|
1
|
Lauger P: Dynamics of ion transport
systems in membranes. Physiol Rev. 67:1296–1331. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Pedersen PL: Transport ATPases into the
year 2008: A brief overview related to types, structures, functions
and roles in health and disease. J Bioenerg Biomembr. 39:349–355.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Apell HJ: Structure-function relationship
in P-type ATPases-a biophysical approach. Rev Physiol Biochem
Pharmacol. 150:1–35. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Litan A and Langhans SA: Cancer as a
channelopathy: Ion channels and pumps in tumor development and
progression. Front Cell Neurosci. 9:862015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Palmgren MG and Nissen P: P-type ATPases.
Annu Rev Biophys. 40:243–266. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Palmgren MG and Axelsen KB: Evolution of
P-type ATPases. Biochim Biophys Acta. 1365:37–45. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Kühlbrandt W: Biology, structure and
mechanism of P-type ATPases. Nat Rev Mol Cell Biol. 5:282–295.
2004. View Article : Google Scholar
|
|
8
|
Clausen MV, Hilbers F and Poulsen H: The
structure and function of the Na,K-ATPase isoforms in health and
disease. Front Physiol. 8:3712017. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Toyoshima C, Nakasako M, Nomura H and
Ogawa H: Crystal structure of the calcium pump of sarcoplasmic
reticulum at 2.6 A resolution. Nature. 405:647–655. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Gu M, Zhang Y, Zhou X, Ma H, Yao H and Ji
F: Rabeprazole exhibits antiproliferative effects on human gastric
cancer cell lines. Oncol Lett. 8:1739–1744. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Newman RA, Kondo Y, Yokoyama T, Dixon S,
Cartwright C, Chan D, Johansen M and Yang P: Autophagic cell death
of human pancreatic tumor cells mediated by Oleandrin, a
lipid-soluble cardiac glycoside. Integr Cancer Ther. 6:354–364.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ihenetu K, Qazzaz HM, Crespo F,
Fernandez-Botran R and Valdes R Jr: Digoxin-Like immunoreactive
factors induce apoptosis in human acute T-cell lymphoblastic
leukemia. Clin Chem. 53:1315–1322. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wong VK, Li T, Law BY, Ma ED, Yip NC,
Michelangeli F, Law CK, Zhang MM, Lam KY, Chan PL and Liu L:
Saikosaponin-d, a novel SERCA inhibitor, induces autophagic cell
death in apoptosis-defective cells. Cell Death Dis. 4:e7202013.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Rajasekaran SA, Huynh TP, Wolle DG,
Espineda CE, Inge LJ, Skay A, Lassman C, Nicholas SB, Harper JF,
Reeves AE, et al: Na,K-ATPase subunits as markers for
epithelial-mesenchymal transition in cancer and fibrosis. Mol
Cancer Ther. 9:1515–1524. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Dang D and Rao R: Calcium-ATPases: Gene
disorders and dysregulation in cancer. Biochim Biophys Acta.
1863:1344–1350. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Arimochi J, Ohashi-Kobayashi A and Maeda
M: Interaction of Mat-8 (FXYD-3) with Na+/K+-ATPase in colorectal
cancer cells. Biol Pharm Bull. 30:648–654. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
De Milito A and Fais S: Tumor acidity,
chemoresistance and proton pump inhibitors. Future Oncol.
1:779–786. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Chandrashekar DS, Bashel B, Balasubramanya
SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BVSK and
Varambally S: UALCAN: A portal for facilitating tumor subgroup gene
expression and survival analyses. Neoplasia. 19:649–658. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Yiallouris A, Stephanou A and Patrikios I:
Anticancer properties of Na+/K+-ATPase: A mini review. Asian J Sci
Technol. 7:2864–2868. 2015.
|
|
20
|
Chakraborti S and Dhalla NS: Regulation of
membrane Na+-K+ ATPase. Springer International Publishing; Cham:
2016, View Article : Google Scholar
|
|
21
|
Dyla M, Kjærgaard M, Poulsen H and Nissen
P: Structure and mechanism of P-Type ATPase ion pumps. Annu Rev
Biochem. 89:583–603. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Li Z, Zhang Z, Xie JX, Li X, Tian J, Cai
T, Cui H, Ding H, Shapiro JI and Xie Z: Na/K-ATPase mimetic
pNaKtide peptide inhibits the growth of human cancer cells. J Biol
Chem. 286:32394–32403. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Edwards IJ, Bruce G, Lawrenson C, Howe L,
Clapcote SJ, Deuchars SA and Deuchars J: Na+/K+ ATPase α1 and α3
isoforms are differentially expressed in α- and ү-motoneurons. J
Neurosci. 33:9913–9919. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Pirahanchi Y, Jessu R and Aeddula NR:
Physiology, sodium potassium pump. StatPearls. StatPearls
Publishing; Treasure Island, FL: 2021
|
|
25
|
Lingrel JB and Kuntzweiler T:
Na+,K(+)-ATPase. J Biol Chem. 269:19659–19662. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kaplan JH: Biochemistry of Na,K-ATPase.
