|
1
|
Clark EA and Ledbetter JA: Amplification
of the immune response by agonistic antibodies. Immunol Today.
7:267–270. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Smith CA, Farrah T and Goodwin RG: The TNF
receptor superfamily of cellular and viral proteins: Activation,
costimulation, and death. Cell. 76:959–962. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Gauchat JF, Aubry JP, Mazzei G, Life P,
Jomotte T, Elson G and Bonnefoy JY: Human CD40-ligand: Molecular
cloning, cellular distribution and regulation of expression by
factors controlling IgE production. FEBS Lett. 315:259–266. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Galy A and Spits H: CD40 is functionally
expressed on human thymic epithelial cells. J Immunol. 149:775–782.
1992.PubMed/NCBI
|
|
5
|
Yellin MJ, Brett J, Baum D, Matsushima A,
Szabolcs M, Stern D and Chess L: Functional interactions of T cells
with endothelial cells: The role of CD40L-CD40-mediated signals. J
Exp Med. 182:1857–1864. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Costello RT, Gastaut JA and Olive D: What
is the real role of CD40 in cancer immunotherapy? Immunol Today.
20:488–493. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Ziebold JL, Hixon J, Boyd A and Murphy WJ:
Differential effects of CD40 stimulation on normal and neoplastic
cell growth. Arch Immunol Ther Exp (Warsz). 48:225–233.
2000.PubMed/NCBI
|
|
8
|
Graf D, Müller S, Korthäuer U, van Kooten
C, Weise C and Kroczek RA: A soluble form of TRAP (CD40 ligand) is
rapidly released after T cell activation. Eur J Immunol.
25:1749–1754. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
André P, Prasad KS, Denis CV, He M,
Papalia JM, Hynes RO, Phillips DR and Wagner DD: CD40L stabilizes
arterial thrombi by a beta3 integrin-dependent mechanism. Nat Med.
8:247–252. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Eliopoulos AG and Young LS: The role of
the CD40 pathway in the pathogenesis and treatment of cancer. Curr
Opin Pharmacol. 4:360–367. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hafeez U, Gan HK and Scott AM: Monoclonal
antibodies as immunomodulatory therapy against cancer and
autoimmune diseases. Curr Opin Pharmacol. 41:114–121. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Funakoshi S, Longo DL, Beckwith M, Conley
DK, Tsarfaty G, Tsarfaty I, Armitage RJ, Fanslow WC, Spriggs MK and
Murphy WJ: Inhibition of human B-Cell lymphoma growth by CD40
stimulation. Blood. 83:2787–2794. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Tutt AL, O'Brien L, Hussain A, Crowther
GR, French RR and Glennie MJ: T cell immunity to lymphoma following
treatment with anti-CD40 monoclonal antibody. J Immunol.
168:2720–2728. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hellstrom I and Hellstrom KE: Monoclonal
antibodies for cancer therapy. Schwab M: Encyclopedia of Cancer.
Springer; Berlin, Heidelberg, Germany: 2014, View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Pellat-Deceunynck C, Amiot M, Robillard N,
Wijdenes J and Bataille R: CD11a-CD18 and CD102 interactions
mediate human myeloma cell growth arrest induced by CD40
stimulation. Cancer Res. 56:1909–1916. 1996.PubMed/NCBI
|
|
16
|
Eliopoulos AG, Davies C, Knox PG,
Gallagher NJ, Afford SC, Adams DH and Young LS: CD40 induces
apoptosis in carcinoma cells through activation of cytotoxic
ligands of the tumor necrosis factor superfamily. Mol Cell Biol.
20:5503–5515. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Park CI, Hirono I, Hwang JY and Aoki T:
Characterization and expression of a CD40 homolog gene in Japanese
flounder Paralichthys olivaceus. Immunogenetics. 57:682–689.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
McWhirter SM, Pullen SS, Holton JM, Crute
JJ, Kehry MR and Alber T: Crystallographic analysis of CD40
recognition and signaling by human TRAF2. Proc Natl Acad Sci USA.
