Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
October-2020 Volume 20 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2020 Volume 20 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Dihydrotanshinone I inhibits human glioma cell proliferation via the activation of ferroptosis

  • Authors:
    • Shougang Tan
    • Xiaoqun Hou
    • Lin Mei
  • View Affiliations / Copyright

    Affiliations: Department of Neurosurgery, Qingdao Municipal Hospital, Qingdao, Shandong 266000, P.R. China
    Copyright: © Tan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 122
    |
    Published online on: August 13, 2020
       https://doi.org/10.3892/ol.2020.11980
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The aim of the present study was to investigate the effect of dihydrotanshinone I (DHI) on the survival of human glioma cells and the expression levels of ferroptosis‑associated proteins. Human U251 and U87 glioma cells were cultured in vitro and treated with different concentrations of DHI and/or the ferroptosis inhibitor ferrostatin‑1. A Cell Counting Kit‑8 assay was used to determine the cell survival rate. The cells were further analyzed to determine their 5‑, 12‑ and 15‑hydroxyeicosatetraenoic acid (HETE), lactate dehydrogenase (LDH) and malondialdehyde (MDA) levels, and reduced glutathione (GSH)/oxidized glutathione (GSSG) ratios. Western blotting was used to detect ferroptosis‑associated glutathione peroxidase 4 (GPX4) and long‑chain acyl‑CoA synthetase 4 (ACSL‑4). Changes in the mitochondrial membrane potential (MMP) were also observed using tetramethylrhodamine methyl ester staining and confocal fluorescence microscopy. The results revealed that DHI inhibited the proliferation of human glioma cells. Following treatment of the U251 and U87 cells with DHI, changes in the expression levels of ferroptosis‑associated proteins were observed; the expression level of GPX4 decreased and that of ACSL‑4 increased. DHI also increased the levels of LDH and MDA in the human glioma cells and reduced the GSH/GSSG ratio. The DHI‑treated cells also exhibited a marked reduction in MMP. Furthermore, ferrostatin‑1 blocked the DHI‑induced effects in human glioma cells. From these results, it may be concluded that DHI inhibits the proliferation of human glioma cells via the induction of ferroptosis.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Ohtaki S, Wanibuchi M, Kataoka-Sasaki Y, Sasaki M, Oka S, Noshiro S, Akiyama Y, Mikami T, Mikuni N, Kocsis JD and Honmou O: ACTC1 as an invasion and prognosis marker in glioma. J Neurosurg. 126:467–475. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Ohgaki H and Kleihues P: Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol. 64:479–489. 2005. View Article : Google Scholar : PubMed/NCBI

3 

Hadjipanayis CG and Van Meir EG: Tumor initiating cells in malignant gliomas: Biology and implications for therapy. J Mol Med (Berl). 87:363–374. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Becker D, Scherer M, Neher P, Jungk C, Jesser J, Pflüger I, Brinster R, Bendszus M, Bruckner T, Maier-Hein K and Unterberg A: Going beyond Diffusion Tensor Imaging tractography in eloquent glioma surgery-high resolution fiber tractography: Q-ball or constrained spherical deconvolution? World Neurosurg. 134:e596–e609. 2020. View Article : Google Scholar : PubMed/NCBI

5 

Cajigas I, Mahavadi AK, Shah AH, Borowy V, Abitbol N, Ivan ME, Komotar RJ and Epstein RH: Analysis of intra-operative variables as predictors of 30-day readmission in patients undergoing glioma surgery at a single center. J Neurooncol. 145:509–518. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Slof J, Diez Valle R and Galvan J: Cost-effectiveness of 5-aminolevulinic acid-induced fluorescence in malignant glioma surgery. Neurologia. 30:163–168. 2015.(In En, Spanish). View Article : Google Scholar : PubMed/NCBI

7 

Brokinkel B, Yavuz M, Warneke N, Brentrup A, Hess K, Bleimüller C, Wölfer J and Stummer W: Endoscopic management of a low-grade thalamic glioma: A safe alternative to open microsurgery? Acta Neurochir (Wien). 159:1237–1240. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Maruyama A, Yasuoka S, Katoh N and Asai J: Radiation-induced osteosarcoma of the skull mimicking cutaneous tumor after treatment for frontal glioma. J Dermatol. 47:69–71. 2020. View Article : Google Scholar : PubMed/NCBI

