Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
November-2020 Volume 20 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2020 Volume 20 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Impact of inflammation and immunotherapy in renal cell carcinoma (Review)

  • Authors:
    • Jian Shi
    • Keshan Wang
    • Zhiyong Xiong
    • Changfei Yuan
    • Cheng Wang
    • Qi Cao
    • Huang Yu
    • Xiangui Meng
    • Kairu Xie
    • Zhixian Cheng
    • Hongmei Yang
    • Ke Chen
    • Xiaoping Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China, Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
    Copyright: © Shi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 272
    |
    Published online on: September 21, 2020
       https://doi.org/10.3892/ol.2020.12135
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Substantial research attention has been directed at exploring the mechanisms and treatment of renal cell carcinoma (RCC). Indeed, the association between inflammation and tumor phenotypes has been at the center of cancer research. Concomitant with research on the inflammation response and inflammatory molecules involved in RCC, new breakthroughs have emerged. A large body of knowledge now shows that treatments targeting inflammation and immunity in RCC provide substantial clinical benefits. Adequate analysis and a better understanding of the mechanisms of inflammatory factors in the occurrence and progression of RCC are highly desirable. Currently, numerous RCC treatments targeted at inflammation and immunotherapy are available. The current review describes in detail the link between inflammation and RCC.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Wiechno P, Kucharz J, Sadowska M, Michalski W, Sikora-Kupis B, Jonska-Gmyrek J, Poniatowska G, Nietupski K, Ossolinski K and Demkow T: Contemporary treatment of metastatic renal cell carcinoma. Med Oncol. 35:1562018. View Article : Google Scholar : PubMed/NCBI

2 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Hammers HJ, Plimack ER, Infante JR, Rini BI, McDermott DF, Lewis LD, Voss MH, Sharma P, Pal SK, Razak ARA, et al: Safety and efficacy of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma: The CheckMate 016 study. J Clin Oncol. 35:3851–3858. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Galdiero MR, Marone G and Mantovani A: Cancer inflammation and cytokines. Cold Spring Harb Perspect Biol. 10:a0285302018. View Article : Google Scholar : PubMed/NCBI

6 

Kay J, Thadhani E, Samson L and Engelward B: Inflammation-induced DNA damage, mutations and cancer. DNA Repair (Amst). 83:1026732019. View Article : Google Scholar : PubMed/NCBI

7 

Korniluk A, Koper O, Kemona H and Dymicka-Piekarska V: From inflammation to cancer. Ir J Med Sci. 186:57–62. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Ha H, Debnath B and Neamati N: Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases. Theranostics. 7:1543–1588. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Brighi N, Farolfi A, Conteduca V, Gurioli G, Gargiulo S, Gallà V, Schepisi G, Lolli C, Casadei C and De Giorgi U: The interplay between inflammation, anti-angiogenic agents, and immune checkpoint inhibitors: Perspectives for renal cell cancer treatment. Cancers (Basel). 11:19352019. View Article : Google Scholar

10 

Nakamura K and Smyth MJ: Targeting cancer-related inflammation in the era of immunotherapy. Immunol Cell Biol. 95:325–332. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Balkwill F and Mantovani A: Inflammation and cancer: Back to Virchow? Lancet. 357:539–545. 2001. View Article : Google Scholar : PubMed/NCBI

12 

Ngabire D and Kim GD: Autophagy and inflammatory response in the tumor microenvironment. Int J Mol Sci. 18:20162017. View Article : Google Scholar

13 

Todoric J, Antonucci L and Karin M: Targeting inflammation in cancer prevention and therapy. Cancer Prev Res (Phila). 9:895–905. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Borroni EM, Savino B, Bonecchi R and Locati M: Chemokines sound the alarmin: The role of atypical chemokine in inflammation and cancer. Semin Immunol. 38:63–71. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C and Flavell RA: Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 13:759–771. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Marelli G, Sica A, Vannucci L and Allavena P: Inflammation as target in cancer therapy. Curr Opin Pharmacol. 35:57–65. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Greten FR and Grivennikov SI: Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity. 51:27–41. 2019. View Article : Google Scholar : PubMed/NCBI

18 

Munn LL: Cancer and inflammation. Wiley Interdiscip Rev Syst Biol Med. 9:2017. View Article : Google Scholar : PubMed/NCBI

19 

Murata M: Inflammation and cancer. Environ Health Prev Med. 23:502018. View Article : Google Scholar : PubMed/NCBI

20 

Urban-Wojciuk Z, Khan MM, Oyler BL, Fåhraeus R, Marek-Trzonkowska N, Nita-Lazar A, Hupp TR and Goodlett DR: The role of TLRs in anti-cancer immunity and tumor rejection. Front Immunol. 10:23882019. View Article : Google Scholar : PubMed/NCBI

21 

Kunnumakkara AB, Sailo BL, Banik K, Harsha C, Prasad S, Gupta SC, Bharti AC and Aggarwal BB: Chronic diseases, inflammation, and spices: How are they linked? J Transl Med. 16:142018. View Article : Google Scholar : PubMed/NCBI

22 

Kundu JK and Surh YJ: Emerging avenues linking inflammation and cancer. Free Radic Biol Med. 52:2013–2037. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Taniguchi K and Karin M: NF-κB, inflammation, immunity and cancer: Coming of age. Nat Rev Immunol. 18:309–324. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Hu YS, Han X and Liu XH: STAT3: A potential drug target for tumor and inflammation. Curr Top Med Chem. 19:1305–1317. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, Heng DY, Larkin J and Ficarra V: Renal cell carcinoma. Nat Rev Dis Primers. 3:170092017. View Article : Google Scholar : PubMed/NCBI

26 

Martínez-Sáez O, Gajate Borau P, Alonso-Gordoa T, Molina-Cerrillo J and Grande E: Targeting HIF-2 α in clear cell renal cell carcinoma: A promising therapeutic strategy. Crit Rev Oncol Hematol. 111:117–123. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Tarade D and Ohh M: The HIF and other quandaries in VHL disease. Oncogene. 37:139–147. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Chappell JC, Payne LB and Rathmell WK: Hypoxia, angiogenesis, and metabolism in the hereditary kidney cancers. J Clin Invest. 129:442–451. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Duan C: Hypoxia-inducible factor 3 biology: Complexities and emerging themes. Am J Physiol Cell Physiol. 310:C260–C269. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Choudhry H and Harris AL: Advances in hypoxia-inducible factor biology. Cell Metab. 27:281–298. 2018. View Article : Google Scholar : PubMed/NCBI

