|
1
|
Cao M and Chen W: Epidemiology of lung
cancer in China. Thoracic Cancer. 10:3–7. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Zappa C and Mousa SA: Non-small cell lung
cancer: Current treatment and future advances. Transl Lung Cancer
Res. 5:288–3000. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Santoni-Rugiu E, Melchior LC, Urbanska EM,
Jakobsen JN, Stricker K, Grauslund M and Sørensen JB: Intrinsic
resistance to EGFR-tyrosine kinase inhibitors in EGFR-mutant
non-small cell lung cancer: Differences and similarities with
acquired resistance. Cancers (Basel). 11:9232019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Wang Z: ErbB receptors and cancer. Methods
Mol Biol. 1652:3–35. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Mok TS, Wu YL, Thongprasert S, Yang CH,
Chu DT, Saijo N, Sunpaweravong P, Han B, Margono B, Ichinose Y, et
al: Gefitinib or carboplatin-paclitaxel in pulmonary
adenocarcinoma. N Engl J Med. 361:947–957. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Mitsudomi T, Morita S, Yatabe Y, Negoro S,
Okamoto I, Tsurutani J, Seto T, Satouchi M, Tada H, Hirashima T, et
al: Gefitinib versus cisplatin plus docetaxel in patients with
non-small-cell lung cancer harbouring mutations of the epidermal
growth factor receptor (WJTOG3405): An open label, randomised phase
3 trial. Lancet Oncol. 11:121–128. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Wang J, Wu Y, Dong M, He X, Wang Z, Li J
and Wang Y: Observation of hepatotoxicity during long-term
gefitinib administration in patients with non-small-cell lung
cancer. Anti-cancer Drugs. 27:245–250. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Califano R, Tariq N, Compton S, Fitzgerald
DA, Harwood CA, Lal R, Lester J, McPhelim J, Mulatero C,
Subramanian S, et al: Expert consensus on the management of adverse
events from EGFR tyrosine kinase inhibitors in the UK. Drugs.
75:1335–1348. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ramalingam SS, Vansteenkiste J, Planchard
D, Cho BC, Gray JE, Ohe Y, Zhou C, Reungwetwattana T, Cheng Y,
Chewaskulyong B, et al: Overall survival with osimertinib in
untreated, EGFR-mutated advanced NSCLC. N Engl J Med. 382:41–50.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Jackman D, Pao W, Riely GJ, Engelman JA,
Kris MG, Jänne PA, Lynch T, Johnson BE and Miller VA: Clinical
definition of acquired resistance to epidermal growth factor
receptor tyrosine kinase inhibitors in non-small-cell lung cancer.
J Clin Oncol. 28:357–360. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Camidge DR, Pao W and Sequist LV: Acquired
resistance to TKIs in solid tumours: Learning from lung cancer. Nat
Rev Clin Oncol. 11:473–481. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Cancer Genome Atlas Research Network, .
Comprehensive molecular profiling of lung adenocarcinoma. Nature.
511:543–550. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Cancer Genome Atlas Research Network, .
Comprehensive genomic characterization of squamous cell lung
cancers. Nature. 489(519): 20122012.
|
|
14
|
Imielinski M, Berger AH, Hammerman PS,
Hernandez B, Pugh TJ, Hodis E, Cho J, Suh J, Capelletti M,
Sivachenko A, et al: Mapping the hallmarks of lung adenocarcinoma
with massively parallel sequencing. Cell. 150:1107–1120. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Hansen RN, Zhang Y, Seal B, Ryan K, Yong
C, Darilay A and Ramsey SD: Long-term survival trends in patients
with unresectable stage III non-small cell lung cancer receiving
chemotherapy and radiation therapy: A SEER cancer registry
analysis. BMC Cancer. 20:2762020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Sui X, Zhang M, Han X, Zhang R, Chen L,
Liu Y, Xiang Y and Xie T: Combination of traditional Chinese
medicine and epidermal growth factor receptor tyrosine kinase
inhibitors in the treatment of non-small cell lung cancer: A
systematic review and meta-analysis. Medicine (Baltimore).
