Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
November-2020 Volume 20 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2020 Volume 20 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Hydrogen gas activates coenzyme Q10 to restore exhausted CD8+ T cells, especially PD‑1+Tim3+terminal CD8+ T cells, leading to better nivolumab outcomes in patients with lung cancer

  • Authors:
    • Junji Akagi
    • Hideo Baba
  • View Affiliations / Copyright

    Affiliations: Department of Surgery, Tamana Regional Health Medical Center, Kumamoto 865‑0005, Japan, Department of Gastroenterological Surgery Kumamoto University, Kumamoto 860‑8556, Japan
  • Article Number: 258
    |
    Published online on: September 18, 2020
       https://doi.org/10.3892/ol.2020.12121
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

As previously reported, hydrogen gas improves the prognosis of patients with cancer by restoring exhausted CD8+ T cells into active CD8+ T cells, possibly by activating mitochondria. As mitochondrial activators exhibit synergistic effects with nivolumab, the current study investigated whether hydrogen gas also affects the clinical outcomes of nivolumab. A total of 42 of 56 patients with lung cancer treated with nivolumab received hydrogen gas. Exhausted markers (PD‑1 and Tim‑3) on cell populations in the CD8+ T cell differentiation pathway were analyzed using flow cytometry. The concentration of coenzyme Q10 (CoQ10) was measured as a marker of mitochondrial function. The 42 patients treated with hydrogen gas and nivolumab (HGN) indicated a significantly longer overall survival (OS) compared with those treated with nivolumab only (n=14). In multivariate analysis, PD‑1+Tim‑3+terminal CD8+ T cells (PDT+) were an independent poor prognostic factor in OS, and CoQ10 showed a tendency to be associated with improved OS. The change in the rate of PDT+ and CoQ10 after vs. before HGN (PDT+ ratio and CoQ10 ratio, respectively) revealed that patients with low PDT+ ratio (<0.81) and high CoQ10 ratio (>1.175) had significantly longer OS compared with those with high PDT+ ratio and low CoQ10 ratio. Furthermore, PDT+, with a significant reverse correlation with CoQ10, was significantly lower in patients with high CoQ10 and/or CoQ10 ratio than in those low CoQ10 and/or CoQ10. Hydrogen gas has been suggested to enhance the clinical efficacy of nivolumab by increasing CoQ10 (mitochondria) to reduce PDT+, with PDT+ and CoQ10 as reliable negative and positive biomarkers of nivolumab, respectively.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Zou W, Wolchok JD and Chen L: PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci Transl Med. 8:328rv42016. View Article : Google Scholar : PubMed/NCBI

2 

Zajac AJ, Blattman JN, Murali-Krishna K, Soudive DJ, Suresh M, Altman JD and Ahmed R: Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med. 188:2205–2213. 1998. View Article : Google Scholar : PubMed/NCBI

3 

Urbani S, Amadei B, Tola D, Massari M, Schivazappa S, Missale G and Ferrari C: PD-1 expression in acute hepatitis C virus (HCV) infection is associated with HCV-specific CD8 exhaustion. J Virol. 80:11398–11403. 2006. View Article : Google Scholar : PubMed/NCBI

4 

Fernandez-Marcos PJ and Auwerx J: Regulation of PGC1-α, a nodal regulation of mitochondrial biogenesis. Am J Clin Nutr. 93:884S–890S. 2011. View Article : Google Scholar : PubMed/NCBI

5 

Scharping NE, Menk AV, Moreci RS, Whetstone RD, Dadey RE, Watkins SC, Ferris RL and Delgoffe GM: The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity. 45:374–388. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Chamoto K, Chowdhury PS, Kumar A, Sonomura K, Matsuda F, Fagarasan S and Honjo T: Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc Natl Acad Sci USA. 114:E761–E770. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Akagi J and Baba H: Hydrogen gas restores exhausted CD8+ T cells in patients with advanced colorectal cancer to improve prognosis. Oncol Rep. 41:301–311. 2019.PubMed/NCBI

8 

Lund AW: Re-energizing exhausted T cells? Sci Transl Med. 8:353ec1352016. View Article : Google Scholar