Annu Rev Biochem. 71:511–535. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Pietrini G, Matteoli M, Banker G and
Caplan MJ: Isoforms of the Na,K-ATPase are present in both axons
and dendrites of hippocampal neurons in culture. Proc Natl Acad Sci
USA. 89:8414–8418. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Nawata J, Ohno I, Isoyama S, Suzuki J,
Miura S, Ikeda J and Shirato K: Differential expression of alpha 1,
alpha 3 and alpha 5 integrin subunits in acute and chronic stages
of myocardial infarction in rats. Cardiovasc Res. 43:371–381. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Underhill DA, Canfield VA, Dahl JP, Gros P
and Levenson R: The Na,K-ATPase alpha4 gene (Atp1a4) encodes a
ouabain-resistant alpha subunit and is tightly linked to the alpha2
gene (Atp1a2) on mouse chromosome 1. Biochemistry. 38:14746–14751.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Makita N, Bennett PB Jr and George AL Jr:
Voltage-gated Na+ channel beta 1 subunit mRNA expressed in adult
human skeletal muscle, heart, and brain is encoded by a single
gene. J Biol Chem. 269:7571–7578. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Hilbers F, Kopec W, Isaksen TJ, Holm TH,
Lykke-Hartmann K, Nissen P, Khandelia H and Poulsen H: Tuning of
the Na,K-ATPase by the beta subunit. Sci Rep. 6:204422016.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Mobasheri A, Trujillo E, Arteaga MF and
Martín-Vasallo P: Na(+), K(+)-ATPase subunit composition in a human
chondrocyte cell line; evidence for the presence of α1, α3, β1, β2
and β3 isoforms. Int J Mol Sci. 13:5019–5034. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sundaram SM, Safina D, Ehrkamp A, Faissner
A, Heumann R and Dietzel ID: Differential expression patterns of
sodium potassium ATPase alpha and beta subunit isoforms in mouse
brain during postnatal development. Neurochem Int. 128:163–174.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Malik N, Canfield VA, Beckers MC, Gros P
and Levenson R: Identification of the mammalian Na,K-ATPase 3
subunit. J Biol Chem. 271:22754–22758. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Pestov NB, Zhao H, Basrur V and Modyanov
NN: Isolation and characterization of BetaM protein encoded by
ATP1B4-a unique member of the Na,K-ATPase β-subunit gene family.
Biochem Biophys Res Commun. 412:543–548. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Mijatovic T, Dufrasne F and Kiss R:
Na+/K+-ATPase and cancer. Pharm Pat Anal. 1:91–106. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Hundal HS, Marette A, Ramlal T, Liu Z and
Klip A: Expression of beta subunit isoforms of the Na+,K(+)-ATPase
is muscle type-specific. FEBS Lett. 328:253–258. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Jia LG, Donnet C, Bogaev RC, Blatt RJ,
McKinney CE, Day KH, Berr SS, Jones LR, Moorman JR, Sweadner KJ and
Tucker AL: Hypertrophy, increased ejection fraction, and reduced
Na-K-ATPase activity in phospholemman-deficient mice. Am J Physiol
Heart Circ Physiol. 288:H1982–H1988. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Jones DH, Li TY, Arystarkhova E, Barr KJ,
Wetzel RK, Peng J, Markham K, Sweadner KJ, Fong GH and Kidder GM:
Na,K-ATPase from mice lacking the gamma subunit (FXYD2) exhibits
altered Na+ affinity and decreased thermal stability. J Biol Chem.
280:19003–19011. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Morrison BW, Moorman JR, Kowdley GC,
Kobayashi YM, Jones LR and Leder P: Mat-8, a novel
phospholemman-like protein expressed in human breast tumors,
induces a chloride conductance in xenopus oocytes. J Biol Chem.
270:2176–2182. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Crambert G, Li C, Swee LK and Geering K:
FXYD7, mapping of functional sites involved in endoplasmic
reticulum export, association with and regulation of Na,K-ATPase. J
Biol Chem. 279:30888–30895. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Geering K: Function of FXYD proteins,
regulators of Na, K-ATPase. J Bioenerg Biomembr. 37:387–392. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Mayan H, Farfel Z and Karlish SJD: Renal
Mg handling, FXYD2 and the central role of the Na,K-ATPase. Physiol
Rep. 6:e138432018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lubarski I, Pihakaski-Maunsbach K, Karlish
SJ, Maunsbach AB and Garty H: Interaction with the Na,K-ATPase and
tissue distribution of FXYD5 (related to ion channel). J
Biol Chem. 280:37717–37724. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kadowaki K, Sugimoto K, Yamaguchi F, Song
T, Watanabe Y, Singh K and Tokuda M: Phosphohippolin expression in
the rat central nervous system. Brain Res Mol Brain Res.