99:e206832020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Jiao L, Xu J, Sun J, Chen Z, Gong Y, Bi L,
Lu Y, Yao J, Zhu W, Hou A, et al: Chinese herbal medicine combined
with EGFR-TKI in EGFR mutation-positive advanced pulmonary
adenocarcinoma (CATLA): A multicenter, randomized, double-blind,
placebo-controlled trial. Front Pharmacol. 10:7322019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Liu ZL, Zhu WR, Zhou WC, Ying HF, Zheng L,
Guo YB, Chen JX and Shen XH: Traditional Chinese medicinal herbs
combined with epidermal growth factor receptor tyrosine kinase
inhibitor for advanced non-small cell lung cancer: A systematic
review and meta-analysis. J Integr Med. 12:346–358. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Li CL, Hsia TC, Li CH, Chen KJ, Yang YH
and Yang ST: Adjunctive traditional Chinese medicine improves
survival in patients with advanced lung adenocarcinoma treated with
first-line epidermal growth factor receptor (EGFR) tyrosine kinase
inhibitors (TKIs): A nationwide, population-based cohort study.
Integr Cancer Ther. 18:15347354198270792019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Yang XB, Wu WY, Long SQ, Deng H and Pan
ZQ: Effect of gefitinib plus Chinese herbal medicine (CHM) in
patients with advanced non-small-cell lung cancer: A retrospective
case-control study. Complement Ther Med. 22:1010–1018. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Tang M, Wang S, Zhao B, Wang W, Zhu Y, Hu
L, Zhang X and Xiong S: Traditional Chinese medicine prolongs
progression-free survival and enhances therapeutic effects in
epidermal growth factor receptor tyrosine kinase inhibitor
(EGFR-TKI) treated non-small-cell lung cancer (NSCLC) patients
harboring EGFR mutations. Med Sci Monit. 25:8430–8437. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Wang CY, Huang HS, Su YC, Tu CY, Hsia TC
and Huang ST: Conventional treatment integrated with Chinese herbal
medicine improves the survival rate of patients with advanced
non-small cell lung cancer. Complement Ther Med. 40:29–36. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Bing Z, Cheng Z, Shi D, Liu X, Tian J, Yao
X, Zhang J, Wang Y and Yang K: Investigate the mechanisms of
Chinese medicine Fuzhengkangai towards EGFR mutation-positive lung
adenocarcinomas by network pharmacology. BMC Complement Altern Med.
18:2932018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Xu W, Jiang X, Xu Z, Ye T and Shi Q: The
efficacy of Brucea javanica oil emulsion injection as
adjunctive therapy for advanced non-small-cell lung cancer: A
meta-analysis. Evid Based Complement Alternat Med.
2016:59285622016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Kim SH, Liu CY, Fan PW, Hsieh CH, Lin HY,
Lee MC and Fang K: The aqueous extract of Brucea javanica
suppresses cell growth and alleviates tumorigenesis of human lung
cancer cells by targeting mutated epidermal growth factor receptor.
Drug Des Devel Ther. 10:3599–3609. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ji ZQ, Huang XE, Wu XY, Liu J, Wang L and
Tang JH: Safety of Brucea javanica and cantharidin combined
with chemotherapy for treatment of NSCLC patients. Asian Pac J
Cancer Prev. 15:8603–8605. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Han SY, Zhao MB, Zhuang GB and Li PP:
Marsdenia tenacissima extract restored gefitinib sensitivity
in resistant non-small cell lung cancer cells. Lung Cancer.
75:30–37. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Han SY, Zhao W, Sun H, Zhou N, Zhou F, An
G and Li PP: Marsdenia tenacissima extract enhances
gefitinib efficacy in non-small cell lung cancer xenografts.
Phytomedicine. 22:560–567. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Choi YJ, Kim JH, Rho JK, Kim JS, Choi CM,
Kim WS, Son J and Lee JC: AXL and MET receptor tyrosine kinases are
essential for lung cancer metastasis. Oncol Rep. 37:2201–2208.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Han SY, Sun H, Xue D, Zhao W, Jiao YN and
Li PP: Overcomes AXL and Met mediated erlotinib/gefitinib cross
resistance in non-small cell lung cancer cells by Marsdenia
tenacissima extract. AACR. Jul 17–2017.(Epub ahead of print).
doi: 10.1158/1538-7445.AM2017-1199.
|
|
31
|
Deng J, Shen F and Chen D: Quantitation of
seven polyoxypregnane glycosides in Marsdenia tenacissima
using reversed-phase high-performance liquid
chromatography-evaporative light-scattering detection. J Chromatogr
A. 1116:83–88. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wang Y, Chen B, Wang Z, Zhang W, Hao K,
Chen Y, Li K, Wang T, Xie Y, Huang Z and Tong X: Marsdenia
tenacissimae extraction (MTE) inhibits the proliferation and
induces the apoptosis of human acute T cell leukemia cells through
inactivating PI3K/AKT/mTOR signaling pathway via PTEN enhancement.