96:8408–8413. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Berberich I, Shu GL and Clark EA:
Cross-linking CD40 on B cells rapidly activates nuclear
factor-kappa B. J Immunol. 153:4357–4366. 1994.PubMed/NCBI
|
|
20
|
Berberich I, Shu G, Siebelt F, Woodgett
JR, Kyriakis JM and Clark EA: Cross-linking CD40 on B cells
preferentially induces stress-activated protein kinases rather than
mitogen-activated protein kinases. EMBO J. 15:92–101. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ren CL, Morio T, Fu SM and Geha RS: Signal
transduction via CD40 involves activation of lyn kinase and
phosphatidylinositol-3-kinase, and phosphorylation of phospholipase
C gamma 2. J Exp Med. 179:673–680. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Li YY, Baccam M, Waters SB, Pessin JE,
Bishop GA and Koretzky GA: CD40 ligation results in protein kinase
C-independent activation of ERK and JNK in resting murine splenic B
cells. J Immunol. 157:1440–1447. 1996.PubMed/NCBI
|
|
23
|
Notarangelo LD, Peitsch MC, Abrahamsen TG,
Bachelot C, Bordigoni P, Cant AJ, Chapel H, Clementi M, Deacock S,
de Saint Basile G, et al: CD40lbase: A database of CD40L gene
mutations causing X-linked hyper-IgM syndrome. Immunol Today.
17:511–516. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Villa A, Notarangelo LD, Di Santo JP,
Macchi PP, Strina D, Frattini A, Lucchini F, Patrosso CM, Giliani
S, Mantuano E, et al: Organization of the human CD40L gene:
Implications for molecular defects in X chromosome-linked hyper-IgM
syndrome and prenatal diagnosis. Proc Natl Acad Sci USA.
91:2110–2114. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Schönbeck U and Libby P: The CD40/CD154
receptor/ligand dyad. Cell Mol Life Sci. 58:4–43. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Grewal IS and Flavell RA: CD40 and CD154
in cell-mediated immunity. Annu Rev Immunol. 16:111–135. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Tong AW and Stone MJ: Prospects for
CD40-directed experimental therapy of human cancer. Cancer Gene
Ther. 10:1–13. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Cella M, Scheidegger D, Palmer-Lehmann K,
Lane P, Lanzavecchia A and Alber G: Ligation of CD40 on dendritic
cells triggers production of high levels of interleukin-12 and
enhances T cell stimulatory capacity: T-T help via APC activation.
J Exp Med. 184:747–752. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Lum HD, Buhtoiarov IN, Schmidt BE, Berke
G, Paulnock DM, Sondel PM and Rakhmilevich AL: In vivo CD40
ligation can induce T-cell-independent antitumor effects that
involve macrophages. J Leukoc Biol. 79:1181–1192. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Arango Duque G and Descoteaux A:
Macrophage cytokines: Involvement in immunity and infectious
diseases. Front Immunol. 5:4912014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Stow JL, Low PC, Offenhäuser C and
Sangermani D: Cytokine secretion in macrophages and other cells:
Pathways and mediators. Immunobiology. 214:601–612. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
van Kooten C and Banchereau J: Functions
of CD40 on B cells, dendritic cells and other cells. Curr Opin
Immunol. 9:330–337. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Arpin C, Déchanet J, Van Kooten C,
Merville P, Grouard G, Brière F, Banchereau J and Liu YJ:
Generation of memory B cells and plasma cells in vitro. Science.
268:720–722. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Huse K, Wogsland CE, Polikowsky HG,
Diggins KE, Smeland EB, Myklebust JH and Irish JM: Human germinal
center B cells differ from naive and memory B cells in CD40
expression and CD40L-induced signaling response. Cytometry A.
