|
1
|
Lander ES, Linton LM, Birren B, Nusbaum C,
Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al:
Initial sequencing and analysis of the human genome. Nature.
409:860–921. 2001. View
Article : Google Scholar : PubMed/NCBI
|
|
2
|
Razin SV, Borunova VV, Maksimenko OG and
Kantidze OL: Cys2His2 zinc finger protein family: Classification,
functions, and major members. Biochemistry (Mosc). 77:217–226.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Markljung E, Jiang L, Jaffe JD, Mikkelsen
TS, Wallerman O, Larhammar M, Zhang X, Wang L, Saenz-Vash V, Gnirke
A, et al: ZBED6, a novel transcription factor derived from a
domesticated DNA transposon regulates IGF2 expression and muscle
growth. PLoS Biol. 7:e10002562009. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Akhtar Ali M, Younis S, Wallerman O, Gupta
R, Andersson L and Sjöblom T: Transcriptional modulator ZBED6
affects cell cycle and growth of human colorectal cancer cells.
Proc Natl Acad Sci USA. 112:7743–7748. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Chen T, Li M, Ding Y, Zhang LS, Xi Y, Pan
WJ, Tao DL, Wang JY and Li L: Identification of zinc-finger BED
domain-containing 3 (Zbed3) as a novel Axin-interacting protein
that activates Wnt/beta-catenin signaling. J Biol Chem.
284:6683–6689. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Fan C, Jiang G, Zhang X, Miao Y, Lin X,
Luan L, Xu Z, Zhang Y, Zhao H, Liu D, et al: Zbed3 contributes to
malignant phenotype of lung cancer via regulating β-catenin and
P120-catenin 1. Mol Carcinog. 1 (54 Suppl):E138–E147. 2015.
View Article : Google Scholar
|
|
7
|
Saghizadeh M, Akhmedov NB, Yamashita CK,
Gribanova Y, Theendakara V, Mendoza E, Nelson SF, Ljubimov AV and
Farber DB: ZBED4, a BED-type zinc-finger protein in the cones of
the human retina. Invest Ophthalmol Vis Sci. 50:3580–3588. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Mokhonov VV, Theendakara VP, Gribanova YE,
Ahmedli NB and Farber DB: Sequence-specific binding of recombinant
Zbed4 to DNA: Insights into Zbed4 participation in gene
transcription and its association with other proteins. PLoS One.
7:e353172012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ohshima N, Takahashi M and Hirose F:
Identification of a human homologue of the DREF transcription
factor with a potential role in regulation of the histone H1 gene.
J Biol Chem. 278:22928–22938. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Deininger PL and Batzer MA: Mammalian
retroelements. Genome Res. 12:1455–1465. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Sinzelle L, Izsvak Z and Ivics Z:
Molecular domestication of transposable elements: From detrimental
parasites to useful host genes. Cell Mol Life Sci. 66:1073–1093.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
van de Lagemaat LN, Landry JR, Mager DL
and Medstrand P: Transposable elements in mammals promote
regulatory variation and diversification of genes with specialized
functions. Trends Genet. 19:530–536. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Jordan IK, Rogozin IB, Glazko GV and
Koonin EV: Origin of a substantial fraction of human regulatory
sequences from transposable elements. Trends Genet. 19:68–72. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kashkush K, Feldman M and Levy AA:
Transcriptional activation of retrotransposons alters the
expression of adjacent genes in wheat. Nat Genet. 33:102–106. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Feschotte C and Pritham EJ: DNA
transposons and the evolution of eukaryotic genomes. Annu Rev
Genet. 41:331–368. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Volff JN: Turning junk into gold:
Domestication of transposable elements and the creation of new
genes in eukaryotes. Bioessays. 28:913–922. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Arensburger P, Hice RH, Zhou L, Smith RC,
Tom AC, Wright JA, Knapp J, O'Brochta DA, Craig NL and Atkinson PW:
Phylogenetic and functional characterization of the hAT transposon
superfamily. Genetics. 188:45–57. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Hayward A, Ghazal A, Andersson G,
Andersson L and Jern P: ZBED evolution: Repeated utilization of DNA
transposons as regulators of diverse host functions. PLoS One.
8:e599402013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hirose F, Yamaguchi M, Nishida Y, Masutani
M, Miyazawa H, Hanaoka F and Matsukage A: Structure and expression
during development of Drosophila melanogaster gene for DNA
polymerase alpha. Nucleic Acids Res. 19:4991–4998. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Hirose F, Yamaguchi M, Handa H, Inomata Y
and Matsukage A: Novel 8-base pair sequence (Drosophila DNA
replication-related element) and specific binding factor involved
in the expression of Drosophila genes for DNA polymerase alpha and
proliferating cell nuclear antigen. J Biol Chem. 268:2092–2099.