31 

Strowitzki MJ, Cummins EP and Taylor CT: Protein hydroxylation by hypoxia-inducible factor (HIF) hydroxylases: Unique or Ubiquitous? Cells. 8:3842019. View Article : Google Scholar

32 

Yu Y, Yu Q and Zhang X: Allosteric inhibition of HIF-2α as a novel therapy for clear cell renal cell carcinoma. Drug Discov Today. 24:2332–2340. 2019. View Article : Google Scholar : PubMed/NCBI

33 

Schödel J, Grampp S, Maher ER, Moch H, Ratcliffe PJ, Russo P and Mole DR: Hypoxia, hypoxia-inducible transcription factors, and renal cancer. Eur Urol. 69:646–657. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Qureshi AS and Ali S: Review: Warburg effect and renal cancer caused by errs in fumarate hydratase encoding gene. Pak J Pharm Sci. 32:743–749. 2019.PubMed/NCBI

35 

Bao Y, Wang Z, Liu B, Lu X, Xiong Y, Shi J, Li P, Chen J, Zhang Z, Chen M, et al: A feed-forward loop between nuclear translocation of CXCR4 and HIF-1α promotes renal cell carcinoma metastasis. Oncogene. 38:881–895. 2019. View Article : Google Scholar : PubMed/NCBI

36 

Mossmann D, Park S and Hall MN: mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat Rev Cancer. 18:744–757. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Hua H, Kong Q, Zhang H, Wang J, Luo T and Jiang Y: Targeting mTOR for cancer therapy. J Hematol Oncol. 12:712019. View Article : Google Scholar : PubMed/NCBI

38 

Murugan AK: mTOR: Role in cancer, metastasis and drug resistance. Semin Cancer Biol. 59:92–111. 2019. View Article : Google Scholar : PubMed/NCBI

39 

Saxton RA and Sabatini DM: mTOR signaling in growth, metabolism, and disease. Cell. 168:960–976. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Kim LC, Cook RS and Chen J: mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene. 36:2191–2201. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Song M, Bode AM, Dong Z and Lee MH: AKT as a therapeutic target for cancer. Cancer Res. 79:1019–1031. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Lieberthal W and Levine JS: The role of the mammalian target of rapamycin (mTOR) in renal disease. J Am Soc Nephrol. 20:2493–2502. 2009. View Article : Google Scholar : PubMed/NCBI

43 

Deng W, Han W, Fan T, Wang X, Cheng Z, Wan B and Chen J: Scutellarin inhibits human renal cancer cell proliferation and migration via upregulation of PTEN. Biomed Pharmacother. 107:1505–1513. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Figlin RA, Kaufmann I and Brechbiel J: Targeting PI3K and mTORC2 in metastatic renal cell carcinoma: New strategies for overcoming resistance to VEGFR and mTORC1 inhibitors. Int J Cancer. 133:788–796. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Ben-Sahra I and Manning BD: mTORC1 signaling and the metabolic control of cell growth. Curr Opin Cell Biol. 45:72–82. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Duran I, Lambea J, Maroto P, González-Larriba JL, Flores L, Granados-Principal S, Graupera M, Sáez B, Vivancos A and Casanovas O: Resistance to targeted therapies in renal cancer: The importance of changing the mechanism of action. Target Oncol. 12:19–35. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Poletto V, Rosti V, Biggiogera M, Guerra G, Moccia F and Porta C: The role of endothelial colony forming cells in kidney cancer's pathogenesis, and in resistance to anti-VEGFR agents and mTOR inhibitors: A speculative review. Crit Rev Oncol Hematol. 132:89–99. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Ma WW and Jimeno A: Temsirolimus. Drugs Today (Barc). 43:659–669. 2007. View Article : Google Scholar : PubMed/NCBI

49 

Bedke J, Stühler V, Stenzl A and Brehmer B: Immunotherapy for kidney cancer: Status quo and the future. Curr Opin Urol. 28:8–14. 2018. View Article : Google Scholar : PubMed/NCBI

50 

Wajant H and Beilhack A: Targeting regulatory T cells by addressing tumor necrosis factor and its receptors in allogeneic hematopoietic cell transplantation and cancer. Front Immunol. 10:20402019. View Article : Google Scholar : PubMed/NCBI

51 

Martínez-Reza I, Díaz L and García-Becerra R: Preclinical and clinical aspects of TNF-α and its receptors TNFR1 and TNFR2 in breast cancer. J Biomed Sci. 24:902017. View Article : Google Scholar : PubMed/NCBI

52 

Ting AT and Bertrand MJM: More to life than NF-κB in TNFR1 signaling. Trends Immunol. 37:535–545. 2016. View Article : Google Scholar : PubMed/NCBI

53 

Mehta AK, Gracias DT and Croft M: TNF activity and T cells. Cytokine. 101:14–18. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Wang J and Al-Lamki RS: Tumor necrosis factor receptor 2: Its contribution to acute cellular rejection and clear cell renal carcinoma. Biomed Res Int. 2013:8213102013. View Article : Google Scholar : PubMed/NCBI

55 

Qi H and Ohh M: The von Hippel-Lindau tumor suppressor protein sensitizes renal cell carcinoma cells to tumor necrosis factor-induced cytotoxicity by suppressing the nuclear factor-kappaB-dependent antiapoptotic pathway. Cancer Res. 63:7076–7080. 2003.PubMed/NCBI

56 

Al-Lamki RS, Sadler TJ, Wang J, Reid MJ, Warren AY, Movassagh M, Lu W, Mills IG, Neal DE, Burge J, et al: Tumor necrosis factor receptor expression and signaling in renal cell carcinoma. Am J Pathol. 177:943–954. 2010. View Article : Google Scholar : PubMed/NCBI

57 

Borghi A, Verstrepen L and Beyaert R: TRAF2 multitasking in TNF receptor-induced signaling to NF-κB, MAP kinases and cell death. Biochem Pharmacol. 116:1–10. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Zhao X, Rong L, Zhao X, Li X, Liu X, Deng J, Wu H, Xu X, Erben U, Wu P, et al: TNF signaling drives myeloid-derived suppressor cell accumulation. J Clin Invest. 122:4094–4104. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Sheng Y, Li F and Qin Z: TNF receptor 2 makes tumor necrosis factor a friend of tumors. Front Immunol. 9:11702018. View Article : Google Scholar : PubMed/NCBI