9 

Wang F, He W, Zhou H, Yuan J, Wu K, Xu L and Chen ZK: The Tim-3 ligand galectin-9 negatively regulates CD8+ alloreactive T cell and prolongs survival of skin graft. Cell Immunol. 250:68–74. 2007. View Article : Google Scholar : PubMed/NCBI

10 

Anderson AC, Anderson DE, Bregoli L, Hastings WD, Kassam N, Lei C, Chandwaskar R, Karman J, Su EW, Hirashima M, et al: Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science. 318:1141–1143. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Jones RB, Ndhlovu LC, Barbour JD, Sheth PM, Jha AR, Long BR, Wong JC, Satkunarajah M, Schweneker M, Chapman JM, et al: Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. J Exp Med. 205:2763–2779. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Sakuishi K, Apethoh L, Sullivan JM, Biazar BR, Kuchroo VK and Anderson AC: Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 207:2187–2194. 2011. View Article : Google Scholar

13 

Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S and Ohta S: Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 13:688–694. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Kamimura N, Ichimiya H, Luchi K and Ohta S: Molecular hydrogen stimulates the gene expression of transcriptional coactivator PGC-1α to enhance fatty acid metabolism. NPJ Aging Mech Dis. 2:160082016. View Article : Google Scholar : PubMed/NCBI

15 

Hosoe K, Kitano M, Kishida H, Kubo H, Fujii K and Kitahara M: Study on safety and bioavailability of ubiquinol (Kaneka QH) after single and 4-week multiple oral administration to healthy volunteers. Regul Toxicol Pharmacol. 47:19–28. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Tian G, Sawashita J, Kubo H, Nishio SY, Hashimoto S, Suzuki N, Yoshimura H, Tsuruoka M, Wang Y, Liu Y, et al: Ubiquinol-10 supplementation activates mitochondria functions to decelerate senescence in senescence-accelerated mice. Antioxid Redox Signal. 20:2606–2620. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Gyozdiakova A, Kucharska J, Sumbalova Z, Nemec M, Chladekova A, Vancova O, Rausová Z, Kubalová M, Kuzmiaková Z and Mojto V: Platelets mitochondrial function depends on CoQ10 concentration in winter, not in spring season. Gen Physiol Biophys. 38:325–334. 2019. View Article : Google Scholar : PubMed/NCBI

18 

Sobin LH and Wittekind CH: UICC TNM Classification of Malignant Tumors. John Wiley and Sons; New York, NY: 1997

19 

Tamura T, Hayashida K, Sano M, Suzuki M, Shibusawa T, Yoshizawa J, Kobayashi Y, Suzuki T, Ohta S, Morisaki H, et al: Feasibility and safety of hydrogen gas inhalation for post-cardiac arrest syndrome-First-in-Human Pilot Study. Circ J. 80:1870–1873. 2016. View Article : Google Scholar : PubMed/NCBI

20 

National Cancer Institute: Cancer therapy evaluation program, common terminology criteria for adverse events, v3. Int J Clin Oncol. 9 (Supp III):1–82. 2004.

21 

Wang M, Tang W and Zhu YZ: An update on AMPK in hydrogen sulfide pharmacology. Front Pharmacol. 8:8102017. View Article : Google Scholar : PubMed/NCBI

22 

Chi Q, Wang D, Hu X and Li S and Li S: Hydrogen sulfide gas exposure induces necroptosis and promotes inflammation through the MAPK/NF-κB pathway in broiler spleen. Oxid Med Cell Longev. 2019:80618232019. View Article : Google Scholar : PubMed/NCBI

23 

Li S, Fujino M, Ichimaru N, Kurokawa R, Hirano S, Mou L, Takahara S, Takahara T and Li XK: Molecular hydrogen protects against ischemia-reperfusion injury in a mouse fatty liver model via regulating HO-1 and Sirt1 expression. Sci Rep. 8:140192018. View Article : Google Scholar : PubMed/NCBI

24 

Zhang B, Zhao Z, Meng X, Chen H, Fu G and Xie K: Hydrogen ameliorates oxidative stress via PI3K-Akt signaling pathway in UVB-induced HaCaT cells. Int J Mol Med. 41:3653–3661. 2018.PubMed/NCBI

25 

Crespo J, Sun H, Welling TH, Tian Z and Zou W: T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol. 25:214–221. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Callender LA, Carroll EC, Beal RWJ, Chambers ES, Nourshargh S, Akbar AN and Henson SM: Human CD8+ EMRA T cells display a senescence-associated secretory phenotype regulated by p38 MAPK. Aging Cell. 17:e126752018. View Article : Google Scholar