1993.PubMed/NCBI
|
|
21
|
Hirose F, Yamaguchi M, Kuroda K, Omori A,
Hachiya T, Ikeda M, Nishimoto Y and Matsukage A: Isolation and
characterization of cDNA for DREF, a promoter-activating factor for
Drosophila DNA replication-related genes. J Biol Chem.
271:3930–3937. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Takahashi Y, Hirose F, Matsukage A and
Yamaguchi M: Identification of three conserved regions in the DREF
transcription factors from Drosophila melanogaster and Drosophila
virilis. Nucleic Acids Res. 27:510–516. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Smit AF: Interspersed repeats and other
mementos of transposable elements in mammalian genomes. Curr Opin
Genet Dev. 9:657–663. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Aravind L: The BED finger, a novel
DNA-binding domain in chromatin-boundary-element-binding proteins
and transposases. Trends Biochem Sci. 25:421–423. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Hart CM, Cuvier O and Laemmli UK: Evidence
for an antagonistic relationship between the boundary
element-associated factor BEAF and the transcription factor DREF.
Chromosoma. 108:375–383. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Yamashita D, Komori H, Higuchi Y,
Yamaguchi T, Osumi T and Hirose F: Human DNA replication-related
element binding factor (hDREF) self-association via hATC domain is
necessary for its nuclear accumulation and DNA binding. J Biol
Chem. 282:7563–7575. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Essers L, Adolphs RH and Kunze R: A highly
conserved domain of the maize activator transposase is involved in
dimerization. Plant Cell. 12:211–224. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Michel K, O'Brochta DA and Atkinson PW:
The C-terminus of the Hermes transposase contains a protein
multimerization domain. Insect Biochem Mol Biol. 33:959–970. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Matsukage A, Hirose F, Yoo MA and
Yamaguchi M: The DRE/DREF transcriptional regulatory system: A
master key for cell proliferation. Biochim Biophys Acta.
1779:81–89. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Tue NT, Yoshioka Y, Mizoguchi M, Yoshida
H, Zurita M and Yamaguchi M: DREF plays multiple roles during
Drosophila development. Biochim Biophys Acta Gene Regul Mech.
1860:705–712. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Matsukage A, Hirose F, Hayashi Y, Hamada K
and Yamaguchi M: The DRE sequence TATCGATA, a putative
promoter-activating element for Drosophila melanogaster
cell-proliferation-related genes. Gene. 166:233–236. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Sawado T, Hirose F, Takahashi Y, Sasaki T,
Shinomiya T, Sakaguchi K, Matsukage A and Yamaguchi M: The DNA
replication-related element (DRE)/DRE-binding factor system is a
transcriptional regulator of the Drosophila E2F gene. J Biol Chem.
273:26042–26051. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ohno K, Hirose F, Sakaguchi K, Nishida Y
and Matsukage A: Transcriptional regulation of the Drosophila CycA
gene by the DNA replication-related element (DRE) and DRE binding
factor (DREF). Nucleic Acids Res. 24:3942–3946. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Takahashi Y, Yamaguchi M, Hirose F,
Cotterill S, Kobayashi J, Miyajima S and Matsukage A: DNA
replication-related elements cooperate to enhance promoter activity
of the drosophila DNA polymerase alpha 73-kDa subunit gene. J Biol
Chem. 271:14541–14547. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Ryu JR, Choi TY, Kwon EJ, Lee WH, Nishida
Y, Hayashi Y, Matsukage A, Yamaguchi M and Yoo MA: Transcriptional
regulation of the Drosophila-raf proto-oncogene by the DNA
replication-related element (DRE)/DRE-binding factor (DREF) system.
Nucleic Acids Res. 25:794–799. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zabidi MA, Arnold CD, Schernhuber K,
Pagani M, Rath M, Frank O and Stark A: Enhancer-core-promoter
specificity separates developmental and housekeeping gene
regulation. Nature. 518:556–559. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Bird AP: CpG-rich islands and the function
of DNA methylation. Nature. 321:209–213. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Argentaro A, Yang JC, Chapman L, Kowalczyk
MS, Gibbons RJ, Higgs DR, Neuhaus D and Rhodes D: Structural
consequences of disease-causing mutations in the ATRX-DNMT3-DNMT3L
(ADD) domain of the chromatin-associated protein ATRX. Proc Natl
Acad Sci USA. 104:11939–11944. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Valadez-Graham V, Yoshioka Y, Velazquez O,
Kawamori A, Vazquez M, Neumann A, Yamaguchi M and Zurita M:
XNP/dATRX interacts with DREF in the chromatin to regulate gene
expression. Nucleic Acids Res. 40:1460–1474. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hart CM, Zhao K and Laemmli UK: The scs'
boundary element: Characterization of boundary element-associated
factors. Mol Cell Biol. 17:999–1009. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Royzman I, Whittaker AJ and Orr-Weaver TL:
Mutations in Drosophila DP and E2F distinguish G1-S progression
from an associated transcriptional program. Genes Dev.