Oncotarget. 7:82851–82863. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Song J, Zhong R, Huang H, Zhang Z, Ding D,
Yan H, Sun E and Jia X: Combined treatment with Epimedium
koreanum Nakai extract and gefitinib overcomes drug resistance
caused by T790M mutation in non-small cell lung cancer cells. Nutr
Cancer. 66:682–689. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Cheng Y, Wang X, Zhang DW, Wang NL and Yao
XS: Nonflavanoid compounds from Epimedium koreanum. Chin
Tradit Herb Drugs. 38:1135–1138. 2007.PubMed/NCBI
|
|
35
|
Yu X, Tong Y, Han XQ, Kwok HF, Yue GG, Lau
CB and Ge W: Anti-angiogenic activity of herba epimedii on
zebrafish embryos in vivo and HUVECs in vitro. Phytother Res.
27:1368–1375. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Salehi B, Mishra AP, Nigam M, Sener B,
Kilic M, Sharifi-Rad M, Fokou PVT, Martins N and Sharifi-Rad J:
Resveratrol: A Double-Edged sword in health benefits. Biomedicines.
6:912018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhu Y, He W, Gao X, Li B, Mei C, Xu R and
Chen H: Resveratrol overcomes gefitinib resistance by increasing
the intracellular gefitinib concentration and triggering apoptosis,
autophagy and senescence in PC9/G NSCLC cells. Sci Rep.
5:177302015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Nam B, Rho JK, Shin D and Son J: Gallic
acid induces apoptosis in EGFR-mutant non-small cell lung cancers
by accelerating EGFR turnover. Bioorg Med Chem Lett. 26:4571–4575.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Phan AN, Hua TN, Kim MK, Vo VT, Choi JW,
Kim HW, Rho JK, Kim KW and Jeong Y: Gallic acid inhibition of
Src-Stat3 signaling overcomes acquired resistance to EGF receptor
tyrosine kinase inhibitors in advanced non-small cell lung cancer.
Oncotarget. 7:54702–54713. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Jin H, Qiao F, Wang Y, Xu Y and Shang Y:
Curcumin inhibits cell proliferation and induces apoptosis of human
non-small cell lung cancer cells through the upregulation of
miR-192-5p and suppression of PI3K/Akt signaling pathway. Oncol
Rep. 34:2782–2789. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lu Y, Wei C and Xi Z: Curcumin suppresses
proliferation and invasion in non-small cell lung cancer by
modulation of MTA1-mediated Wnt/β-catenin pathway. In Vitro Cell
Dev Biol Anim. 50:840–850. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Li Y, Chao Y, Fang Y, Wang J, Wang M,
Zhang H, Ying M, Zhu X and Wang H: MTA1 promotes the invasion and
migration of non-small cell lung cancer cells by downregulating
miR-125b. J Exp Clin Cancer Res. 32:332013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Xiao K, Jiang J, Guan C, Dong C, Wang G,
Bai L, Sun J, Hu C and Bai C: Curcumin induces autophagy via
activating the AMPK signaling pathway in lung adenocarcinoma cells.
J Pharmacol Sci. 123:102–109. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lee J, Lee Y, Chang G, Yu SL, Hsieh WY,
Chen JJ, Chen HW and Yang PC: Curcumin induces EGFR degradation in
lung adenocarcinoma and modulates p38 activation in intestine: The
versatile adjuvant for gefitinib therapy. PLoS One. 6:e237562011.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Chen P, Huang H, Wang Y, Jin J, Long WG,
Chen K, Zhao XH, Chen CG and Li J: Curcumin overcome primary
gefitinib resistance in non-small-cell lung cancer cells through
inducing autophagy-related cell death. J Exp Clin Cancer Res.
38:2542019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Yamauchi Y, Izumi Y, Yamamoto J and Nomori
H: Coadministration of erlotinib and curcumin augmentatively
reduces cell viability in lung cancer cells. Phytother Res.