60 

Zhang S, Yang X, Wang L and Zhang C: Interplay between inflammatory tumor microenvironment and cancer stem cells. Oncol Lett. 16:679–686. 2018.PubMed/NCBI

61 

Trivedi S and Starz-Gaiano M: Drosophila Jak/STAT signaling: Regulation and relevance in human cancer and metastasis. Int J Mol Sci. 19:40562018. View Article : Google Scholar

62 

Chen Y, Zhu Y, Sheng Y, Xiao J, Xiao Y, Cheng N, Chai Y, Wu X, Zhang S and Xiang T: SIRT1 downregulated FGB expression to inhibit RCC tumorigenesis by destabilizing STAT3. Exp Cell Res. 382:1114662019. View Article : Google Scholar : PubMed/NCBI

63 

Liu Y, Wang JX, Nie ZY, Wen Y, Jia XJ, Zhang LN, Duan HJ and Shi YH: Upregulation of ERp57 promotes clear cell renal cell carcinoma progression by initiating a STAT3/ILF3 feedback loop. J Exp Clin Cancer Res. 38:4392019. View Article : Google Scholar : PubMed/NCBI

64 

Wei X, Yu L and Li Y: PBX1 promotes the cell proliferation via JAK2/STAT3 signaling in clear cell renal carcinoma. Biochem Biophys Res Commun. 500:650–657. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Johnson DE, O'Keefe RA and Grandis JR: Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 15:234–248. 2018. View Article : Google Scholar : PubMed/NCBI

66 

Huynh J, Etemadi N, Hollande F, Ernst M and Buchert M: The JAK/STAT3 axis: A comprehensive drug target for solid malignancies. Semin Cancer Biol. 45:13–22. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Fathi N, Rashidi G, Khodadadi A, Shahi S and Sharifi S: STAT3 and apoptosis challenges in cancer. Int J Biol Macromol. 117:993–1001. 2018. View Article : Google Scholar : PubMed/NCBI

68 

Guanizo AC, Fernando CD, Garama DJ and Gough DJ: STAT3: A multifaceted oncoprotein. Growth Factors. 36:1–14. 2018. View Article : Google Scholar : PubMed/NCBI

69 

Galoczova M, Coates P and Vojtesek B: STAT3, stem cells, cancer stem cells and p63. Cell Mol Biol Lett. 23:122018. View Article : Google Scholar : PubMed/NCBI

70 

Huynh J, Chand A, Gough D and Ernst M: Therapeutically exploiting STAT3 activity in cancer - using tissue repair as a road map. Nat Rev Cancer. 19:82–96. 2019. View Article : Google Scholar : PubMed/NCBI

71 

Yeung YT, Aziz F, Guerrero-Castilla A and Arguelles S: Signaling pathways in inflammation and anti-inflammatory therapies. Curr Pharm Des. 24:1449–1484. 2018. View Article : Google Scholar : PubMed/NCBI

72 

Wang Y, Fu D, Chen Y, Su J, Wang Y, Li X, Zhai W, Niu Y, Yue D and Geng H: G3BP1 promotes tumor progression and metastasis through IL-6/G3BP1/STAT3 signaling axis in renal cell carcinomas. Cell Death Dis. 9:5012018. View Article : Google Scholar : PubMed/NCBI

73 

Taher MY, Davies DM and Maher J: The role of the interleukin (IL)-6/IL-6 receptor axis in cancer. Biochem Soc Trans. 46:1449–1462. 2018. View Article : Google Scholar : PubMed/NCBI

74 

Kampan NC, Xiang SD, McNally OM, Stephens AN, Quinn MA and Plebanski M: Immunotherapeutic interleukin-6 or interleukin-6 receptor blockade in cancer: Challenges and opportunities. Curr Med Chem. 25:4785–4806. 2018. View Article : Google Scholar : PubMed/NCBI

75 

Ray K, Ujvari B, Ramana V and Donald J: Cross-talk between EGFR and IL-6 drives oncogenic signaling and offers therapeutic opportunities in cancer. Cytokine Growth Factor Rev. 41:18–27. 2018. View Article : Google Scholar : PubMed/NCBI

76 

Jordan SC, Choi J, Kim I, Wu G, Toyoda M, Shin B and Vo A: Interleukin-6, a cytokine critical to mediation of inflammation, autoimmunity and allograft rejection: Therapeutic implications of IL-6 receptor blockade. Transplantation. 101:32–44. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Jones SA and Jenkins BJ: Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol. 18:773–789. 2018. View Article : Google Scholar : PubMed/NCBI

78 

Kamińska K, Czarnecka AM, Escudier B, Lian F and Szczylik C: Interleukin-6 as an emerging regulator of renal cell cancer. Urol Oncol. 33:476–485. 2015. View Article : Google Scholar : PubMed/NCBI

79 

Qi QR and Yang ZM: Regulation and function of signal transducer and activator of transcription 3. World J Biol Chem. 5:231–239. 2014.PubMed/NCBI

80 

Jones SA, Horiuchi S, Topley N, Yamamoto N and Fuller GM: The soluble interleukin 6 receptor: Mechanisms of production and implications in disease. FASEB J. 15:43–58. 2001. View Article : Google Scholar : PubMed/NCBI

81 

Matsumoto S, Hara T, Mitsuyama K, Yamamoto M, Tsuruta O, Sata M, Scheller J, Rose-John S, Kado S and Takada T: Essential roles of IL-6 trans-signaling in colonic epithelial cells, induced by the IL-6/soluble-IL-6 receptor derived from lamina propria macrophages, on the development of colitis-associated premalignant cancer in a murine model. J Immunol. 184:1543–1551. 2010. View Article : Google Scholar : PubMed/NCBI

82 

Oguro T, Ishibashi K, Sugino T, Hashimoto K, Tomita S, Takahashi N, Yanagida T, Haga N, Aikawa K, Suzutani T, et al: Humanised antihuman IL-6R antibody with interferon inhibits renal cell carcinoma cell growth in vitro and in vivo through suppressed SOCS3 expression. Eur J Cancer. 49:1715–1724. 2013. View Article : Google Scholar : PubMed/NCBI

83 

Ueno S, Saito S, Wada T, Yamaguchi K, Satoh M, Arai Y and Miyagi T: Plasma membrane-associated sialidase is up-regulated in renal cell carcinoma and promotes interleukin-6-induced apoptosis suppression and cell motility. J Biol Chem. 281:7756–7764. 2006. View Article : Google Scholar : PubMed/NCBI

