|
1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Smith RA, Andrews KS, Brooks D, Fedewa SA,
Manassaram-Baptiste D, Saslow D, Brawley OW and Wender RC: Cancer
screening in the United States, 2017: A review of current American
cancer society guidelines and current issues in cancer screening.
CA Cancer J Clin. 67:100–121. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Siegel R, Miller K and Jemal A: Cancer
statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Caligiuri MA: Human natural killer cells.
Blood. 112:461–469. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Cooley S, Parham P and Miller JS:
Strategies to activate NK cells to prevent relapse and induce
remission following hematopoietic stem cell transplantation. Blood.
131:1053–1062. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lanier LL: Up on the tightrope: Natural
killer cell activation and inhibition. Nat Immunol. 9:495–502.
2008. View
Article : Google Scholar : PubMed/NCBI
|
|
7
|
Wu J and Lanier LL: Natural killer cells
and cancer. Adv Cancer Res. 90:127–156. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Chong WP, van Panhuys N, Chen J, Silver
PB, Jittayasothorn Y, Mattapallil MJ, Germain RN and Caspi RR:
NK-DC crosstalk controls the autopathogenic Th17 response through
an innate IFN-γ-IL-27 axis. J Exp Med. 212:1739–1752. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Jung IH, Kim DH, Yoo DK, Baek SY, Jeong
SH, Jung DE, Park SW and Chung YY: In vivo study of natural killer
(NK) cell cytotoxicity against cholangiocarcinoma in a nude mouse
model. In Vivo. 32:771–781. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Chester C, Fritsch K and Kohrt HE: Natural
killer cell immunomodulation: Targeting activating, inhibitory, and
co-stimulatory receptor signaling for cancer immunotherapy. Front
Immunol. 6:6012015. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Paul S and Lal G: The molecular mechanism
of natural killer cells function and its importance in cancer
immunotherapy. Front Immunol. 8:11242017. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Lee HS, Leem G, Kang H, Jo JH, Chung MJ,
Jang SJ, Yoon DH, Park JY, Park SW, Song SY and Bang S: Peripheral
natural killer cell activity is associated with poor clinical
outcomes in pancreatic ductal adenocarcinoma. J Gastroenterol
Hepatol. 36:516–522. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Marcon F, Zuo J, Pearce H, Nicol S,
Margielewska-Davies S, Farhat M, Mahon B, Middleton G, Brown R,
Roberts KJ and Moss P: NK cells in pancreatic cancer demonstrate
impaired cytotoxicity and a regulatory IL-10 phenotype.
Oncoimmunology. 9:18454242020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Masuyama J, Murakami T, Iwamoto S and
Fujita S: Ex vivo expansion of natural killer cells from human
peripheral blood mononuclear cells co-stimulated with anti-CD3 and
anti-CD52 monoclonal antibodies. Cytotherapy. 18:80–90. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Lin M, Liang S, Wang X, Liang Y, Zhang M,
Chen J, Niu L and Xu K: Percutaneous irreversible electroporation
combined with allogeneic natural killer cell immunotherapy for
patients with unresectable (stage III/IV) pancreatic cancer: A
promising treatment. J Cancer Res Clin Oncol. 143:2607–2618. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Van Audenaerde JRM, De Waele J, Marcq E,
Van Loenhout J, Lion E, Van den Bergh JMJ, Jesenofsky R, Masamune
A, Roeyen G, Pauwels P, et al: Interleukin-15 stimulates natural
killer cell-mediated killing of both human pancreatic cancer and
stellate cells. Oncotarget. 8:56968–56979. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Iannone F, Porzia A, Peruzzi G, Birarelli
P, Milana B, Sacco L, Dinatale G, Peparini N, Prezioso G, Battella
S, et al: Effect of surgery on pancreatic tumor-dependent
lymphocyte asset: Modulation of natural killer cell frequency and
cytotoxic function. Pancreas. 44:386–393. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Conroy T, Desseigne F, Ychou M, Bouché O,
Guimbaud R, Bécouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de
la Fouchardière C, et al: FOLFIRINOX versus gemcitabine for
metastatic pancreatic cancer. N Engl J Med. 364:1817–1825. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Von Hoff DD, Ervin T, Arena FP, Chiorean
EG, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN, et
al: Increased survival in pancreatic cancer with nab-paclitaxel
plus gemcitabine. N Engl J Med. 369:1691–1703. 2013. View Article : Google Scholar
|
|
20
|
Fang F, Xiao W and Tian Z: NK cell-based
immunotherapy forcancer. Semin Immunol. 31:37–54. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Mota Reyes C, Teller S, Muckenhuber A,
Konukiewitz B, Safak O, Weichert W, Friess H, Ceyhan GO and Demir
IE: Neoadjuvant therapy remodels the pancreatic cancer
microenvironment via depletion of protumorigenic immune cells. Clin
Cancer Res. 26:220–231. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Hane Y, Tsuchikawa T, Nakamura T, Hatanaka
KC, Saito T, Tanaka K, Nakanishi Y, Asano T, Noji T, Okamura K, et
al: Immunological gene signature associated with the tumor
microenvironment of pancreatic cancer after neoadjuvant
chemotherapy. Pancreas. 49:1240–1245. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Gürlevik E, Fleischmann-Mundt B, Brooks J,
Demir IE, Steiger K, Ribback S, Yevsa T, Woller N, Kloos A,
Ostroumov D, et al: Administration of gemcitabine after pancreatic
tumor resection in mice induces an antitumor immune response
mediated by natural killer cells. Gastroenterology. 151:338–350.e7.