28:728–735. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Tran K, Merika M and Thanos D: Distinct
functional properties of IkappaB alpha and IkappaB beta. Mol Cell
Biol. 17:5386–5399. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Li S, Liu Z, Zhu F, Fan X, Wu X, Zhao H
and Jiang L: Curcumin lowers erlotinib resistance in non-small cell
lung carcinoma cells with mutated EGF receptor. Oncol Res.
21:137–144. 2014. View Article : Google Scholar
|
|
49
|
Ye MX, Zhao YL, Li Y, Miao Q, Li ZK, Ren
XL, Song LQ, Yin H and Zhang J: Curcumin reverses cis-platin
resistance and promotes human lung adenocarcinoma A549/DDP cell
apoptosis through HIF-1α and caspase-3 mechanisms. Phytomedicine.
19:779–787. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Chanvorachote P, Pongrakhananon V,
Wannachaiyasit S, Luanpitpong S, Rojanasakul Y and Nimmannit U:
Curcumin sensitizes lung cancer cells to cisplatin-induced
apoptosis through superoxide anion-mediated Bcl-2 degradation.
Cancer Invest. 27:624–635. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zheng M, Xin Y, Li Y, Xu F, Xi X, Guo H,
Cui X, Cao H, Zhang X and Han C: Ginsenosides: A potential
neuroprotective agent. Biomed Res Int. 2018:81743452018. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Liu T, Zuo L, Guo D, Chai X, Xu J, Cui Z,
Wang Z and Hou C: Ginsenoside Rg3 regulates DNA damage in non-small
cell lung cancer cells by activating VRK1/P53BP1 pathway. Biomed
Pharmacother. 120:1094832019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Dai Y, Wang W, Sun Q and Tuohayi J:
Ginsenoside Rg3 promotes the antitumor activity of gefitinib in
lung cancer cell lines. Exp Ther Med. 17:953–959. 2018.PubMed/NCBI
|
|
54
|
Nieto MA: The snail superfamily of
zinc-finger transcription factors. Nat Rev Mol Cell Biol.
3:155–166. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhang F, Wang J, Wang X, Wei N, Liu H and
Zhang X: CD146-mediated acquisition of stemness phenotype enhances
tumour invasion and metastasis after EGFR-TKI resistance in lung
cancer. Clin Respir J. 13:23–33. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Tan Q, Lin S, Zeng Y, Yao M, Liu K, Yuan
H, Liu C and Jiang G: Ginsenoside Rg3 attenuates the osimertinib
resistance by reducing the stemness of non-small cell lung cancer
cells. Environ Toxicol. 35:643–651. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Xu T, Jin Z, Yuan Y, Wei H, Xu X, He S,
Chen S, Hou W, Guo Q and Hua B: Ginsenoside Rg3 serves as an
adjuvant chemotherapeutic agent and VEGF inhibitor in the treatment
of non-small cell lung cancer: A meta-analysis and systematic
review. Evid Based Complement Alternat Med. 2016:78267532016.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Chian S, Zhao Y, Xu M, Yu X, Ke X, Gao R
and Yin L: Ginsenoside Rd reverses cisplatin resistance in
non-small-cell lung cancer A549 cells by downregulating the nuclear
factor erythroid 2-related factor 2 pathway. Anticancer Drugs.
30:838–845. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Jiang Z, Yang Y, Yang Y, Zhang Y, Yue Z,
Pan Z and Ren X: Ginsenoside Rg3 attenuates cisplatin resistance in
lung cancer by downregulating PD-L1 and resuming immune. Biomed
Pharmacother. 96:378–383. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Dai P, Liu D, Zhang L, Ye J, Wang Q, Zhang
HW, Lin XH and Lai GX: Astragaloside IV sensitizes non-small cell
lung cancer cells to gefitinib potentially via regulation of SIRT6.
Tumor Biol. Apr 26–2017.(Epub ahead of print). doi:
10.1177/1010428317697555. View Article : Google Scholar
|
|
61
|
Yang Q, Chen W, Xu Y, Lv X, Zhang M and
Jiang H: Polyphyllin I modulates MALAT1/STAT3 signaling to induce
apoptosis in gefitinib-resistant non-small cell lung cancer.
Toxicol Appl Pharmacol. 356:1–7. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Tang Y, Xiao G, Chen Y and Deng Y: LncRNA
MALAT1 promotes migration and invasion of non-small-cell lung
cancer by targeting miR-206 and activating Akt/mTOR signaling.