84 

Annibaldi A and Meier P: Checkpoints in TNF-induced cell death: Implications in inflammation and cancer. Trends Mol Med. 24:49–65. 2018. View Article : Google Scholar : PubMed/NCBI

85 

Patel HJ and Patel BM: TNF-α and cancer cachexia: Molecular insights and clinical implications. Life Sci. 170:56–63. 2017. View Article : Google Scholar : PubMed/NCBI

86 

Josephs SF, Ichim TE, Prince SM, Kesari S, Marincola FM, Escobedo AR and Jafri A: Unleashing endogenous TNF-alpha as a cancer immunotherapeutic. J Transl Med. 16:2422018. View Article : Google Scholar : PubMed/NCBI

87 

Harrison ML, Obermueller E, Maisey NR, Hoare S, Edmonds K, Li NF, Chao D, Hall K, Lee C, Timotheadou E, et al: Tumor necrosis factor alpha as a new target for renal cell carcinoma: Two sequential phase II trials of infliximab at standard and high dose. J Clin Oncol. 25:4542–4549. 2007. View Article : Google Scholar : PubMed/NCBI

88 

Dosquet C, Coudert MC, Lepage E, Cabane J and Richard F: Are angiogenic factors, cytokines, and soluble adhesion molecules prognostic factors in patients with renal cell carcinoma? Clin Cancer Res. 3:2451–2458. 1997.PubMed/NCBI

89 

Wong SHM, Kong WY, Fang CM, Loh HS, Chuah LH, Abdullah S and Ngai SC: The TRAIL to cancer therapy: Hindrances and potential solutions. Crit Rev Oncol Hematol. 143:81–94. 2019. View Article : Google Scholar : PubMed/NCBI

90 

von Karstedt S, Montinaro A and Walczak H: Exploring the TRAILs less travelled: TRAIL in cancer biology and therapy. Nat Rev Cancer. 17:352–366. 2017. View Article : Google Scholar : PubMed/NCBI

91 

Yuan X, Gajan A, Chu Q, Xiong H, Wu K and Wu GS: Developing TRAIL/TRAIL death receptor-based cancer therapies. Cancer Metastasis Rev. 37:733–748. 2018. View Article : Google Scholar : PubMed/NCBI

92 

Xu YM, Brooks AD, Wijeratne EM, Henrich CJ, Tewary P, Sayers TJ and Gunatilaka AA: 17β-Hydroxywithanolides as sensitizers of renal carcinoma cells to tumor necrosis factor-α related apoptosis inducing ligand (TRAIL) mediated apoptosis: Structure-activity relationships. J Med Chem. 60:3039–3051. 2017. View Article : Google Scholar : PubMed/NCBI

93 

Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH and Rüttinger D: Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 5:532017. View Article : Google Scholar : PubMed/NCBI

94 

Menke J, Kriegsmann J, Schimanski CC, Schwartz MM, Schwarting A and Kelley VR: Autocrine CSF-1 and CSF-1 receptor coexpression promotes renal cell carcinoma growth. Cancer Res. 72:187–200. 2012. View Article : Google Scholar : PubMed/NCBI

95 

Ngambenjawong C, Gustafson HH and Pun SH: Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev. 114:206–221. 2017. View Article : Google Scholar : PubMed/NCBI

96 

Cassetta L, Fragkogianni S, Sims AH, Swierczak A, Forrester LM, Zhang H, Soong DYH, Cotechini T, Anur P, Lin EY, et al: Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell. 35:588–602.e10. 2019. View Article : Google Scholar : PubMed/NCBI

97 

Achkova D and Maher J: Role of the colony-stimulating factor (CSF)/CSF-1 receptor axis in cancer. Biochem Soc Trans. 44:333–341. 2016. View Article : Google Scholar : PubMed/NCBI

98 

Peyraud F, Cousin S and Italiano A: CSF-1R inhibitor development: Current clinical status. Curr Oncol Rep. 19:702017. View Article : Google Scholar : PubMed/NCBI

99 

Li X, Qin Z, Xue J, Zhang J, Zheng Y, Xu W, Xu T and Zou Q: Genetic variants in macrophage colony-stimulating factor are associated with risk of renal cell carcinoma in a Chinese population. Int J Biol Markers. 33:321–328. 2018. View Article : Google Scholar : PubMed/NCBI

100 

Nagarsheth N, Wicha MS and Zou W: Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 17:559–572. 2017. View Article : Google Scholar : PubMed/NCBI

101 

Cimadamore A, Scarpelli M, Piva F, Massari F, Gasparrini S, Doria A, Cheng L, Lopez-Beltran A and Montironi R: Activity of chemokines in prostate and renal tumors and their potential role as future therapeutic targets. Future Oncol. 13:1105–1114. 2017. View Article : Google Scholar : PubMed/NCBI

102 

Zhou W, Guo S, Liu M, Burow ME and Wang G: Targeting CXCL12/CXCR4 Axis in Tumor Immunotherapy. Curr Med Chem. 26:3026–3041. 2019. View Article : Google Scholar : PubMed/NCBI

103 

Si X, Ma J, Yu F, Zhao H, Huang H and Sun YW: Clinicopathological and prognostic significance of CXCR4 high expression in renal cell carcinoma: A meta-analysis and literature review. Int J Surg. 71:12–18. 2019. View Article : Google Scholar : PubMed/NCBI

104 

Micucci C, Matacchione G, Valli D, Orciari S and Catalano A: HIF2α is involved in the expansion of CXCR4-positive cancer stem-like cells in renal cell carcinoma. Br J Cancer. 113:1178–1185. 2015. View Article : Google Scholar : PubMed/NCBI

105 

Elhence P: A Commentary on ‘Clinico-pathological and prognostic significance of CXCR4 high expression in renal cell carcinoma: A meta-analysis and literature review’. (Int J Surg 2019; 71: 12–18). Int J Surg. 72:214–215. 2019. View Article : Google Scholar : PubMed/NCBI

106 

Ieranò C, Santagata S, Napolitano M, Guardia F, Grimaldi A, Antignani E, Botti G, Consales C, Riccio A, Nanayakkara M, et al: CXCR4 and CXCR7 transduce through mTOR in human renal cancer cells. Cell Death Dis. 5:e13102014. View Article : Google Scholar : PubMed/NCBI