2016. View Article : Google Scholar
|
|
24
|
Miyashita T, Miki K, Kamigaki T, Makino I,
Nakagawara H, Tajima H, Takamura H, Kitagawa H, Fushida S, Ahmed
AK, et al: Low-dose gemcitabine induces major histocompatibility
complex class I-related chain A/B expression and enhances an
antitumor innate immune response in pancreatic cancer. Clin Exp
Med. 17:19–31. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lin X, Huang M, Xie F, Zhou H, Yang J and
Huang Q: Gemcitabine inhibits immune escape of pancreatic cancer by
down regulating the soluble ULBP2 protein. Oncotarget.
7:70092–70099. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Moore MJ, Goldstein D, Hamm J, Figer A,
Hecht JR, Gallinger S, Au HJ, Murawa P, Walde D, Wolff RA, et al:
Erlotinib plus gemcitabine compared with gemcitabine alone in
patients with advanced pancreatic cancer: A phase III trial of the
national cancer institute of Canada clinical trials group. J Clin
Oncol. 25:1960–1966. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Golan T, Hammel P, Reni M, Van Cutsem E,
Macarulla T, Hall MJ, Park JO, Hochhauser D, Arnold D, Oh DY, et
al: Maintenance olaparib for germline BRCA-mutated metastatic
pancreatic cancer. N Engl J Med. 381:317–327. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ghiorzo P: Genetic predisposition to
pancreatic cancer. World J Gastroenterol. 20:10778–10789. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Holter S, Borgida A, Dodd A, Grant R,
Semotiuk K, Hedley D, Dhani N, Narod S, Akbari M, Moore M and
Gallinger S: Germline BRCA mutations in a large clinic-based cohort
of patients with pancreatic adenocarcinoma. J Clin Oncol.
33:3124–3129. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Friedenson B: BRCA1 and BRCA2 pathways and
the risk of cancers other than breast or ovarian. MedGenMed.
7:602005.PubMed/NCBI
|
|
31
|
Golan T, Kindler HL, Park JO, Reni M,
Macarulla T, Hammel P, Van Cutsem E, Arnold D, Hochhauser D,
McGuinness D, et al: Geographic and ethnic heterogeneity of
germline BRCA1 or BRCA2 mutation prevalence among patients with
metastatic pancreatic cancer screened for entry into the POLO
trial. J Clin Oncol. 38:1442–1454. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
McMichael EL, Jaime-Ramirez AC,
Guenterberg KD, Luedke E, Atwal LS, Campbell AR, Hu Z, Tatum AS,
Kondadasula SV, Mo X, et al: IL-21 enhances natural killer cell
response to cetuximab-coated pancreatic tumor cells. Clin Cancer
Res. 23:489–502. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Xie X, Ma L, Zhou Y, Shen W, Xu D, Dou J,
Shen B and Zhou C: Polysaccharide enhanced NK cell cytotoxicity
against pancreatic cancer via TLR4/MAPKs/NF-κB pathway in
vitro/vivo. Carbohydr Polym. 225:1152232019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Jing W, Chen Y, Lu L, Hu X, Shao C, Zhang
Y, Zhou X, Zhou Y, Wu L, Liu R, et al: Human umbilical cord
blood-derived mesenchymal stem cells producing IL15 eradicate
established pancreatic tumor in syngeneic mice. Mol Cancer Ther.