Anticancer Drugs. 29:725–735. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Li S, Mei Z, Hu H and Zhang X: The lncRNA
MALAT1 contributes to non-small cell lung cancer development via
modulating miR-124/STAT3 axis. J Cell Physiol. 233:6679–6688. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Amodio N, Raimondi L, Juli G, Stamato MA,
Caracciolo D, Tagliaferri P and Tassone P: MALAT1: A druggable long
non-coding RNA for targeted anti-cancer approaches. J Hematol
Oncol. 11:632018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Harada D, Takigawa N and Kiura K: The role
of STAT3 in non-small cell lung cancer. Cancers (Basel). 6:708–722.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Xu YH and Lu S: A meta-analysis of STAT3
and phospho-STAT3 expression and survival of patients with
non-small-cell lung cancer. Eur J Surg Oncol. 40:311–317. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zulkifli AA, Tan FH, Putoczki TL, Stylli
SS and Luwor RB: STAT3 signaling mediates tumour resistance to EGFR
targeted therapeutics. Mol Cell Endocrinol. 451:15–23. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zheng R, Jiang H, Li J, Liu X and Xu H:
Polyphyllin II restores sensitization of the resistance of PC-9/ZD
cells to gefitinib by a negative regulation of the PI3K/Akt/mTOR
signaling pathway. Curr Cancer Drug Targets. 17:376–385. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wang H, Fei Z and Jiang H: Polyphyllin VII
increases sensitivity to gefitinib by modulating the elevation of
P21 in acquired gefitinib resistant non-small cell lung cancer. J
Pharmacol Sci. 134:190–196. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Lou W, Chen Y, Zhu K, Deng H, Wu T and
Wang J: Polyphyllin I overcomes EMT-associated resistance to
erlotinib in lung cancer cells via IL-6/STAT3 pathway inhibition.
Biol Pharm Bull. 40:1306–1313. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Feng F, Cheng P, Sun C, Wang H and Wang W:
Inhibitory effects of polyphyllins I and VII on human
cisplatin-resistant NSCLC via p53 upregulation and CIP2A/AKT/mTOR
signaling axis inhibition. Chin J Nat Med. 17:768–777.
2019.PubMed/NCBI
|
|
72
|
Feng F, Cheng P, Wang C, Wang Y and Wang
W: Polyphyllin I and VII potentiate the chemosensitivity of
A549/DDP cells to cisplatin by enhancing apoptosis, reversing EMT
and suppressing the CIP2A/AKT/mTOR signaling axis. Oncol Lett.
18:5428–5436. 2019.PubMed/NCBI
|
|
73
|
Wang YC, Wu DW, Wu TC, Wang L, Chen CY and
Lee H: Dioscin overcome TKI resistance in EGFR-mutated lung
adenocarcinoma cells via down-regulation of tyrosine phosphatase
SHP2 expression. Int J Biol Sci. 14:47–56. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Mainardi S, Mulerosanchez A, Prahallad A,
Germano G, Bosma A, Krimpenfort P, Lieftink C, Steinberg JD, de Wit
N, Gonçalves-Ribeiro S, et al: SHP2 is required for growth of
KRAS-mutant non-small-cell lung cancer in vivo. Nat Med.
24:961–967. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhang S, Xu Y, Jin E, Zhu LC, Xia B, Chen
XF, Li FZ and Ma SL: Capilliposide from Lysimachia
capillipes inhibits AKT activation and restores gefitinib
sensitivity in human non-small cell lung cancer cells with acquired
gefitinib resistance. Acta Pharmacol Sin. 38:100–109. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kausar H, Munagala R, Bansal SS, Aqil F,
Vadhanam MV and Gupta RC: Cucurbitacin B potently suppresses
non-small-cell lung cancer growth: Identification of intracellular
thiols as critical targets. Cancer Letters. 332:35–45. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Li W, Liu Y, Cai S, Yang C, Lin Z, Zhou L,
Liu L, Cheng X and Zeng W: Not all mutations of KRAS predict poor
prognosis in patients with colorectal cancer. Int J Clin Exp
Pathol. 12:957–967. 2019.PubMed/NCBI
|
|
78
|
Wei L, Qu W, Sun J, Wang X, Lv L, Xie L
and Song X: Knockdown of cancerous inhibitor of protein phosphatase
2A may sensitize NSCLC cells to cisplatin. Cancer Gene Therapy.