11:1999–2011. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Brehm A, Langst G, Kehle J, Clapier CR,
Imhof A, Eberharter A, Muller J and Becker PB: dMi-2 and ISWI
chromatin remodelling factors have distinct nucleosome binding and
mobilization properties. EMBO J. 19:4332–4341. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Hirose F, Ohshima N, Kwon EJ, Yoshida H
and Yamaguchi M: Drosophila Mi-2 negatively regulates dDREF by
inhibiting its DNA-binding activity. Mol Cell Biol. 22:5182–5193.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ida H, Yoshida H, Nakamura K and Yamaguchi
M: Identification of the Drosophila eIF4A gene as a target of the
DREF transcription factor. Exp Cell Res. 313:4208–4220. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Linder P, Lasko PF, Ashburner M, Leroy P,
Nielsen PJ, Nishi K, Schnier J and Slonimski PP: Birth of the
D-E-A-D box. Nature. 337:121–122. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Blum S, Schmid SR, Pause A, Buser P,
Linder P, Sonenberg N and Trachsel H: ATP hydrolysis by initiation
factor 4A is required for translation initiation in Saccharomyces
cerevisiae. Proc Natl Acad Sci USA. 89:7664–7668. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Pestova TV, Kolupaeva VG, Lomakin IB,
Pilipenko EV, Shatsky IN, Agol VI and Hellen CU: Molecular
mechanisms of translation initiation in eukaryotes. Proc Natl Acad
Sci USA. 98:7029–7036. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Pestova TV, Shatsky IN and Hellen CU:
Functional dissection of eukaryotic initiation factor 4F: The 4A
subunit and the central domain of the 4G subunit are sufficient to
mediate internal entry of 43S preinitiation complexes. Mol Cell
Biol. 16:6870–6878. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Phuong Thao DT, Ida H, Yoshida H and
Yamaguchi M: Identification of the Drosophila skpA gene as a novel
target of the transcription factor DREF. Exp Cell Res.
312:3641–3650. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Seol JH, Shevchenko A, Shevchenko A and
Deshaies RJ: Skp1 forms multiple protein complexes, including RAVE,
a regulator of V-ATPase assembly. Nat Cell Biol. 3:384–391. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Tsuchiya A, Inoue YH, Ida H, Kawase Y,
Okudaira K, Ohno K, Yoshida H and Yamaguchi M: Transcriptional
regulation of the Drosophila rfc1 gene by the DRE-DREF pathway.
FEBS J. 274:1818–1832. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Sharkov NV, Ramsay G and Katzen AL: The
DNA replication-related element-binding factor (DREF) is a
transcriptional regulator of the Drosophila myb gene. Gene.
297:209–219. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Nakamura K, Ida H and Yamaguchi M:
Transcriptional regulation of the Drosophila moira and osa genes by
the DREF pathway. Nucleic Acids Res. 36:3905–3915. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Mohrmann L and Verrijzer CP: Composition
and functional specificity of SWI2/SNF2 class chromatin remodeling
complexes. Biochim Biophys Acta. 1681:59–73. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Bouazoune K and Brehm A: ATP-dependent
chromatin remodeling complexes in Drosophila. Chromosome Res.
14:433–449. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
He M, Zhou Z, Shah AA, Hong Y, Chen Q and
Wan Y: New insights into posttranslational modifications of Hippo
pathway in carcinogenesis and therapeutics. Cell Div. 11:42016.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Meng Z, Moroishi T and Guan KL: Mechanisms
of Hippo pathway regulation. Genes Dev. 30:1–17. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ye S and Eisinger-Mathason TS: Targeting
the Hippo pathway: Clinical implications and therapeutics.
Pharmacol Res. 103:270–278. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Vo N, Horii T, Yanai H, Yoshida H and
Yamaguchi M: The Hippo pathway as a target of the Drosophila
DRE/DREF transcriptional regulatory pathway. Sci Rep. 4:71962014.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Fujiwara S, Ida H, Yoshioka Y, Yoshida H
and Yamaguchi M: The warts gene as a novel target of the Drosophila
DRE/DREF transcription pathway. Am J Cancer Res. 2:36–44.