95:442–449. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Hill A and Chapel H: X-linked
immunodeficiency. The fruits of cooperation. Nature. 361:4941993.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Vonderheide RH: Prospect of targeting the
CD40 pathway for cancer therapy. Clin Cancer Res. 13:1083–1088.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Planken EV, Dijkstra NH, Bakkus M,
Willemze R and Kluin-Nelemans JC: Proliferation of precursor
B-lineage acute lymphoblastic leukaemia by activating the CD40
antigen. Br J Haematol. 95:319–326. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Murphy WJ, Funakoshi S, Fanslow WC, Rager
HC, Taub DD and Longo DL: CD40 stimulation promotes human secondary
immunoglobulin responses in HuPBL-SCID chimeras. Clin Immunol.
90:22–27. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Voorzanger-Rousselot N, Favrot M and Blay
JY: Resistance to cytotoxic chemotherapy induced by CD40 ligand in
lymphoma cells. Blood. 92:3381–3387. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Castillo R, Mascarenhas J, Telford W,
Chadburn A, Friedman SM and Schattner EJ: Proliferative response of
mantle cell lymphoma cells stimulated by CD40 ligation and IL-4.
Leukemia. 14:292–298. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kusam S, Munugalavadla V, Sawant D and
Dent A: BCL6 cooperates with CD40 stimulation and loss of p53
function to rapidly transform primary B cells. Int J Cancer.
125:977–981. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Garrone P, Neidhardt EM, Garcia E,
Galibert L, van Kooten C and Banchereau J: Fas ligation induces
apoptosis of CD40-activated human B lymphocytes. J Exp Med.
182:1265–1273. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Schattner EJ, Mascarenhas J, Bishop J, Yoo
DH and Friedman SM: CD4+ T-cell induction of
Fas-mediated apoptosis in Burkitt's lymphoma B cells. Blood.
88:1375–1382. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lee HH, Dadgostar H, Cheng Q, Shu J and
Cheng G: NF-kappaB-mediated up-regulation of Bcl-x and Bfl-1/A1 is
required for CD40 survival signaling in B lymphocytes. Proc Natl
Acad Sci USA. 96:9136–9141. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Chu P, Deforce D, Pedersen IM, Kim Y,
Kitada S, Reed JC and Kipps TJ: Latent sensitivity to Fas-mediated
apoptosis after CD40 ligation may explain activity of CD154 gene
therapy in chronic lymphocytic leukemia. Proc Natl Acad Sci USA.
99:3854–3859. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Elgueta R, Benson MJ, de Vries VC, Wasiuk
A, Guo Y and Noelle RJ: Molecular mechanism and function of
CD40/CD40L engagement in the immune system. Immunol Rev.
229:152–172. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Piechutta M and Berghoff AS: New emerging
targets in cancer immunotherapy: The role of Cluster of
Differentiation 40 (CD40/TNFR5). ESMO Open. 4:e0005102019.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
French RR, Chan HC, Tutt AL and Glennie
MJ: CD40 antibody evokes a cytotoxic T-cell response that
eradicates lymphoma and bypasses T-cell help. Nature medicine.
5:548–553. 1999. View
Article : Google Scholar : PubMed/NCBI
|
|
49
|
Todryk SM, Tutt AL, Green MH, Smallwood
JA, Halanek N, Dalgleish AG and Glennie MJ: CD40 ligation for
immunotherapy of solid tumours. J Immunol Methods. 248:139–147.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Remer M, White A, Glennie M, Al-Shamkhani
A and Johnson P: The use of anti-CD40 mAb in cancer. Curr Top
Microbiol Immunol. 405:165–207. 2017.PubMed/NCBI
|
|
51
|
Vonderheide RH: CD40 agonist antibodies in
cancer immunotherapy. Annu Rev Med. 71:47–58. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
White AL, Chan HT, Roghanian A, French RR,
Mockridge CI, Tutt AL, Dixon SV, Ajona D, Verbeek JS, Al-Shamkhani
A, et al: Interaction with FcγRIIB is critical for the agonistic
activity of anti-CD40 monoclonal antibody. J Immunol.