21:194–199. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Sablina AA, Chen W, Arroyo JD, Corral L,
Hector M, Bulmer SE, DeCaprio JA and Hahn WC: The tumor suppressor
PP2A Abeta regulates the RalA GTPase. Cell. 129:969–982. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Liu P, Xiang Y, Liu X, Zhang T, Yang R,
Chen S, Xu L, Yu Q, Zhao H, Zhang L, et al: Cucurbitacin B induces
the lysosomal degradation of EGFR and suppresses the CIP2A/PP2A/Akt
signaling axis in gefitinib-resistant non-small cell lung cancer.
Molecules. 24:6472019. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Hong SH, Ku JM, Lim YS, Lee SY, Kim JH,
Cheon C and Ko SG: Cucurbitacin D overcomes gefitinib resistance by
blocking EGF binding to EGFR and inducing cell death in NSCLCs.
Front Oncol. 10:622020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhou G, Chen S, Wang Z and Chen Z: Back to
the future of oridonin: Again, compound from medicinal herb shows
potent antileukemia efficacies in vitro and in vivo. Cell Res.
17:274–276. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Xiao X, He Z, Cao W, Cai F, Zhang L, Huang
Q, Fan C, Duan C, Wang X, Wang J and Liu Y: Oridonin inhibits
gefitinib-resistant lung cancer cells by suppressing
EGFR/ERK/MMP-12 and CIP2A/Akt signaling pathways. Int J Oncol.
48:2608–2618. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Tong Y, Liu Y, Zheng H, Zheng L, Liu W, Wu
J, Ou R, Zhang G, Li F, Hu M, et al: Artemisinin and its
derivatives can significantly inhibit lung tumorigenesis and tumor
metastasis through Wnt/β-catenin signaling. Oncotarget.
7:31413–31428. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zhang S, Wang Y, Dai SD and Wang EH:
Down-regulation of NKD1 increases the invasive potential of
non-small-cell lung cancer and correlates with a poor prognosis.
BMC Cancer. 11:1862011. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Jho EH, Zhang T, Domon C, Joo CK, Freund
JN and Costantini F: Wnt/beta-Catenin/Tcf signaling induces the
transcription of Axin2, a negative regulator of the signaling
pathway. Mol Cell Biol. 22:1172–1183. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Shen R, Li J, Ye D, Wang Q and Fei J:
Combination of onconase and dihydroartemisinin synergistically
suppresses growth and angiogenesis of non-small-cell lung carcinoma
and malignant mesothelioma. Acta Biochim Biophys Sin (Shanghai).
48:894–901. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Hong J, Jiang AY, Han W, Yong C, Yan W and
Jiang XF: Dihydroartemisinin and gefitinib synergistically inhibit
NSCLC cell growth and promote apoptosis via the Akt/mTOR/STAT3
pathway. Mol Med Rep. 16:3475–3481. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Chen SF, Zhang ZY and Zhang JL: Matrine
increases the inhibitory effects of afatinib on H1975 cells via the
IL-6/JAK1/STAT3 signaling pathway. Mol Med Rep. 16:2733–2739. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wang HQ, Jin JJ and Wang J: Matrine
induces mitochondrial apoptosis in cisplatin-resistant non-small
cell lung cancer cells via suppression of β-catenin/survivin
signaling. Oncol Rep. 33:2561–2566. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Li W, Yu X, Tan S, Liu W, Zhou L and Liu
H: Oxymatrine inhibits non-small cell lung cancer via suppression
of EGFR signaling pathway. Cancer Med. 7:208–218. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Li X, Fan XX, Jiang ZB, Loo WT, Yao XJ,
Leung EL, Chow LW and Liu L: Shikonin inhibits gefitinib-resistant
non-small cell lung cancer by inhibiting TrxR and activating the
EGFR proteasomal degradation pathway. Pharmacol Res. 115:45–55.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Kim HJ, Hwang KE, Park DS, Oh SH, Jun HY,
Yoon KH, Jeong ET, Kim HR and Kim YS: Shikonin-induced necroptosis
is enhanced by the inhibition of autophagy in non-small cell lung
cancer cells. J Transl Med. 15:1232017. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Li YL, Hu X, Li QY, Wang F and Zhang C:
Shikonin sensitizes wild-type EGFR NSCLC cells to erlotinib and
gefitinib therapy. Mol Med Rep. 18:3882–3890. 2018.PubMed/NCBI
|
|
95
|
Tang JC, Ren YG, Zhao J, Long F, Chen JY
and Jiang Z: Shikonin enhances sensitization of gefitinib against
wild-type EGFR non-small cell lung cancer via inhibition
PKM2/stat3/cyclinD1 signal pathway. Life Sci. 204:71–77. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Kobierzycki C, Pula B, Werynska B,
Piotrowska A, Muszczynska-Bernhard B, Dziegiel P and Rakus D: The
lack of evidence for correlation of pyruvate kinase M2 expression
with tumor grade in non-small cell lung cancer. Anticancer Res.