9 

Siva S, Kothari G, Muacevic A, Louie AV, Slotman BJ, The BS and Lo SS: Radiotherapy for renal cell carcinoma: Renaissance of an overlooked approach. Nat Rev Urol. 14:549–563. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Milosevic M, Gospodarowicz M, Zietman A, Abbas F, Haustermans K, Moonen L, Rödel C, Schoenberg M and Shipley W: Radiotherapy for bladder cancer. Urology. 69 (1 Suppl):S80–S92. 2007. View Article : Google Scholar

11 

Bitterman DS, MacDonald SM, Yock TI, Tarbell NJ, Wright KD, Chi SN, Marcus KJ and Haas-Kogan DA: Revisiting the role of radiation therapy for pediatric low-grade glioma. J Clin Oncol. 37:3335–3339. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Lu VM, Welby JP, Laack NN, Mahajan A and Daniels DJ: Pseudoprogression after radiation therapies for low grade glioma in children and adults: A systematic review and meta-analysis. Radiother Oncol. 142:36–42. 2020. View Article : Google Scholar : PubMed/NCBI

13 

Kieran MW, Goumnerova L, Manley P, Chi SN, Marcus KJ, Manzanera AG, Silva Polanco ML, Guzik BW, Aguilar-Cordova E, Diaz-Montero CM, et al: Phase I study of gene-mediated cytotoxic immunotherapy with AdV-tk as adjuvant to surgery and radiation for pediatric malignant glioma and recurrent ependymoma. Neuro Oncol. 21:537–546. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Wang X, Morris-Natschke SL and Lee KH: New developments in the chemistry and biology of the bioactive constituents of Tanshen. Med Res Rev. 27:133–148. 2007. View Article : Google Scholar : PubMed/NCBI

15 

Tzen JT, Jinn TR, Chen YC, Li FY, Cheng FC, Shi LS, She HK, Chen BC, Hsieh V and Tu ML: Magnesium lithospermate B possesses inhibitory activity on Na+,K+-ATPase and neuroprotective effects against ischemic stroke. Acta Pharmacol Sin. 28:609–615. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Lee DS and Lee SH: Biological activity of dihydrotanshinone I: Effect on apoptosis. J Biosci Bioeng. 89:292–293. 2000. View Article : Google Scholar : PubMed/NCBI

17 

Tsai SL, Suk FM, Wang CI, Liu DZ, Hou WC, Lin PJ, Hung LF and Liang YC: Anti-tumor potential of 15,16-dihydrotanshinone I against breast adenocarcinoma through inducing G1 arrest and apoptosis. Biochem Pharmacol. 74:1575–1586. 2007. View Article : Google Scholar : PubMed/NCBI

18 

Wang L, Hu T, Shen J, Zhang L, Chan RLY, Lu L, Li M, Cho CH and Wu WKK: Dihydrotanshinone I induced apoptosis and autophagy through caspase dependent pathway in colon cancer. Phytomedicine. 22:1079–1087. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Cheng R, Chen J, Wang Y, Ge Y, Huang Z and Zhang G: Dihydrotanshinone induces apoptosis of SGC7901 and MGC803 cells via activation of JNK and p38 signalling pathways. Pharm Biol. 54:3019–3025. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Cheng J, Fan YQ, Liu BH, Zhou H, Wang JM and Chen QX: ACSL4 suppresses glioma cells proliferation via activating ferroptosis. Oncol Rep. 43:147–158. 2020.PubMed/NCBI

21 

Houessinon A, Francois C, Sauzay C, Louandre C, Mongelard G, Godin C, Bodeau S, Takahashi S, Saidak Z, Gutierrez L, et al: Metallothionein-1 as a biomarker of altered redox metabolism in hepatocellular carcinoma cells exposed to sorafenib. Mol Cancer. 15:382016. View Article : Google Scholar : PubMed/NCBI

22 

Ooko E, Saeed ME, Kadioglu O, Sarvi S, Colak M, Elmasaoudi K, Janah R, Greten HJ and Efferth T: Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine. 22:1045–1054. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R and Tang D: Ferroptosis: Process and function. Cell Death Differ. 23:369–379. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Dixon SJ and Stockwell BR: The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 10:9–17. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 171:273–285. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Lu B, Chen XB, Ying MD, He QJ, Cao J and Yang B: The role of ferroptosis in cancer development and treatment response. Front Pharmacol. 8:9922018. View Article : Google Scholar : PubMed/NCBI