13:2127–2137. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Bream JH, Curiel RE, Yu CR, Egwuagu CE,
Grusby MJ, Aune TM and Young HA: IL-4 synergistically enhances both
IL-2- and IL-12-induced IFN-gamma expression in murine NK cells.
Blood. 102:207–214. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Törnroos H, Hägerstrand H and Lindqvist C:
Culturing the human natural killer cell line NK-92 in interleukin-2
and interleukin-15-implications for clinical trials. Anticancer
Res. 39:107–112. 2019. View Article : Google Scholar
|
|
37
|
Felices M, Chu S, Kodal B, Bendzick L,
Ryan C, Lenvik AJ, Boylan KLM, Wong HC, Skubitz APN, Miller JS and
Geller MA: IL-15 super-agonist (ALT-803) enhances natural killer
(NK) cell function against ovarian cancer. Gynecol Oncol.
145:453–461. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Wagner JA, Rosario M, Romee R,
Berrien-Elliott MM, Schneider SE, Leong JW, Sullivan RP, Jewell BA,
Becker-Hapak M, Schappe T, et al: CD56bright NK cells exhibit
potent antitumor responses following IL-15 priming. J Clin Invest.
127:4042–4058. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Bailey CP, Budak-Alpdogan T, Sauter CT,
Panis MM, Buyukgoz C, Jeng EK, Wong HC, Flomenberg N and Alpdogan
O: New interleukin-15 superagonist (IL-15SA) significantly enhances
graft-versus-tumor activity. Oncotarget. 8:44366–44378. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Fujii R, Jochems C, Tritsch SR, Wong HC,
Schlom J and Hodge JW: An IL-15 superagonist/IL-15Rα fusion complex
protects and rescues NK cell-cytotoxic function from
TGF-β1-mediated immunosuppression. Cancer Immunol Immunother.
67:675–689. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Van Audenaerde JR, Marcq E, von Scheidt B,
Davey AS, Oliver AJ, De Waele J, Quatannens D, Van Loenhout J,
Pauwels P, Roeyen G, et al: Novel combination immunotherapy for
pancreatic cancer: Potent anti-tumor effects with CD40 agonist and
interleukin-15 treatment. Clin Transl Immunology. 9:e11652020.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Dhar P and Wu JD: NKG2D and its ligands in
cancer. Curr Opin Immunol. 51:55–61. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Dominguez C, McCampbell KK, David JM and
Palena C: Neutralization of IL-8 decreases tumor PMN-MDSCs and
reduces mesenchymalization of claudin-low triple-negative breast
cancer. JCI Insight. 2:e942962017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wu J, Gao FX, Wang C, Qin M, Han F, Xu T,
Hu Z, Long Y, He XM, Deng X, et al: IL-6 and IL-8 secreted by
tumour cells impair the function of NK cells via the STAT3 pathway
in oesophageal squamous cell carcinoma. J Exp Clin Cancer Res.
38:3212019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Royal RE, Levy C, Turner K, Mathur A,
Hughes M, Kammula US, Sherry RM, Topalian SL, Yang JC, Lowy I and
Rosenberg SA: Phase 2 trial of single agent Ipilimumab
(anti-CTLA-4) for locally advanced or metastatic pancreatic
adenocarcinoma. J Immunother. 33:828–833. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ,
Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, et al:
Safety and activity of anti-PD-L1 antibody in patients with
advanced cancer. N Engl J Med. 366:2455–2465. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Sideras K, Braat H, Kwekkeboom J, van
Eijck CH, Peppelenbosch MP, Sleijfer S and Bruno M: Role of the
immune system in pancreatic cancer progression and immune
modulating treatment strategies. Cancer Treat Rev. 40:513–522.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Henriksen A, Dyhl-Polk A, Chen I and
Nielsen D: Checkpoint inhibitors in pancreatic cancer. Cancer Treat
Rev. 78:17–30. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Balachandran VP, Beatty GL and Dougan SK:
Broadening the impact of immunotherapy to pancreatic cancer:
Challenges and opportunities. Gastroenterology. 156:2056–2072.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kaur K, Safaie T, Ko MW, Wang Y and Jewett
A: ADCC against MICA/B is mediated against differentiated oral and
pancreatic and not stem-like/poorly differentiated tumors by the NK
cells; loss in cancer patients due to down-modulation of CD16
receptor. Cancers (Basel). 13:2392021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Liu X, Zhao X, Cheng R and Huang Y:
Autophagy attenuates high glucose-induced oxidative injury to lens
epithelial cells. Biosci Rep. 40:BSR201930062020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Li W, Liu H, Qian W, Cheng L, Yan B, Han
L, Xu Q, Ma Q and Ma J: Hyperglycemia aggravates microenvironment
hypoxia and promotes the metastatic ability of pancreatic cancer.
