, Sonoyama W, Li L, Leet AI, Seo BM, Zhang L, et al:
Identification of tendon stem/progenitor cells and the role of the
extracellular matrix in their niche. Nat Med. 13:1219–1227. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhou Z, Akinbiyi T, Xu L, Ramcharan M,
Leong DJ, Ros SJ, Colvin AC, Schaffler MB, Majeska RJ, Flatow EL
and Sun HB: Tendon-derived stem/progenitor cell aging: Defective
self-renewal and altered fate. Aging Cell. 9:911–915. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Hu C, Zhang Y, Tang K, Luo Y, Liu Y and
Chen W: Downregulation of CITED2 contributes to TGFβ-mediated
senescence of tendon-derived stem cells. Cell Tissue Res.
368:93–104. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
AlAbdi L, He M, Yang Q, Norvil AB and
Gowher H: The transcription factor Vezf1 represses the expression
of the antiangiogenic factor Cited2 in endothelial cells. J Biol
Chem. 293:11109–11118. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Chen X, Xu H, Yuan P, Fang F, Huss M, Vega
VB, Wong E, Orlov YL, Zhang W, Jiang J, et al: Integration of
external signaling pathways with the core transcriptional network
in embryonic stem cells. Cell. 133:1106–1117. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhong X and Jin Y: Critical roles of
coactivator p300 in mouse embryonic stem cell differentiation and
Nanog expression. J Biol Chem. 284:9168–9175. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Pritsker M, Ford NR, Jenq HT and Lemischka
IR: Genomewide gain-of-function genetic screen identifies
functionally active genes in mouse embryonic stem cells. Proc Natl
Acad Sci USA. 103:6946–6951. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Li Q, Ramirez-Bergeron DL, Dunwoodie SL
and Yang YC: Cited2 gene controls pluripotency and cardiomyocyte
differentiation of murine embryonic stem cells through Oct4 gene. J
Biol Chem. 287:29088–29100. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Santos JMA, Mendes-Silva L, Afonso V,
Martins G, Machado RSR, Lopes JA, Cancela L, Futschik ME,
Sachinidis A, Gavaia P and Bragança J: Exogenous WNT5A and WNT11
proteins rescue CITED2 dysfunction in mouse embryonic stem cells
and zebrafish morphants. Cell Death Dis. 10:5822019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kranc KR, Oliveira DV, Armesilla-Diaz A,
Pacheco-Leyva I, Catarina Matias A, Luisa Escapa A, Subramani C,
Wheadon H, Trindade M, Nichols J, et al: Acute loss of Cited2
impairs Nanog expression and decreases self-renewal of mouse
embryonic stem cells. Stem Cells. 33:699–712. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Fakunle ES: iPSCs for personalized
medicine: What will it take for Africa? Trends Mol Med. 18:695–699.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Gurwitz D: Human iPSC-derived neurons and
lymphoblastoid cells for personalized medicine research in
neuropsychiatric disorders. Dialogues Clin Neurosci. 18:267–276.
2016.PubMed/NCBI
|
|
79
|
Takahashi K and Yamanaka S: Induction of
pluripotent stem cells from mouse embryonic and adult fibroblast
cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Takahashi K, Okita K, Nakagawa M and
Yamanaka S: Induction of pluripotent stem cells from fibroblast
cultures. Nat Protoc. 2:3081–3089. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Charneca J, Matias AC, Escapa AL,
Fernandes C, Alves A, Santos JMA, Nascimento R and Bragança J:
Ectopic expression of CITED2 prior to reprogramming, promotes and
homogenises the conversion of somatic cells into induced
pluripotent stem cells. Exp Cell Res. 358:290–300. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Li H, Collado M, Villasante A, Strati K,
Ortega S, Cañamero M, Blasco MA and Serrano M: The Ink4/Arf locus
is a barrier for iPS cell reprogramming. Nature. 460:1136–1139.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Mahmoudi S and Brunet A: Aging and
reprogramming: A two-way street. Curr Opin Cell Biol. 24:744–756.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Uhlen M, Zhang C, Lee S, Sjöstedt E,
Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z, Edfors F, et
al: A pathology atlas of the human cancer transcriptome. Science.