28 

Wenzel SE, Tyurina YY, Zhao J, St Croix CM, Dar HH, Mao G, Tyurin VA, Anthonymuthu TS, Kapralov AA, Amoscato AA, et al: PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell. 171:628–641. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R and Tang D: Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 63:173–184. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Lin YS, Shen YC, Wu CY, Tsai YY, Yang YH, Lin YY, Kuan FC, Lu CN, Chang GH, Tsai MS, et al: Danshen improves survival of patients with breast cancer and dihydroisotanshinone I induces ferroptosis and apoptosis of breast cancer cells. Front Pharmacol. 10:12262019. View Article : Google Scholar : PubMed/NCBI

32 

Parhamifar L, Andersen H and Moghimi SM: Lactate dehydrogenase assay for assessment of polycation cytotoxicity. Methods Mol Biol. 1943:291–299. 2019. View Article : Google Scholar : PubMed/NCBI

33 

Shan Y, Liu B, Li L, Chang N, Li L, Wang H, Wang D, Feng H, Cheung C, Liao M, et al: Regulation of PINK1 by NR2B-containing NMDA receptors in ischemic neuronal injury. J Neurochem. 111:1149–1160. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Baysal M, Ilgin S, Kilic G, Kilic V, Ucarcan S and Atli O: Reproductive toxicity after levetiracetam administration in male rats: Evidence for role of hormonal status and oxidative stress. PLoS One. 12:e1759902017. View Article : Google Scholar

35 

Imai H, Matsuoka M, Kumagai T, Sakamoto T and Koumura T: Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis. Curr Top Microbiol Immunol. 403:143–170. 2017.PubMed/NCBI

36 

Li C, Deng X, Zhang W, Xie X, Conrad M, Liu Y, Angeli JPF and Lai L: Novel allosteric activators for ferroptosis regulator glutathione peroxidase 4. J Med Chem. 62:266–275. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Yuan H, Li X, Zhang X, Kang R and Tang D: Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun. 478:1338–1343. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Yang WS and Stockwell BR: Ferroptosis: Death by lipid peroxidation. Trends Cell Biol. 26:165–176. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Zhou Y: The protective effects of cryptochlorogenic acid on β-cells function in diabetes in vivo and vitro via inhibition of ferroptosis. Diabetes Metab Syndr Obes. 13:1921–1931. 2020. View Article : Google Scholar : PubMed/NCBI

40 

Friedmann Angeli AJ, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, et al: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 16:1180–1191. 2014. View Article : Google Scholar

41 

Zilka O, Shah R, Li B, Friedmann Angeli JP, Griesser M, Conrad M and Pratt DA: On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Cent Sci. 3:232–243. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Wang L, Ma R, Liu C, Liu H, Zhu R, Guo S, Tang M, Li Y, Niu J, Fu M, et al: Salvia miltiorrhiza: A potential red light to the development of cardiovascular diseases. Curr Pharm Des. 23:1077–1097. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Xu Y, Chen T, Li X, Qu YK, An JN, Zheng HX, Zhang ZJ and Lin N: Salvia miltiorrhiza bunge increases estrogen level without side effects on reproductive tissues in immature/ovariectomized mice. Aging (Albany NY). 9:156–172. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Zhang PR and Lü Q: A study on anticancer activity of tanshinone II A against human breast cancer. Sichuan Da Xue Xue Bao Yi Xue Ban. 40:245–249. 2009.(In Chinese). PubMed/NCBI

45 

Zhang HS, Zhang FJ, Li H, Liu Y, Du GY and Huang YH: Tanshinone A inhibits human esophageal cancer cell growth through miR-122-mediated PKM2 down-regulation. Arch Biochem Biophys. 598:50–56. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Liu D, Yuan R, Yang F and Zhang D: Effects of tanshinones mediated by forkhead box O3a transcription factor on the proliferation and apoptosis of lung cancer cells. Oncol Lett. 17:450–455. 2019.PubMed/NCBI

47 

Mosaddik MA: In vitro cytotoxicity of tanshinones isolated from Salvia miltiorrhiza Bunge against P388 lymphocytic leukemia cells. Phytomedicine. 10:682–685. 2003. View Article : Google Scholar : PubMed/NCBI

48 

Park JW, Lee SH, Yang MK, Lee JJ, Song MJ, Ryu SY, Chung HJ, Won HS, Lee CS, Kwon SH, et al: 15,16-dihydrotanshinone I, a major component from Salvia miltiorrhiza Bunge (Dansham), inhibits rabbit platelet aggregation by suppressing intracellular calcium mobilization. Arch Pharm Res. 31:47–53. 2008. View Article : Google Scholar : PubMed/NCBI