2012.PubMed/NCBI
|
|
61
|
Yanai H, Yoshioka Y, Yoshida H, Nakao Y,
Plessis A and Yamaguchi M: Drosophila myeloid leukemia factor acts
with DREF to activate the JNK signaling pathway. Oncogenesis.
3:e982014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Yoshioka Y, Nguyen TT, Fujiwara S, Matsuda
R, Valadez-Graham V, Zurita M and Yamaguchi M: Drosophila DREF
acting via the JNK pathway is required for thorax development.
Genesis. 50:599–611. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Trong-Tue N, Thao DT and Yamaguchi M: Role
of DREF in transcriptional regulation of the Drosophila p53 gene.
Oncogene. 29:2060–2069. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Brodsky MH, Nordstrom W, Tsang G, Kwan E,
Rubin GM and Abrams JM: Drosophila p53 binds a damage response
element at the reaper locus. Cell. 101:103–113. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Jin S, Martinek S, Joo WS, Wortman JR,
Mirkovic N, Sali A, Yandell MD, Pavletich NP, Young MW and Levine
AJ: Identification and characterization of a p53 homologue in
Drosophila melanogaster. Proc Natl Acad Sci USA. 97:7301–7306.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ollmann M, Young LM, Di Como CJ, Karim F,
Belvin M, Robertson S, Whittaker K, Demsky M, Fisher WW, Buchman A,
et al: Drosophila p53 is a structural and functional homolog of the
tumor suppressor p53. Cell. 101:91–101. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Nicolai S, Rossi A, Di Daniele N, Melino
G, Annicchiarico-Petruzzelli M and Raschella G: DNA repair and
aging: The impact of the p53 family. Aging (Albany NY).
7:1050–1065. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kim S and An SS: Role of p53 isoforms and
aggregations in cancer. Medicine (Baltimore). 95:e39932016.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Chen J: The Cell-cycle arrest and
apoptotic functions of p53 in tumor initiation and progression.
Cold Spring Harb Perspect Med. 6:a0261042016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Green DR and Evan GI: A matter of life and
death. Cancer Cell. 1:19–30. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wu S, Huang J, Dong J and Pan D: hippo
encodes a Ste-20 family protein kinase that restricts cell
proliferation and promotes apoptosis in conjunction with salvador
and warts. Cell. 114:445–456. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Matsukage A, Hirose F and Yamaguchi M:
Transcriptional regulation of DNA replication-related genes in cell
growth, differentiation and oncogenesis. Jpn J Cancer Res. 85:1–8.
1994. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Doyle HJ, Kraut R and Levine M: Spatial
regulation of zerknullt: A dorsal-ventral patterning gene in
Drosophila. Genes Dev. 3:1518–1533. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Hirose F, Yamaguchi M and Matsukage A:
Repression of regulatory factor for Drosophila DNA
replication-related gene promoters by zerknullt homeodomain
protein. J Biol Chem. 269:2937–2942. 1994.PubMed/NCBI
|
|
75
|
Hayashi Y, Kato M, Seto H and Yamaguchi M:
Drosophila distal-less negatively regulates dDREF by inhibiting its
DNA binding activity. Biochim Biophys Acta. 1759:359–366. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Seto H, Hayashi Y, Kwon E, Taguchi O and
Yamaguchi M: Antagonistic regulation of the Drosophila PCNA gene
promoter by DREF and Cut. Genes Cells. 11:499–512. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
van Wijnen AJ, Wright KL, Massung RF,
Gerretsen M, Stein JL and Stein GS: Two target sites for protein
binding in the promoter region of a cell cycle regulated human H1
histone gene. Nucleic Acids Res. 16:571–592. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Albig W, Meergans T and Doenecke D:
Characterization of the H1.5 gene completes the set of human H1
subtype genes. Gene. 184:141–148. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Yamashita D, Sano Y, Adachi Y, Okamoto Y,
Osada H, Takahashi T, Yamaguchi T, Osumi T and Hirose F: hDREF
regulates cell proliferation and expression of ribosomal protein
genes. Mol Cell Biol. 27:2003–2013. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Yamashita D, Moriuchi T, Osumi T and
Hirose F: Transcription Factor hDREF Is a Novel SUMO E3 Ligase of
Mi2α. J Biol Chem. 291:11619–11634. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Jiang S, Wang Y, Xiong Y, Feng Y, Tang J
and Song R: High expression of ZBED1 affects proliferation and
apoptosis in gastric cancer. Int J Clin Exp Pathol. 11:4019–4025.
2018.PubMed/NCBI
|