107 

Adlere I, Caspar B, Arimont M, Dekkers S, Visser K, Stuijt J, de Graaf C, Stocks M, Kellam B, Briddon S, et al: Modulators of CXCR4 and CXCR7/ACKR3 function. Mol Pharmacol. 96:737–752. 2019. View Article : Google Scholar : PubMed/NCBI

108 

Salazar N and Zabel BA: Support of tumor endothelial cells by chemokine receptors. Front Immunol. 10:1472019. View Article : Google Scholar : PubMed/NCBI

109 

Morein D, Erlichman N and Ben-Baruch A: Beyond cell motility: The expanding roles of chemokines and their receptors in malignancy. Front Immunol. 11:9522020. View Article : Google Scholar : PubMed/NCBI

110 

Nazari A, Khorramdelazad H and Hassanshahi G: Biolog-ical/pathological functions of the CXCL12/CXCR4/CXCR7 axes in the pathogenesis of bladder cancer. Int J Clin Oncol. 22:991–1000. 2017. View Article : Google Scholar : PubMed/NCBI

111 

Daniel SK, Seo YD and Pillarisetty VG: The CXCL12-CXCR4/CXCR7 axis as a mechanism of immune resistance in gastrointestinal malignancies. Semin Cancer Biol. 65:176–188. 2020. View Article : Google Scholar : PubMed/NCBI

112 

Cabrero-de Las Heras S and Martínez-Balibrea E: CXC family of chemokines as prognostic or predictive biomarkers and possible drug targets in colorectal cancer. World J Gastroenterol. 24:4738–4749. 2018. View Article : Google Scholar : PubMed/NCBI

113 

Krikun G: The CXL12/CXCR4/CXCR7 axis in female reproductive tract disease: Review. Am J Reprod Immunol. 80:e130282018. View Article : Google Scholar : PubMed/NCBI

114 

Cheng X, Wang H, Zhang X, Zhao S, Zhou Z, Mu X, Zhao C and Teng W: The role of SDF-1/CXCR4/CXCR7 in neuronal regeneration after cerebral ischemia. Front Neurosci. 11:5902017. View Article : Google Scholar : PubMed/NCBI

115 

Al-Toub M, Almohawes M, Vishnubalaji R, Alfayez M, Aldahmash A, Kassem M and Alajez NM: CXCR7 signaling promotes breast cancer survival in response to mesenchymal stromal stem cell-derived factors. Cell Death Discov. 5:872019. View Article : Google Scholar : PubMed/NCBI

116 

Floranović MP and Veličković LJ: Effect of CXCL12 and its receptors on unpredictable renal cell carcinoma. Clin Genitourin Cancer. 18:e337–e342. 2020. View Article : Google Scholar : PubMed/NCBI

117 

Winer A, Adams S and Mignatti P: Matrix metalloproteinase inhibitors in cancer therapy: turning past failures into future successes. Mol Cancer Ther. 17:1147–1155. 2018. View Article : Google Scholar : PubMed/NCBI

118 

Cui N, Hu M and Khalil RA: Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 147:1–73. 2017. View Article : Google Scholar : PubMed/NCBI

119 

Parks WC, Wilson CL and López-Boado YS: Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol. 4:617–629. 2004. View Article : Google Scholar : PubMed/NCBI

120 

Fingleton B: Matrix metalloproteinases as regulators of inflammatory processes. Biochim Biophys Acta Mol Cell Res. 1864:2036–2042. 2017. View Article : Google Scholar : PubMed/NCBI

121 

Peters F and Becker-Pauly C: Role of meprin metalloproteases in metastasis and tumor microenvironment. Cancer Metastasis Rev. 38:347–356. 2019. View Article : Google Scholar : PubMed/NCBI

122 

Su CW, Lin CW, Yang WE and Yang SF: TIMP-3 as a therapeutic target for cancer. Ther Adv Med Oncol. Jul 16–2019.(Epub ahead of print). 1758835919864247, 2019. doi: 10.1177/1758835919864247. View Article : Google Scholar

123 

Eckfeld C, Häußler D, Schoeps B, Hermann CD and Krüger A: Functional disparities within the TIMP family in cancer: Hints from molecular divergence. Cancer Metastasis Rev. 38:469–481. 2019. View Article : Google Scholar : PubMed/NCBI

124 

Gong D, Zhang J, Chen Y, Xu Y, Ma J, Hu G, Huang Y, Zheng J, Zhai W and Xue W: The m6A-suppressed P2RX6 activation promotes renal cancer cells migration and invasion through ATP-induced Ca(2+) influx modulating ERK1/2 phosphorylation and MMP9 signaling pathway. J Exp Clin Cancer Res. 38:2332019. View Article : Google Scholar : PubMed/NCBI

125 

Niu H, Li F, Wang Q, Ye Z, Chen Q and Lin Y: High expression level of MMP9 is associated with poor prognosis in patients with clear cell renal carcinoma. PeerJ. 6:e50502018. View Article : Google Scholar : PubMed/NCBI

126 

Gonzalez-Molina J, Gramolelli S, Liao Z, Carlson JW, Ojala PM and Lehti K: MMP14 in sarcoma: A regulator of tumor microenvironment communication in connective tissues. Cells. 8:9912019. View Article : Google Scholar

127 

Gifford V and Itoh Y: MT1-MMP-dependent cell migration: Proteolytic and non-proteolytic mechanisms. Biochem Soc Trans. 47:811–826. 2019. View Article : Google Scholar : PubMed/NCBI

128 

Cepeda MA, Evered CL, Pelling JJH and Damjanovski S: Inhibition of MT1-MMP proteolytic function and ERK1/2 signalling influences cell migration and invasion through changes in MMP-2 and MMP-9 levels. J Cell Commun Signal. 11:167–179. 2017. View Article : Google Scholar : PubMed/NCBI

129 

Petrella BL and Brinckerhoff CE: Tumor cell invasion of von Hippel Lindau renal cell carcinoma cells is mediated by membrane type-1 matrix metalloproteinase. Mol Cancer. 5:662006. View Article : Google Scholar : PubMed/NCBI

130 

Jiang B, Liu J and Lee MH: Targeting a designer TIMP-1 to the cell surface for effective MT1-MMP inhibition: A potential role for the prion protein in renal carcinoma therapy. Molecules. 24:2552019. View Article : Google Scholar