187:1754–1763. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Johnson M, Fakih M, Bendell J, Bajor D,
Cristea M, Tremblay T, Trifan O and Vonderheide R: First in human
study with the CD40 agonistic monoclonal antibody APX005M in
subjects with solid tumors. J Immuno Ther Cancer. 5:892017.
|
|
54
|
Richman LP and Vonderheide RH: Role of
crosslinking for agonistic CD40 monoclonal antibodies as immune
therapy of cancer. Cancer Immunol Res. 2:19–26. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
White AL, Chan HC, French RR, Willoughby
J, Mockridge CI, Roghanian A, Penfold CA, Booth SG, Dodhy A, Polak
ME, et al: Conformation of the human immunoglobulin G2 hinge
imparts superagonistic properties to immunostimulatory anticancer
antibodies. Cancer Cell. 27:138–148. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Liu X, Zhao Y, Shi H, Zhang Y, Yin X, Liu
M, Zhang H, He Y, Lu B, Jin T and Li F: Human immunoglobulin G
hinge regulates agonistic anti-CD40 immunostimulatory and
antitumour activities through biophysical flexibility. Nat Commun.
10:42062019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yu X, Chan HC, Orr CM, Dadas O, Booth SG,
Dahal LN, Penfold CA, O'Brien L, Mockridge CI, French RR, et al:
Complex interplay between epitope specificity and isotype dictates
the biological activity of anti-human CD40 antibodies. Cancer Cell.
33:664–675. e664. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang P, Tu GH, Wei J, Santiago P,
Larrabee LR, Liao-Chan S, Mistry T, Chu ML, Sai T, Lindquist K, et
al: Ligand-blocking and membrane-proximal domain targeting
anti-OX40 antibodies mediate potent T cell-stimulatory and
anti-tumor activity. Cell Rep. 27:3117–3123. e3115. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Beatty GL, Torigian DA, Chiorean EG,
Saboury B, Brothers A, Alavi A, Troxel AB, Sun W, Teitelbaum UR,
Vonderheide RH and O'Dwyer PJ: A phase I study of an agonist CD40
monoclonal antibody (CP-870,893) in combination with gemcitabine in
patients with advanced pancreatic ductal adenocarcinoma. Clin
Cancer Res. 19:6286–6295. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Vonderheide RH, Burg JM, Mick R, Trosko
JA, Li D, Shaik MN, Tolcher AW and Hamid O: Phase I study of the
CD40 agonist antibody CP-870,893 combined with carboplatin and
paclitaxel in patients with advanced solid tumors. Oncoimmunology.
2:e230332013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Nowak A, Cook A, McDonnell A, Millward MJ,
Creaney J, Francis RJ, Hasani A, Segal A, Musk AW, Turlach BA, et
al: A phase 1b clinical trial of the CD40-activating antibody
CP-870,893 in combination with cisplatin and pemetrexed in
malignant pleural mesothelioma. Ann Oncol. 26:2483–2490. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Furman RR, Forero-Torres A, Shustov A and
Drachman JG: A phase I study of dacetuzumab (SGN-40, a humanized
anti-CD40 monoclonal antibody) in patients with chronic lymphocytic
leukemia. Leuk Lymphoma. 51:228–235. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Fayad L, Ansell SM, Advani R, Coiffier B,
Stuart R, Bartlett NL, Forero-Torres A, Kuliczkowski K, Belada D,
Ng E and Drachman JG: Dacetuzumab plus rituximab, ifosfamide,
carboplatin and etoposide as salvage therapy for patients with
diffuse large B-cell lymphoma relapsing after rituximab,
cyclophosphamide, doxorubicin, vincristine and prednisolone: A
randomized, double-blind, placebo-controlled phase 2b trial. Leuk
Lymphoma. 56:2569–2578. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
de Vos S, Forero-Torres A, Ansell SM, Kahl
B, Cheson BD, Bartlett NL, Furman RR, Winter JN, Kaplan H,
Timmerman J, et al: A phase II study of dacetuzumab (SGN-40) in
patients with relapsed diffuse large B-cell lymphoma (DLBCL) and
correlative analyses of patient-specific factors. J Hematol Oncol.