357:eaan25072017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Minemura H, Takagi K, Sato A, Takahashi H,
Miki Y, Shibahara Y, Watanabe M, Ishida T, Sasano H and Suzuki T:
CITED2 in breast carcinoma as a potent prognostic predictor
associated with proliferation, migration and chemoresistance.
Cancer Sci. 107:1898–1908. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Yang X, Vasudevan P, Parekh V, Penev A and
Cunningham JM: Bridging cancer biology with the clinic: Relative
expression of a GRHL2-mediated gene-set pair predicts breast cancer
metastasis. PLoS One. 8:e561952013. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
van Agthoven T, Sieuwerts AM, Veldscholte
J, Meijer-van Gelder ME, Smid M, Brinkman A, den Dekker AT, Leroy
IM, van Ijcken WF, Sleijfer S, et al: CITED2 and NCOR2 in
anti-oestrogen resistance and progression of breast cancer. Br J
Cancer. 101:1824–1832. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
De Palma M and Lewis CE: Cancer:
Macrophages limit chemotherapy. Nature. 472:303–304. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Nielsen SR and Schmid MC: Macrophages as
key drivers of cancer progression and metastasis. Mediators
Inflamm. 2017:96247602017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Pollard JW: Tumour-educated macrophages
promote tumour progression and metastasis. Nat Rev Cancer. 4:71–78.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Ruffell B and Coussens LM: Macrophages and
therapeutic resistance in cancer. Cancer Cell. 27:462–472. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Jayaraman S, Doucet M and Kominsky SL:
CITED2 attenuates macrophage recruitment concordant with the
downregulation of CCL20 in breast cancer cells. Oncol Lett.
15:871–878. 2018.PubMed/NCBI
|
|
93
|
Greijer AE and van der Wall E: The role of
hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J
Clin Pathol. 57:1009–1014. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Bakker WJ, Harris IS and Mak TW: FOXO3a is
activated in response to hypoxic stress and inhibits HIF1-induced
apoptosis via regulation of CITED2. Mol Cell. 28:941–953. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Du J, Li Q, Tang F, Puchowitz MA, Fujioka
H, Dunwoodie SL, Danielpour D and Yang YC: Cited2 is required for
the maintenance of glycolytic metabolism in adult hematopoietic
stem cells. Stem Cells Dev. 23:83–94. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Deschler B and Lübbert M: Acute myeloid
leukemia: Epidemiology and etiology. Cancer. 107:2099–2107. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Mattes K, Berger G, Geugien M, Vellenga E
and Schepers H: CITED2 affects leukemic cell survival by
interfering with p53 activation. Cell Death Dis. 8:e31322017.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Jang SM, An JH, Kim CH, Kim JW and Choi
KH: Transcription factor FOXA2-centered transcriptional regulation
network in non-small cell lung cancer. Biochem Biophys Res Commun.
463:961–967. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Wu ZZ, Sun NK and Chao CC: Knockdown of
CITED2 using short-hairpin RNA sensitizes cancer cells to cisplatin
through stabilization of p53 and enhancement of p53-dependent
apoptosis. J Cell Physiol. 226:2415–2428. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Yao Y, Zhang T, Qi L, Liu R, Liu G, Wang
X, Li J, Li J and Sun C: Competitive endogenous RNA network
construction and comparison of lung squamous cell carcinoma in
smokers and nonsmokers. Dis Markers. 2019:52927872019. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Attard G and Antonarakis ES: Prostate
cancer: AR aberrations and resistance to abiraterone or
enzalutamide. Nat Rev Urol. 13:697–698. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Bai L and Merchant JL: A role for CITED2,
a CBP/p300 interacting protein, in colon cancer cell invasion. FEBS
Lett. 581:5904–5910. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Li XX, Zheng HT, Peng JJ, Huang LY, Shi
DB, Liang L and Cai SJ: RNA-seq reveals determinants for irinotecan
sensitivity/resistance in colorectal cancer cell lines. Int J Clin
Exp Pathol. 7:2729–2736. 2014.PubMed/NCBI
|
|
104
|
Zhao X, Cai H, Wang X and Ma L: Discovery
of signature genes in gastric cancer associated with prognosis.