131 

Wu G, Ma Z, Cheng Y, Hu W, Deng C, Jiang S, Li T, Chen F and Yang Y: Targeting Gas6/TAM in cancer cells and tumor microenvironment. Mol Cancer. 17:202018. View Article : Google Scholar : PubMed/NCBI

132 

Kovaleva OV, Samoilova DV, Shitova MS and Gratchev A: Tumor associated macrophages in kidney cancer. Anal Cell Pathol (Amst). 2016:93075492016.PubMed/NCBI

133 

Santoni M, Massari F, Amantini C, Nabissi M, Maines F, Burattini L, Berardi R, Santoni G, Montironi R, Tortora G and Cascinu S: Emerging role of tumor-associated macrophages as therapeutic targets in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother. 62:1757–1768. 2013. View Article : Google Scholar : PubMed/NCBI

134 

Toge H, Inagaki T, Kojimoto Y, Shinka T and Hara I: Angiogenesis in renal cell carcinoma: The role of tumor-associated macrophages. Int J Urol. 16:801–807. 2009. View Article : Google Scholar : PubMed/NCBI

135 

Fu Q, Xu L, Wang Y, Jiang Q, Liu Z, Zhang J, Zhou Q, Zeng H, Tong S, Wang T, et al: Tumor-associated macrophage-derived interleukin-23 interlinks kidney cancer glutamine addiction with immune evasion. Eur Urol. 75:752–763. 2019. View Article : Google Scholar : PubMed/NCBI

136 

Tcyganov E, Mastio J, Chen E and Gabrilovich DI: Plasticity of myeloid-derived suppressor cells in cancer. Curr Opin Immunol. 51:76–82. 2018. View Article : Google Scholar : PubMed/NCBI

137 

Sun L, Clavijo PE, Robbins Y, Patel P, Friedman J, Greene S, Das R, Silvin C, Van Waes C, Horn LA, et al: Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy. JCI Insight. 4:e1268532019. View Article : Google Scholar

138 

Zhang J, Shi Z, Xu X, Yu Z and Mi J: The influence of microenvironment on tumor immunotherapy. FEBS J. 286:4160–4175. 2019. View Article : Google Scholar : PubMed/NCBI

139 

Martinez M and Moon EK: CAR T cells for solid tumors: New strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol. 10:1282019. View Article : Google Scholar : PubMed/NCBI

140 

Fleming V, Hu X, Weber R, Nagibin V, Groth C, Altevogt P, Utikal J and Umansky V: targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression. Front Immunol. 9:3982018. View Article : Google Scholar : PubMed/NCBI

141 

Hinshaw DC and Shevde LA: The tumor microenvironment innately modulates cancer progression. Cancer Res. 79:4557–4566. 2019. View Article : Google Scholar : PubMed/NCBI

142 

Marvel D and Gabrilovich DI: Myeloid-derived suppressor cells in the tumor microenvironment: Expect the unexpected. J Clin Invest. 125:3356–3364. 2015. View Article : Google Scholar : PubMed/NCBI

143 

Najjar YG, Rayman P, Jia X, Pavicic PG Jr, Rini BI, Tannenbaum C, Ko J, Haywood S, Cohen P, Hamilton T, et al: Myeloid-derived suppressor cell subset accumulation in renal cell carcinoma parenchyma is associated with intratumoral expression of IL1β, IL8, CXCL5, and Mip-1α. Clin Cancer Res. 23:2346–2355. 2017. View Article : Google Scholar : PubMed/NCBI

144 

Kondo T, Nakazawa H, Ito F, Hashimoto Y, Osaka Y, Futatsuyama K, Toma H and Tanabe K: Favorable prognosis of renal cell carcinoma with increased expression of chemokines associated with a Th1-type immune response. Cancer Sci. 97:780–786. 2006. View Article : Google Scholar : PubMed/NCBI

145 

Jöhrer K, Zelle-Rieser C, Perathoner A, Moser P, Hager M, Ramoner R, Gander H, Höltl L, Bartsch G, Greil R and Thurnher M: Up-regulation of functional chemokine receptor CCR3 in human renal cell carcinoma. Clin Cancer Res. 11:2459–2465. 2005. View Article : Google Scholar : PubMed/NCBI

146 

Yang JF, Shi SN, Xu WH, Qiu YH, Zheng JZ, Yu K, Song XY, Li F, Wang Y, Wang R, et al: Screening, identification and validation of CCND1 and PECAM1/CD31 for predicting prognosis in renal cell carcinoma patients. Aging (Albany NY). 11:12057–12079. 2019. View Article : Google Scholar : PubMed/NCBI

147 

Wang C, Wang Y, Hong T, Cheng B, Gan S, Chen L, Zhang J, Zuo L, Li J and Cui X: Blocking the autocrine regulatory loop of Gankyrin/STAT3/CCL24/CCR3 impairs the progression and pazopanib resistance of clear cell renal cell carcinoma. Cell Death Dis. 11:1172020. View Article : Google Scholar : PubMed/NCBI

148 

Kallakury BV, Karikehalli S, Haholu A, Sheehan CE, Azumi N and Ross JS: Increased expression of matrix metalloproteinases 2 and 9 and tissue inhibitors of metalloproteinases 1 and 2 correlate with poor prognostic variables in renal cell carcinoma. Clin Cancer Res. 7:3113–3119. 2001.PubMed/NCBI

149 

Woschek M, Kneip N, Jurida K, Marzi I and Relja B: Simvastatin reduces cancerogenic potential of renal cancer cells via geranylgeranyl pyrophosphate and mevalonate pathway. Nutr Cancer. 68:420–427. 2016. View Article : Google Scholar : PubMed/NCBI

150 

Pang X, Si J, Xu S, Li Y and Liu J: Simvastatin inhibits homocysteine-induced CRP generation via interfering with the ROS-p38/ERK1/2 signal pathway in rat vascular smooth muscle cells. Vascul Pharmacol. 88:42–47. 2017. View Article : Google Scholar : PubMed/NCBI

151 

Fang Z, Tang Y, Fang J, Zhou Z, Xing Z, Guo Z, Guo X, Wang W, Jiao W, Xu Z and Liu Z: Simvastatin inhibits renal cancer cell growth and metastasis via AKT/mTOR, ERK and JAK2/STAT3 pathway. PLoS One. 8:e628232013. View Article : Google Scholar : PubMed/NCBI