7:442014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Irenaeus SMM, Nielsen D, Ellmark P,
Yachnin J, Deronic A, Nilsson A, Norlén P, Veitonmäki N, Wennersten
CS and Ullenhag GJ: First-in-human study with intratumoral
administration of a CD40 agonistic antibody, ADC-1013, in advanced
solid malignancies. Int J Cancer. 145:1189–1199. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Vonderheide RH, Flaherty KT, Khalil M,
Stumacher MS, Bajor DL, Hutnick NA, Sullivan P, Mahany JJ,
Gallagher M, Kramer A, et al: Clinical activity and immune
modulation in cancer patients treated with CP-870,893, a novel CD40
agonist monoclonal antibody. J Clin Oncol. 25:876–883. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Gladue RP, Paradis T, Cole SH, Donovan C,
Nelson R, Alpert R, Gardner J, Natoli E, Elliott E, Shepard R and
Bedian V: The CD40 agonist antibody CP-870,893 enhances dendritic
cell and B-cell activity and promotes anti-tumor efficacy in
SCID-hu mice. Cancer Immunol Immunother. 60:1009–1017. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kalbasi A, Fonsatti E, Natali PG,
Altomonte M, Bertocci E, Cutaia O, Calabrò L, Chiou M, Tap W,
Chmielowski B, et al: CD40 expression by human melanocytic lesions
and melanoma cell lines and direct CD40 targeting with the
therapeutic anti-CD40 antibody CP-870,893. J Immunother.
33:810–816. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Rüter J, Antonia SJ, Burris HA, Huhn RD
and Vonderheide RH: Immune modulation with weekly dosing of an
agonist CD40 antibody in a phase I study of patients with advanced
solid tumors. Cancer Biol Ther. 10:983–993. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ghamande S, Hylander BL, Oflazoglu E, Lele
S, Fanslow W and Repasky EA: Recombinant CD40 ligand therapy has
significant antitumor effects on CD40-positive ovarian tumor
xenografts grown in SCID mice and demonstrates an augmented effect
with cisplatin. Cancer Res. 61:7556–7562. 2001.PubMed/NCBI
|
|
71
|
Ahonen CL, Doxsee CL, McGurran SM, Riter
TR, Wade WF, Barth RJ, Vasilakos JP, Noelle RJ and Kedl RM:
Combined TLR and CD40 triggering induces potent CD8+ T
cell expansion with variable dependence on type I IFN. J Exp Med.
199:775–784. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Uno T, Takeda K, Kojima Y, Yoshizawa H,
Akiba H, Mittler RS, Gejyo F, Okumura K, Yagita H and Smyth MJ:
Eradication of established tumors in mice by a combination
antibody-based therapy. Nat Med. 12:6932006. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Kirk AD, Harlan DM, Armstrong NN, Davis
TA, Dong Y, Gray GS, Hong X, Thomas D, Fechner JH Jr and Knechtle
SJ: CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection
in primates. Proc Natl Acad Sci USA. 94:8789–8794. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Luheshi NM, Coates-Ulrichsen J, Harper J,
Mullins S, Sulikowski MG, Martin P, Brown L, Lewis A, Davies G,
Morrow M and Wilkinson RW: Transformation of the tumour
microenvironment by a CD40 agonist antibody correlates with
improved responses to PD-L1 blockade in a mouse orthotopic
pancreatic tumour model. Oncotarget. 7:185082016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Bajor DL, Mick R, Riese MJ, Huang AC,
Sullivan B, Richman LP, Torigian DA, George SM, Stelekati E, Chen
F, et al: Long-term outcomes of a phase I study of agonist CD40
antibody and CTLA-4 blockade in patients with metastatic melanoma.