34:3811–3817. 2014.PubMed/NCBI
|
|
97
|
Guo ZL, Li JZ, Ma YY, Qian D, Zhong JY,
Jin MM, Huang P, Che LY, Pan B, Wang Y, et al: Shikonin sensitizes
A549 cells to TRAIL-induced apoptosis through the JNK, STAT3 and
AKT pathways. BMC Cell Biol. 19:292018. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wang R, Luo Z, Zhang H and Wang T:
Tanshinone IIA reverses gefitinib-resistance in human
non-small-cell lung cancer via regulation of VEGFR/Akt pathway.
Onco Targets Ther. 12:9355–9365. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Xu L, Meng X, Xu N, Fu W, Tan H, Zhang L,
Zhou Q, Qian J, Tu S, Li X, et al: Gambogenic acid inhibits
fibroblast growth factor receptor signaling pathway in
erlotinib-resistant non-small-cell lung cancer and suppresses
patient-derived xenograft growth. Cell Death Dis. 9:2622018.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Mei W, Dong C, Hui C, Bin L, Fenggen Y,
Jingjing S, Cheng P, Meiling S, Yawen H, Xiaoshan W, et al:
Gambogenic acid kills lung cancer cells through aberrant autophagy.
PLoS One. 9:e836042014. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Shen D, Wang Y, Niu H and Liu C:
Gambogenic acid exerts anticancer effects in cisplatin-resistant
non-small cell lung cancer cells. Mol Med Rep. 21:1267–1275.
2020.PubMed/NCBI
|
|
102
|
Ye J, Xue M, Qiu Z, Su Y, Yu P and Peng Q:
Anti-tumor and anti-metastatic roles of cordycepin, one bioactive
compound of Cordyceps militaris. Saudi J Biol Sci.
25:991–995. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Tuli HS, Sandhu SS and Sharma AK:
Pharmacological and therapeutic potential of Cordyceps with special
reference to Cordycepin. 3 Biotech. 4:1–12. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Wang Z, Wu X, Liang YN, Wang L, Song ZX,
Liu JL and Tang ZS: Cordycepin induces apoptosis and inhibits
proliferation of human lung cancer cell line H1975 via Inhibiting
the Phosphorylation of EGFR. Molecules. 21:12672016. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Hawley SA, Ross FA, Russell FM, Atrih A,
Lamont DJ and Hardie DG: Mechanism of activation of AMPK by
cordycepin. Cell Chem Biol. 27:214–222.e4. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Wang Z, Wang X, Qu K, Zhu P, Guo N, Zhang
R, Abliz Z, Yu H and Zhu H: Binding of cordycepin monophosphate to
AMP-activated protein kinase and its effect on AMP-activated
protein kinase activation. Chem Biol Drug Des. 76:340–344. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Wei C, Yao X, Jiang Z, Wang Y, Zhang D,
Chen X, Fan X, Xie C, Cheng J, Fu J and Leung EL: Cordycepin
inhibits drug-resistance non-small cell lung cancer progression by
activating AMPK signaling pathway. Pharmacol Res. 144:79–89. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Byun S, Lee SY, Lee J, Jeong CH, Farrand
L, Lim S, Reddy K, Kim JY, Lee MH, Lee HJ, et al: USP8 is a novel
target for overcoming gefitinib resistance in lung cancer. Clin
Cancer Res. 19:3894–3904. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Li X, Zhao X, Li C, Liu S, Yan F, Teng Y,
Feng J and Miao D: Inhibitor of ghrelin receptor reverses gefitinib
resistance in lung cancer. Human Cell. 32:360–366. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Forli S, Huey R, Pique ME, Sanner MF,
Goodsell DS and Olson AJ: Computational protein-ligand docking and
virtual drug screening with the AutoDock suite. Nat Protocols.