152 

Ni X, Hu G and Cai X: The success and the challenge of all-trans retinoic acid in the treatment of cancer. Crit Rev Food Sci Nutr. 59 (Sup 1):S71–S80. 2019. View Article : Google Scholar : PubMed/NCBI

153 

Schultze E, Collares T, Lucas CG and Seixas FK: Synergistic and additive effects of ATRA in combination with different anti-tumor compounds. Chem Biol Interact. 285:69–75. 2018. View Article : Google Scholar : PubMed/NCBI

154 

Ren M, Pozzi S, Bistulfi G, Somenzi G, Rossetti S and Sacchi N: Impaired retinoic acid (RA) signal leads to RARbeta2 epigenetic silencing and RA resistance. Mol Cell Biol. 25:10591–10603. 2005. View Article : Google Scholar : PubMed/NCBI

155 

Chu JH, Gao ZH and Qu XJ: Down-regulation of sphingosine kinase 2 (SphK2) increases the effects of all-trans-retinoic acid (ATRA) on colon cancer cells. Biomed Pharmacother. 68:1089–1097. 2014. View Article : Google Scholar : PubMed/NCBI

156 

Zarrabi K and Wu S: An evaluation of nivolumab for the treatment of metastatic renal cell carcinoma. Expert Opin Biol Ther. 18:695–705. 2018. View Article : Google Scholar : PubMed/NCBI

157 

Zhang J, Dang F, Ren J and Wei W: Biochemical aspects of PD-L1 regulation in cancer immunotherapy. Trends Biochem Sci. 43:1014–1032. 2018. View Article : Google Scholar : PubMed/NCBI

158 

Shi Y: Regulatory mechanisms of PD-L1 expression in cancer cells. Cancer Immunol Immunother. 67:1481–1489. 2018. View Article : Google Scholar : PubMed/NCBI

159 

Ai L, Xu A and Xu J: Roles of PD-1/PD-L1 pathway: Signaling, cancer, and beyond. Adv Exp Med Biol. 1248:33–59. 2020. View Article : Google Scholar : PubMed/NCBI

160 

Motzer RJ, Tannir NM, McDermott DF, Arén Frontera O, Melichar B, Choueiri TK, Plimack ER, Barthélémy P, Porta C, George S, et al: Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med. 378:1277–1290. 2018. View Article : Google Scholar : PubMed/NCBI

161 

Chambers CA, Kuhns MS, Egen JG and Allison JP: CTLA-4-mediated inhibition in regulation of T cell responses: Mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol. 19:565–594. 2001. View Article : Google Scholar : PubMed/NCBI

162 

Izzedine H, Mateus C, Boutros C, Robert C, Rouvier P, Amoura Z and Mathian A: Renal effects of immune checkpoint inhibitors. Nephrol Dial Transplant. 32:936–942. 2017.PubMed/NCBI

163 

Rotte A: Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J Exp Clin Cancer Res. 38:2552019. View Article : Google Scholar : PubMed/NCBI

164 

Motzer RJ, Rini BI, McDermott DF, Arén Frontera O, Hammers HJ, Carducci MA, Salman P, Escudier B, Beuselinck B, Amin A, et al: Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: Extended follow-up of efficacy and safety results from a randomised, controlled, phase 3 trial. Lancet Oncol. 20:1370–1385. 2019. View Article : Google Scholar : PubMed/NCBI

165 

Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF and Sancho D: Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 20:7–24. 2020. View Article : Google Scholar : PubMed/NCBI

166 

Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P, Krzysiek R, Knutson KL, Daniel B, Zimmermann MC, et al: Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med. 9:562–567. 2003. View Article : Google Scholar : PubMed/NCBI

167 

Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R, Mackensen A and Kreutz M: Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood. 107:2013–2021. 2006. View Article : Google Scholar : PubMed/NCBI

168 

Delamarre L and Mellman I: Harnessing dendritic cells for immunotherapy. Semin Immunol. 23:2–11. 2011. View Article : Google Scholar : PubMed/NCBI

169 

Farhood B, Najafi M and Mortezaee K: CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: A review. J Cell Physiol. 234:8509–8521. 2019. View Article : Google Scholar : PubMed/NCBI

170 

Boissonnas A, Fetler L, Zeelenberg IS, Hugues S and Amigorena S: In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J Exp Med. 204:345–356. 2007. View Article : Google Scholar : PubMed/NCBI

171 

Dyck L and Mills KHG: Immune checkpoints and their inhibition in cancer and infectious diseases. Eur J Immunol. 47:765–779. 2017. View Article : Google Scholar : PubMed/NCBI

172 

Motz GT and Coukos G: Deciphering and reversing tumor immune suppression. Immunity. 39:61–73. 2013. View Article : Google Scholar : PubMed/NCBI

173 

Zitvogel L, Galluzzi L, Smyth MJ and Kroemer G: Mechanism of action of conventional and targeted anticancer therapies: Reinstating immunosurveillance. Immunity. 39:74–88. 2013. View Article : Google Scholar : PubMed/NCBI

174 

Palucka K and Banchereau J: Dendritic-cell-based therapeutic cancer vaccines. Immunity. 39:38–48. 2013. View Article : Google Scholar : PubMed/NCBI

175 

Xu W, Atkins MB and McDermott DF: Checkpoint inhibitor immunotherapy in kidney cancer. Nat Rev Urol. 17:137–150. 2020. View Article : Google Scholar : PubMed/NCBI

176 

Chen DS and Hurwitz H: Combinations of Bevacizumab with cancer immunotherapy. Cancer J. 24:193–204. 2018. View Article : Google Scholar : PubMed/NCBI

177 

Motz GT, Santoro SP, Wang LP, Garrabrant T, Lastra RR, Hagemann IS, Lal P, Feldman MD, Benencia F and Coukos G: Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med. 20:607–615. 2014. View Article : Google Scholar : PubMed/NCBI

178 

Kochenderfer JN and Rosenberg SA: Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat Rev Clin Oncol. 10:267–276. 2013. View Article : Google Scholar : PubMed/NCBI

179 

Khalil DN, Smith EL, Brentjens RJ and Wolchok JD: The future of cancer treatment: Immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 13:273–290. 2016. View Article : Google Scholar : PubMed/NCBI

180 

Chen DS and Mellman I: Oncology meets immunology: The cancer-immunity cycle. Immunity. 39:1–10. 2013. View Article : Google Scholar : PubMed/NCBI