Oncoimmunology. 7:e14689562018. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Ribas A, Kefford R, Marshall MA, Punt CJ,
Haanen JB, Marmol M, Garbe C, Gogas H, Schachter J, Linette G, et
al: Phase III randomized clinical trial comparing tremelimumab with
standard-of-care chemotherapy in patients with advanced melanoma. J
Clin Oncol. 31:616–622. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Khubchandani S, Czuczman MS and
Hernandez-Ilizaliturri FJ: Dacetuzumab, a humanized mAb against
CD40 for the treatment of hematological malignancies. Curr Opin
Investig Drugs. 10:579–587. 2009.PubMed/NCBI
|
|
78
|
Law CL, Gordon KA, Collier J, Klussman K,
McEarchern JA, Cerveny CG, Mixan BJ, Lee WP, Lin Z, Valdez P, et
al: Preclinical antilymphoma activity of a humanized anti-CD40
monoclonal antibody, SGN-40. Cancer Res. 65:8331–8338. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Oflazoglu E, Stone IJ, Brown L, Gordon KA,
van Rooijen N, Jonas M, Law CL, Grewal IS and Gerber HP:
Macrophages and Fc-receptor interactions contribute to the
antitumour activities of the anti-CD40 antibody SGN-40. Br J
Cancer. 100:113–117. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Advani R, Forero-Torres A, Furman RR,
Rosenblatt JD, Younes A, Ren H, Harrop K, Whiting N and Drachman
JG: Phase I study of the humanized anti-CD40 monoclonal antibody
dacetuzumab in refractory or recurrent non-Hodgkin's lymphoma. J
Clin Oncol. 27:4371–4377. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Forero-Torres A, Bartlett N, Beaven A,
Myint H, Nasta S, Northfelt DW, Whiting NC, Drachman JG, Lobuglio
AF and Moskowitz CH: Pilot study of dacetuzumab in combination with
rituximab and gemcitabine for relapsed or refractory diffuse large
B-cell lymphoma. Leuk Lymphoma. 54:277–283. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Geldart TR, Harvey M, Carr N, Glennie M
and Johnson P: Cancer immunotherapy with a chimeric anti-CD40
monoclonal antibody: Evidence of preclinical efficacy. J Clin
Oncol. 22:2577. 2004. View Article : Google Scholar
|
|
83
|
Johnson PW, Challis R, Chowdhury F, Chan
C, Smith A, Steven N, Edwards C, Ashton-Key M, Hodges E, Tutt A, et
al: Abstract LB-142: A trial of agonistic anti-CD40 antibody:
Biological effects in a Cancer Research UK phase I study. Cancer
Res. 73:2013.
|
|
84
|
Mangsbo SM, Broos S, Fletcher E,
Veitonmäki N, Furebring C, Dahlén E, Norlén P, Lindstedt M,
Tötterman TH and Ellmark P: The human agonistic CD40 antibody
ADC-1013 eradicates bladder tumors and generates T-cell-dependent
tumor immunity. Clin Cancer Res. 21:1115–1126. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Vitale LA, Thomas LJ, He LZ, O'Neill T,
Widger J, Crocker A, Sundarapandiyan K, Storey JR, Forsberg EM,
Weidlick J, et al: Development of CDX-1140, an agonist CD40
antibody for cancer immunotherapy. Cancer Immunol Immunother.
68:233–245. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Santuray RT, Johnson DE and Grandis JR:
New therapies in head and neck cancer. Trends Cancer. 4:385–396.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Bjorck P, Filbert E, Zhang Y, Yang X and
Trifan O: The CD40 agonistic monoclonal antibody APX005M has potent
immune stimulatory capabilities. J Immunother Cancer. 3:P1982015.
View Article : Google Scholar
|