49 

Suk FM, Jou WJ, Lin RJ, Lin SY, Tzeng FY and Liang YC: 15,16-Dihydrotanshinone I-induced apoptosis in human colorectal cancer cells: Involvement of ATF3. Anticancer Res. 33:3225–3231. 2013.PubMed/NCBI

50 

Wu CY, Yang YH, Lin YY, Kuan FC, Lin YS, Lin WY, Tsai MY, Yang JJ, Cheng YC, Shu LH, et al: Anti-cancer effect of danshen and dihydroisotanshinone I on prostate cancer: Targeting the crosstalk between macrophages and cancer cells via inhibition of the STAT3/CCL2 signaling pathway. Oncotarget. 8:40246–40263. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Lin YY, Lee IY, Huang WS, Lin YS, Kuan FC, Shu LH, Cheng YC, Yang YH and Wu CY: Corrigendum to ‘Danshen improves survival of patients with colon cancer and dihydroisotanshinone I inhibit the proliferation of colon cancer cells via apoptosis and skp2 signaling pathway’. J Ethnopharmacol. 213:4462018. View Article : Google Scholar : PubMed/NCBI

52 

Ju LX, Chen Z and Ren RZ: Progress in research on the treatment of primary liver cancer with traditional Chinese medicine for activating blood to resolve stasis. Zhong Xi Yi Jie He Xue Bao. 3:491–494. 2005.(In Chinese). View Article : Google Scholar : PubMed/NCBI

53 

Aquilanti E, Miller J, Santagata S, Cahill DP and Brastianos PK: Updates in prognostic markers for gliomas. Neuro Oncol. 20 (Suppl 7):vii17–vii26. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Mair DB, Ames HM and Li R: Mechanisms of invasion and motility of high-grade gliomas in the brain. Mol Biol Cell. 29:2509–2515. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Hanaei S, Afshari K, Hirbod-Mobarakeh A, Mohajer B, Amir DD and Rezaei N: Therapeutic efficacy of specific immunotherapy for glioma: A systematic review and meta-analysis. Rev Neurosci. 29:443–461. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Natsume A and Yoshida J: Gene therapy for high-grade glioma: Current approaches and future directions. Cell Adh Migr. 2:186–191. 2008. View Article : Google Scholar : PubMed/NCBI

57 

Latunde-Dada GO: Ferroptosis: Role of lipid peroxidation, iron and ferritinophagy. Biochim Biophys Acta Gen Subj. 1861:1893–1900. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Zhang L, Liu W, Liu F, Wang Q, Song M, Yu Q, Tang K, Teng T, Wu D, Wang X, et al: IMCA Induces ferroptosis mediated by SLC7A11 through the AMPK/mTOR pathway in colorectal cancer. Oxid Med Cell Longev. 2020:16756132020. View Article : Google Scholar : PubMed/NCBI

59 

Homma T and Fujii J: Application of glutathione as anti-oxidative and anti-aging drugs. Curr Drug Metab. 16:560–571. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Wang Y, Zhao Y, Wang H, Zhang C, Wang M, Yang Y, Xu X and Hu Z: Histone demethylase KDM3B protects against ferroptosis by upregulating SLC7A11. FEBS Open Bio. 10:637–643. 2020. View Article : Google Scholar : PubMed/NCBI

61 

Kim DH, Kim WD, Kim SK, Moon DH and Lee SJ: TGF-β1-mediated repression of SLC7A11 drives vulnerability to GPX4 inhibition in hepatocellular carcinoma cells. Cell Death Dis. 11:4062020. View Article : Google Scholar : PubMed/NCBI

62 

Friedmann AJ and Conrad M: Selenium and GPX4, a vital symbiosis. Free Radic Biol Med. 127:153–159. 2018. View Article : Google Scholar : PubMed/NCBI

63 

Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng X, Freitas FP, Seibt T, et al: Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell. 172:409–422.e21. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Sui X, Zhang R, Liu S, Duan T, Zhai L, Zhang M, Han X, Xiang Y, Huang X, Lin H and Xie T: RSL3 drives ferroptosis through GPX4 Inactivation and ROS production in colorectal cancer. Front Pharmacol. 9:13712018. View Article : Google Scholar : PubMed/NCBI

65 

Belavgeni A, Bornstein SR and Linkermann A: Prominin-2 suppresses ferroptosis sensitivity. Dev Cell. 51:548–549. 2019. View Article : Google Scholar : PubMed/NCBI