Comput Struct Biotechnol J. 16:479–487. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Duan Q, Li H, Gao C, Zhao H, Wu S, Wu H,
Wang C, Shen Q and Yin T: High glucose promotes pancreatic cancer
cells to escape from immune surveillance via AMPK-Bmi1-GATA2-MICA/B
pathway. J ExpClin Cancer Res. 38:1922019.PubMed/NCBI
|
|
54
|
Shi P, Yin T, Zhou F, Cui P, Gou S and
Wang C: Valproic acid sensitizes pancreatic cancer cells to natural
killer cell-mediated lysis by upregulating MICA and MICB via the
PI3K/Akt signaling pathway. BMC Cancer. 14:3702014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Bhoopathi P, Quinn BA, Gui Q, Shen XN,
Grossman SR, Das SK, Sarkar D, Fisher PB and Emdad L: Pancreatic
cancer-specific cell death induced in vivo by cytoplasmic-delivered
polyinosine-polycytidylic acid. Cancer Res. 74:6224–6235. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ou ZL, Luo Z, Wei W, Liang S, Gao TL and
Lu YB: Hypoxia-induced shedding of MICA and HIF1A-mediated immune
escape of pancreatic cancer cells from NK cells: Role of
circ_0000977/miR-153 axis. RNA Biol. 16:1592–1603. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Fiala M: Curcumin and omega-3 fatty acids
enhance NK cell-induced apoptosis of pancreatic cancer cells but
curcumin inhibits interferon-γ production: Benefits of omega-3 with
curcumin against cancer. Molecules. 20:3020–3026. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Miller JS, Soignier Y,
Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna
D, Le C, Defor TE, Burns LJ, et al: Successful adoptive transfer
and in vivo expansion of human haploidentical NK cells in patients
with cancer. Blood. 105:3051–3057. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Rosenberg SA, Lotze MT, Muul LM, Leitman
S, Chang AE, Ettinghausen SE, Matory YL, Skibber JM, Shiloni E,
Vetto JT, et al: Observations on the systemic administration of
autologous lymphokine-activated killer cells and recombinant
interleukin-2 to patients with metastatic cancer. N Engl J Med.
313:1485–1492. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Fabian KP, Padget MR, Donahue RN,
Solocinski K, Robbins Y, Allen CT, Lee JH, Rabizadeh S, Soon-Shiong
P, Schlom J and Hodge JW: PD-L1 targeting high-affinity NK (t-haNK)
cells induce direct antitumor effects and target suppressive MDSC
populations. J Immunother Cancer. 8:e0004502020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Franks SE, Wolfson B and Hodge JW: Natural
born killers: NK cells in cancer therapy. Cancers (Basel).
12:21312020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Long Y, Sun Q, Wu J, Wang Y and Jiao S:
Allogeneic cell-based immunotherapy combined with chemotherapy and
targeted therapy in advanced pancreatic cancer with metastases: A
case report. Oncol Lett. 7:1594–1598. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Lin M, Liang S, Wang X, Liang Y, Zhang M,
Chen J, Niu L and Xu K: Short-term clinical efficacy of
percutaneous irreversible electroporation combined with allogeneic
natural killer cell for treating metastatic pancreatic cancer.
Immunol Lett. 186:20–27. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Pan Q, Hu C, Fan Y, Wang Y, Li R and Hu X:
Efficacy of irreversible electroporation ablation combined with
natural killer cells in treating locally advanced pancreatic
cancer. J BUON. 25:1643–1649. 2020.PubMed/NCBI
|