27 

Vallejo AN, Weyand CM and Goronzy ZJJ: T-cell senescence: A culprit of immune abnormalities in chronic inflammation and persistent infection. Trends Mol Med. 10:119–124. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Chappert P and Schwartz RH: Induction of T cell anergy: Integration of environmental cues and infectious tolerance. Curr Opin Immunol. 22:552–559. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Baitsch L, Fuertes-Marraco SA, Legat A, Meyer C and Speiser DE: The three main stumbling blocks for anticancer T cells. Trends Immunol. 33:364–372. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Lanna A, Henson SM, Escors D and Akbar AN: The kinase p38 activated by the metablic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nat Immunol. 15:965–972. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Lanna A, Henson M and Akbar A: The regulation of T cell senescence and metabolism by p38 map kinase signaling. Innov Aging. 1 (Suppl 1):12542017. View Article : Google Scholar

32 

Arthur JS and Ley SC: Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol. 13:679–692. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Zhou J, Yan P, Zhu XD and Yu KJ: Hydrogen mitigates acute lung injury through upregulation of M2 and downregulation of M1 macrophage phenotypes. Int J Clin Exp Med. 11:7927–7935. 2018.

34 

Li D and Ai Y: Hydrogen saline suppresses neuronal cell apoptosis and inhibit the p38 mitogen-activated protein kinase-caspase-3 signaling pathway following cerebral ischemia-reperfusion injury. Mol Med Rep. 16:5321–5325. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Akagi J and Baba H: Hydrogen gas activates coenzyme Q10 to restore exhausted CD8+ T cells, especially PD‑1+Tim3+terminal CD8+ T cells, leading to better nivolumab outcomes in patients with lung cancer. Oncol Lett 20: 258, 2020.
APA
Akagi, J., & Baba, H. (2020). Hydrogen gas activates coenzyme Q10 to restore exhausted CD8+ T cells, especially PD‑1+Tim3+terminal CD8+ T cells, leading to better nivolumab outcomes in patients with lung cancer. Oncology Letters, 20, 258. https://doi.org/10.3892/ol.2020.12121
MLA
Akagi, J., Baba, H."Hydrogen gas activates coenzyme Q10 to restore exhausted CD8+ T cells, especially PD‑1+Tim3+terminal CD8+ T cells, leading to better nivolumab outcomes in patients with lung cancer". Oncology Letters 20.5 (2020): 258.
Chicago
Akagi, J., Baba, H."Hydrogen gas activates coenzyme Q10 to restore exhausted CD8+ T cells, especially PD‑1+Tim3+terminal CD8+ T cells, leading to better nivolumab outcomes in patients with lung cancer". Oncology Letters 20, no. 5 (2020): 258. https://doi.org/10.3892/ol.2020.12121
Copy and paste a formatted citation
x
Spandidos Publications style
Akagi J and Baba H: Hydrogen gas activates coenzyme Q10 to restore exhausted CD8+ T cells, especially PD‑1+Tim3+terminal CD8+ T cells, leading to better nivolumab outcomes in patients with lung cancer. Oncol Lett 20: 258, 2020.
APA
Akagi, J., & Baba, H. (2020). Hydrogen gas activates coenzyme Q10 to restore exhausted CD8+ T cells, especially PD‑1+Tim3+terminal CD8+ T cells, leading to better nivolumab outcomes in patients with lung cancer. Oncology Letters, 20, 258. https://doi.org/10.3892/ol.2020.12121
MLA
Akagi, J., Baba, H."Hydrogen gas activates coenzyme Q10 to restore exhausted CD8+ T cells, especially PD‑1+Tim3+terminal CD8+ T cells, leading to better nivolumab outcomes in patients with lung cancer". Oncology Letters 20.5 (2020): 258.
Chicago
Akagi, J., Baba, H."Hydrogen gas activates coenzyme Q10 to restore exhausted CD8+ T cells, especially PD‑1+Tim3+terminal CD8+ T cells, leading to better nivolumab outcomes in patients with lung cancer". Oncology Letters 20, no. 5 (2020): 258. https://doi.org/10.3892/ol.2020.12121
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team