66 

Li W, Li W, Leng Y, Xiong Y and Xia Z: Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress. DNA Cell Biol. 39:210–225. 2019. View Article : Google Scholar : PubMed/NCBI

67 

Liu N, Lin X and Huang C: Activation of the reverse transsulfuration pathway through NRF2/CBS confers erastin-induced ferroptosis resistance. Br J Cancer. 122:279–292. 2019. View Article : Google Scholar : PubMed/NCBI

68 

Guo J, Xu B, Han Q, Zhou H, Xia Y, Gong C, Dai X, Li Z and Wu G: Ferroptosis: A novel anti-tumor action for cisplatin. Cancer Res Treat. 50:445–460. 2018. View Article : Google Scholar : PubMed/NCBI

69 

Louandre C, Marcq I, Bouhlal H, Lachaier E, Godin C, Saidak Z, François C, Chatelain D, Debuysscher V, Barbare JC, et al: The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett. 356:(2 Pt B). 971–977. 2015. View Article : Google Scholar : PubMed/NCBI

70 

Louandre C, Ezzoukhry Z, Godin C, Barbare JC, Mazière JC, Chauffert B and Galmiche A: Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int J Cancer. 133:1732–1742. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Yu H, Yang C, Jian L, Guo S, Chen R, Li K, Qu F, Tao K, Fu Y, Luo F and Liu S: Sulfasalazineinduced ferroptosis in breast cancer cells is reduced by the inhibitory effect of estrogen receptor on the transferrin receptor. Oncol Rep. 42:826–838. 2019.PubMed/NCBI

72 

Bach DH, Luu TT, Kim D, An YJ, Park S, Park HJ and Lee SK: BMP4 upregulation is associated with acquired drug resistance and fatty acid metabolism in EGFR-mutant non-small-cell lung cancer cells. Mol Ther Nucleic Acids. 12:817–828. 2018. View Article : Google Scholar : PubMed/NCBI

73 

Zhang C, Liao Y, Liu P, Du Q, Liang Y, Ooi S, Qin S, He S, Yao S and Wang W: FABP5 promotes lymph node metastasis in cervical cancer by reprogramming fatty acid metabolism. Theranostics. 10:6561–6580. 2020. View Article : Google Scholar : PubMed/NCBI

74 

Radif Y, Ndiaye H, Kalantzi V, Jacobs R, Hall A, Minogue S and Waugh MG: The endogenous subcellular localisations of the long chain fatty acid-activating enzymes ACSL3 and ACSL4 in sarcoma and breast cancer cells. Mol Cell Biochem. 448:275–286. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Tan S, Hou X and Mei L: Dihydrotanshinone I inhibits human glioma cell proliferation via the activation of ferroptosis. Oncol Lett 20: 122, 2020.
APA
Tan, S., Hou, X., & Mei, L. (2020). Dihydrotanshinone I inhibits human glioma cell proliferation via the activation of ferroptosis. Oncology Letters, 20, 122. https://doi.org/10.3892/ol.2020.11980
MLA
Tan, S., Hou, X., Mei, L."Dihydrotanshinone I inhibits human glioma cell proliferation via the activation of ferroptosis". Oncology Letters 20.4 (2020): 122.
Chicago
Tan, S., Hou, X., Mei, L."Dihydrotanshinone I inhibits human glioma cell proliferation via the activation of ferroptosis". Oncology Letters 20, no. 4 (2020): 122. https://doi.org/10.3892/ol.2020.11980
Copy and paste a formatted citation
x
Spandidos Publications style
Tan S, Hou X and Mei L: Dihydrotanshinone I inhibits human glioma cell proliferation via the activation of ferroptosis. Oncol Lett 20: 122, 2020.
APA
Tan, S., Hou, X., & Mei, L. (2020). Dihydrotanshinone I inhibits human glioma cell proliferation via the activation of ferroptosis. Oncology Letters, 20, 122. https://doi.org/10.3892/ol.2020.11980
MLA
Tan, S., Hou, X., Mei, L."Dihydrotanshinone I inhibits human glioma cell proliferation via the activation of ferroptosis". Oncology Letters 20.4 (2020): 122.
Chicago
Tan, S., Hou, X., Mei, L."Dihydrotanshinone I inhibits human glioma cell proliferation via the activation of ferroptosis". Oncology Letters 20, no. 4 (2020): 122. https://doi.org/10.3892/ol.2020.11980
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team