Neoplasma. 63:239–245. 2016.PubMed/NCBI
|
|
105
|
Dun B, Sharma A, Teng Y, Liu H, Purohit S,
Xu H, Zeng L and She JX: Mycophenolic acid inhibits migration and
invasion of gastric cancer cells via multiple molecular pathways.
PLoS One. 8:e817022013. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Tang Z, He G, Xu J and Zhongfu L:
Knockdown of Cbp/P300-interacting transactivator with Glu/Asp-rich
carboxy-terminal domain 2 inhibits cell division and increases
apoptosis in gastric cancer. J Surg Res. 211:1–7. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Barbera JP, Rodriguez TA, Greene ND,
Weninger WJ, Simeone A, Copp AJ, Beddington RS and Dunwoodie S:
Folic acid prevents exencephaly in Cited2 deficient mice. Hum Mol
Genet. 11:283–293. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Du J, Chen Y, Li Q, Han X, Cheng C, Wang
Z, Danielpour D, Dunwoodie SL, Bunting KD and Yang YC: HIF-1α
deletion partially rescues defects of hematopoietic stem cell
quiescence caused by Cited2 deficiency. Blood. 119:2789–2798. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Liu YC, Chang PY and Chao CC: CITED2
silencing sensitizes cancer cells to cisplatin by inhibiting p53
trans-activation and chromatin relaxation on the ERCC1 DNA repair
gene. Nucleic Acids Res. 43:10760–10781. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Yoshida T, Sekine T, Aisaki K, Mikami T,
Kanno J and Okayasu I: CITED2 is activated in ulcerative colitis
and induces p53-dependent apoptosis in response to butyric acid. J
Gastroenterol. 46:339–349. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Jiang Y, Zhou Z, Fei R, Zhou X, Wang J,
Tao Y, Li J and Chen T: Role of miR-182-5p overexpression in
trichloroethylene-induced abnormal cell cycle functions in human
HepG2 cells. J Toxicol Environ Health A. 82:920–927. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Rasti A, Mehrazma M, Madjd Z, Abolhasani
M, Saeednejad Zanjani L and Asgari M: Co-expression of cancer stem
cell markers OCT4 and NANOG predicts poor prognosis in renal cell
carcinomas. Sci Rep. 8:117392018. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Ponti D, Costa A, Zaffaroni N, Pratesi G,
Petrangolini G, Coradini D, Pilotti S, Pierotti MA and Daidone MG:
Isolation and in vitro propagation of tumorigenic breast cancer
cells with stem/progenitor cell properties. Cancer Res.
65:5506–5511. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Jeter CR, Yang T, Wang J, Chao HP and Tang
DG: Concise review: NANOG in cancer stem cells and tumor
development: An update and outstanding questions. Stem Cells.
33:2381–2390. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Yu F, Li J, Chen H, Fu J, Ray S, Huang S,
Zheng H and Ai W: Kruppel-like factor 4 (KLF4) is required for
maintenance of breast cancer stem cells and for cell migration and
invasion. Oncogene. 30:2161–2172. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Prost S, Relouzat F, Spentchian M,
Ouzegdouh Y, Saliba J, Massonnet G, Beressi JP, Verhoeyen E,
Raggueneau V, Maneglier B, et al: Erosion of the chronic myeloid
leukaemia stem cell pool by PPARγ agonists. Nature. 525:380–383.
2015. View Article : Google Scholar : PubMed/NCBI
|