181 

Sourbier C, Lindner V, Lang H, Agouni A, Schordan E, Danilin S, Rothhut S, Jacqmin D, Helwig JJ and Massfelder T: The phosphoinositide 3-kinase/Akt pathway: A new target in human renal cell carcinoma therapy. Cancer Res. 66:5130–5142. 2006. View Article : Google Scholar : PubMed/NCBI

182 

Daurkin I, Eruslanov E, Stoffs T, Perrin GQ, Algood C, Gilbert SM, Rosser CJ, Su LM, Vieweg J and Kusmartsev S: Tumor-associated macrophages mediate immunosuppression in the renal cancer microenvironment by activating the 15-lipoxygenase-2 pathway. Cancer Res. 71:6400–6409. 2011. View Article : Google Scholar : PubMed/NCBI

183 

Shinko D, Diakos CI, Clarke SJ and Charles KA: Cancer-related systemic inflammation: The challenges and therapeutic opportunities for personalized medicine. Clin Pharmacol Ther. 102:599–610. 2017. View Article : Google Scholar : PubMed/NCBI

184 

Struyf S, Proost P, Vandercappellen J, Dempe S, Noyens B, Nelissen S, Gouwy M, Locati M, Opdenakker G, Dinsart C and Van Damme J: Synergistic up-regulation of MCP-2/CCL8 activity is counteracted by chemokine cleavage, limiting its inflammatory and anti-tumoral effects. Eur J Immunol. 39:843–857. 2009. View Article : Google Scholar : PubMed/NCBI

185 

Iyengar NM, Gucalp A, Dannenberg AJ and Hudis CA: Obesity and cancer mechanisms: Tumor microenvironment and inflammation. J Clin Oncol. 34:4270–4276. 2016. View Article : Google Scholar : PubMed/NCBI

186 

Voelkel-Johnson C: TRAIL-mediated signaling in prostate, bladder and renal cancer. Nat Rev Urol. 8:417–427. 2011. View Article : Google Scholar : PubMed/NCBI

187 

Chen YS, Hung TW, Su SC, Lin CL, Yang SF, Lee CC, Yeh CF, Hsieh YH and Tsai JP: MTA2 as a potential biomarker and its involvement in metastatic progression of human renal cancer by miR-133b Targeting MMP-9. Cancers (Basel). 11:18512019. View Article : Google Scholar

188 

De Giorgi U, Procopio G, Giannarelli D, Sabbatini R, Bearz A, Buti S, Basso U, Mitterer M, Ortega C, Bidoli P, et al: Association of systemic inflammation index and body mass index with survival in patients with renal cell cancer treated with nivolumab. Clin Cancer Res. 25:3839–3846. 2019. View Article : Google Scholar : PubMed/NCBI

189 

Qayyum T, McArdle PA, Lamb GW, Going JJ, Orange C, Seywright M, Horgan PG, Oades G, Aitchison MA and Edwards J: Prospective study of the role of inflammation in renal cancer. Urol Int. 88:277–281. 2012. View Article : Google Scholar : PubMed/NCBI

190 

Wen L, Guo L, Zhang W, Li Y, Jiang W, Di X, Ma J, Feng L, Zhang K and Shou J: Cooperation between the inflammation and coagulation systems promotes the survival of circulating tumor cells in renal cell carcinoma patients. Front Oncol. 9:5042019. View Article : Google Scholar : PubMed/NCBI

191 

Sun KH, Sun GH, Wu YC, Ko BJ, Hsu HT and Wu ST: TNF-α augments CXCR2 and CXCR3 to promote progression of renal cell carcinoma. J Cell Mol Med. 20:2020–2028. 2016. View Article : Google Scholar : PubMed/NCBI

192 

Barata PC and Rini BI: Treatment of renal cell carcinoma: Current status and future directions. CA Cancer J Clin. 67:507–524. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Shi J, Wang K, Xiong Z, Yuan C, Wang C, Cao Q, Yu H, Meng X, Xie K, Cheng Z, Cheng Z, et al: Impact of inflammation and immunotherapy in renal cell carcinoma (Review). Oncol Lett 20: 272, 2020.
APA
Shi, J., Wang, K., Xiong, Z., Yuan, C., Wang, C., Cao, Q. ... Zhang, X. (2020). Impact of inflammation and immunotherapy in renal cell carcinoma (Review). Oncology Letters, 20, 272. https://doi.org/10.3892/ol.2020.12135
MLA
Shi, J., Wang, K., Xiong, Z., Yuan, C., Wang, C., Cao, Q., Yu, H., Meng, X., Xie, K., Cheng, Z., Yang, H., Chen, K., Zhang, X."Impact of inflammation and immunotherapy in renal cell carcinoma (Review)". Oncology Letters 20.5 (2020): 272.
Chicago
Shi, J., Wang, K., Xiong, Z., Yuan, C., Wang, C., Cao, Q., Yu, H., Meng, X., Xie, K., Cheng, Z., Yang, H., Chen, K., Zhang, X."Impact of inflammation and immunotherapy in renal cell carcinoma (Review)". Oncology Letters 20, no. 5 (2020): 272. https://doi.org/10.3892/ol.2020.12135
Copy and paste a formatted citation
x
Spandidos Publications style
Shi J, Wang K, Xiong Z, Yuan C, Wang C, Cao Q, Yu H, Meng X, Xie K, Cheng Z, Cheng Z, et al: Impact of inflammation and immunotherapy in renal cell carcinoma (Review). Oncol Lett 20: 272, 2020.
APA
Shi, J., Wang, K., Xiong, Z., Yuan, C., Wang, C., Cao, Q. ... Zhang, X. (2020). Impact of inflammation and immunotherapy in renal cell carcinoma (Review). Oncology Letters, 20, 272. https://doi.org/10.3892/ol.2020.12135
MLA
Shi, J., Wang, K., Xiong, Z., Yuan, C., Wang, C., Cao, Q., Yu, H., Meng, X., Xie, K., Cheng, Z., Yang, H., Chen, K., Zhang, X."Impact of inflammation and immunotherapy in renal cell carcinoma (Review)". Oncology Letters 20.5 (2020): 272.
Chicago
Shi, J., Wang, K., Xiong, Z., Yuan, C., Wang, C., Cao, Q., Yu, H., Meng, X., Xie, K., Cheng, Z., Yang, H., Chen, K., Zhang, X."Impact of inflammation and immunotherapy in renal cell carcinoma (Review)". Oncology Letters 20, no. 5 (2020): 272. https://doi.org/10.3892/ol.2020.12135
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team