11:905–919. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Meng XY, Zhang HX, Mezei M and Cui M:
Molecular docking: A powerful approach for structure-based drug
discovery. Curr Comput Aided Drug Des. 7:146–157. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Yen HY, Liu YC, Chen NY, Tsai CF, Wang YT,
Chen YJ, Hsu TL, Yang PC and Wong CH: Effect of sialylation on EGFR
phosphorylation and resistance to tyrosine kinase inhibition. Proc
Natl Acad Sci USA. 112:6955–6960. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Li N, Li HH, Su F, Li J, Ma XP and Gong P:
Relationship between epidermal growth factor receptor (EGFR)
mutation and serum cyclooxygenase-2 Level, and the synergistic
effect of celecoxib and gefitinib on EGFR expression in non-small
cell lung cancer cells. Int J Clin Exp Pathol. 8:9010–9020.
2015.PubMed/NCBI
|
|
114
|
Chen W, Li Z, Bai L and Lin Y: NF-kappaB
in lung cancer, a carcinogenesis mediator and a prevention and
therapy target. Front Biosci (Landmark Ed). 16:1172–1185. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Dai M, Hu S, Liu CF, Jiang L, Yu W, Li ZL,
Guo W, Tang R, Dong CY, Wu TH and Deng WG: BPTF cooperates with p50
NF-κB to promote COX-2 expression and tumor cell growth in lung
cancer. Am J Transl Res. 11:7398–7409. 2019.PubMed/NCBI
|
|
116
|
Konson A, Mahajna JA, Danon A, Rimon G and
Agbaria R: The involvement of nuclear factor-kappa B in
cyclooxygenase-2 overexpression in murine colon cancer cells
transduced with herpes simplex virus thymidine kinase gene. Cancer
Gene Ther. 13:1093–1104. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Shi G and Li D, Fu J, Sun Y, Li Y, Qu R,
Jin X and Li D: Upregulation of cyclooxygenase-2 is associated with
activation of the alternative nuclear factor kappa B signaling
pathway in colonic adenocarcinoma. Am J Transl Res. 7:1612–1620.
2015.PubMed/NCBI
|
|
118
|
Lee KY, Park JS, Jee YK and Rosen GD:
Triptolide sensitizes lung cancer cells to TNF-related
apoptosis-inducing ligand (TRAIL)-induced apoptosis by inhibition
of NF-kappaB activation. Exp Mol Med. 34:462–468. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Woo JH, Li DP, Wilsbach K, Orita H,
Coulter J, Tully E, Kwon TK, Xu S and Gabrielson E: Coix seed
extract, a commonly used treatment for cancer in china, inhibits
NFkappaB and protein kinase C signaling. Cancer Biol Ther.
6:2005–2011. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Hsu YL, Kuo PL and Lin CC: Proliferative
inhibition, cell-cycle dysregulation, and induction of apoptosis by
ursolic acid in human non-small cell lung cancer A549 cells. Life
Sci. 75:2303–2316. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Lin Y, Shi RX, Wang X and Shen HM:
Luteolin, a flavonoid with potential for cancer prevention and
therapy. Curr Cancer Drug Targets. 8:634–646. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Birt DF, Hendrich S and Wang WQ: Dietary
agents in cancer prevention: Flavonoids and isoflavonoids.
Pharmacol Ther. 90:157–177. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Aggarwal BB and Shishodia S: Molecular
targets of dietary agents for prevention and therapy of cancer.
Biochem Pharmacol. 71:1397–1421. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Fu L, Chen W, Guo W, Wang J, Tian Y, Shi
D, Zhang X, Qiu H, Xiao X, Kang T, et al: Berberine targets
AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF and Cytochrome-c/Caspase
signaling to suppress human cancer cell growth. PLoS One.
8:e692402013. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Tsai JR, Liu PL, Chen YH, Chou SH, Cheng
YJ, Hwang JJ and Chong IW: Curcumin inhibits non-small cell lung
cancer cells metastasis through the Adiponectin/NF-κb/MMPs
signaling pathway. PLoS One. 10:e01444622015. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Wright C, Iyer AKV, Yakisich JS and Azad
N: Anti-tumorigenic effects of resveratrol in lung cancer cells
through modulation of c-FLIP. Curr Cancer Drug Targets. 17:669–680.
2017. View Article : Google Scholar : PubMed/NCBI
|