125:105–112. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Béguin P, Cambert G, Monnet-Tschudi F,
Uldry M, Horesberger JD, Garty H and Geering K: FXYD7 is a
brain-specific regulator of Na,K-ATPase alpha1-beta isozymes. EMBO
J. 21:3264–3273. 2002. View Article : Google Scholar
|
|
47
|
Yamaguchi F, Yamaguchi K, Tai Y, Sugimoto
K and Tokuda M: Molecular cloning and characterization of a novel
phospholemman-like protein from rat hippocampus. Brain Res Mol
Brain Res. 86:189–192. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zhu ZL, Zhao ZR, Zhang Y, Yang YH, Wang
ZM, Cui DS, Wang MW, Kleeff J, Kayed H, Yan BY and Sun XF:
Expression and significance of FXYD-3 protein in gastric
adenocarcinoma. Dis Markers. 28:63–69. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Grzmil M, Voigt S, Thelen P, Hemmerlein B,
Helmke K and Burfeind P: Up-regulated expression of the MAT-8 gene
in prostate cancer and its siRNA-mediated inhibition of expression
induces a decrease in proliferation of human prostate carcinoma
cells. Int J Oncol. 24:97–105. 2004.PubMed/NCBI
|
|
50
|
Arcangeli A, Crociani O, Lastraioli E,
Masi A, Pillozzi S and Becchetti A: Targeting ion channels in
cancer: A novel frontier in antineoplastic therapy. Curr Med Chem.
16:66–93. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Baker Bechmann M, Rotoli D, Morales M,
Maeso Mdel C, García Mdel P, Ávila J, Mobasheri A and
Martín-Vasallo P: Na,K-ATPase isozymes in colorectal cancer and
liver metastases. Front Physiol. 7:92016. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Yang P, Cartwright C, Efuet E, Hamilton
SR, Wistuba II, Menter D, Addington C, Shureiqi I and Newman RA:
Cellular location and expression of Na+,K+-ATPase α subunits affect
the anti-proliferative activity of oleandrin. Mol Carcinog.
53:253–263. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Garcia DG, de Castro-Faria-Neto HC, da
Silva CI, de Souza e Souza KF, Gonçalves-de-Albuquerque CF, Silva
AR, de Amorim LM, Freire AS, Santelli RE, Diniz LP, et al:
Na/K-ATPase as a target for anticancer drugs: Studies with perillyl
alcohol. Mol Cancer. 14:1052015. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Slingerland M, Cerella C, Guchelaar HJ,
Diederich M and Gelderblom H: Cardiac glycosides in cancer therapy:
From preclinical investigations towards clinical trials. Invest New
Drugs. 31:1087–1094. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Prassas I, Karagiannis GS, Batruch I,
Dimitromanolakis A, Datti A and Diamandis EP: Digitoxin-induced
cytotoxicity in cancer cells is mediated through distinct kinase
and interferon signaling networks. Mol Cancer Ther. 10:2083–2093.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Liu N, Li Y, Su S, Wang N, Wang H and Li
J: Inhibition of cell migration by ouabain in the A549 human lung
cancer cell line. Oncol Lett. 6:475–479. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Bogdanov A, Moiseenko F and Dubina M:
Abnormal expression of ATP1A1 and ATP1A2 in breast cancer.
F1000Res. 6:102017. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Mony S, Lee SJ, Harper JF, Barwe SP and
Langhans SA: Regulation of Na,K-ATPase β1-subunit in
TGF-β2-mediated epithelial-to-mesenchymal transition in human
retinal pigmented epithelial cells. Exp Eye Res. 115:113–122. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Li S, Dai Z, Yang D, Li W, Dai H, Sun B,
Liu X, Xie X, Xu R and Zhao X: Targeting β2 subunit of
Na+/K+-ATPase induces glioblastoma cell
apoptosis through elevation of intracellular Ca2. Am J
Cancer Res. 9:1293–1308. 2019.PubMed/NCBI
|
|
60
|
Rotoli D, Cejas MM, Maeso MC,
Pérez-Rodríguez ND, Morales M, Ávila J, Mobasheri A and
Martín-Vasallo P: The Na, K-ATPase β-Subunit isoforms expression in
glioblastoma multiforme: Moonlighting roles. Int J Mol Sci.
18:23692017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Sun MZ, Kim JM, Oh MC, Safaee M, Kaur G,
Clark AJ, Bloch O, Ivan ME, Kaur R, Oh T, et al: Na+/K+-ATPase
β2-subunit (AMOG) expression abrogates invasion of
glioblastoma-derived brain tumor-initiating cells. Neuro Oncol.
15:1518–1531. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Hsu IL, Chou CY, Wu YY, Wu JE, Liang CH,
Tsai YT, Ke JY, Chen YL, Hsu KF and Hong TM: Targeting FXYD2 by
cardiac glycosides potently blocks tumor growth in ovarian clear
cell carcinoma. Oncotarget. 7:62925–62938. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Li Y, Zhang X, Xu S, Ge J, Liu J, Li L,
Fang G, Meng Y, Zhang H and Sun X: Expression and clinical
significance of FXYD3 in endometrial cancer. Oncol Lett. 8:517–522.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Xue Y, Lai L, Lian W, Tu X, Zhou J, Dong
P, Su D, Wang X, Cao X, Chen Y and Wang Q: SOX9/FXYD3/Src Axis is
critical for ER + breast cancer stem cell function. Mol
Cancer Res. 17:238–249. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Chen X, Sun M, Hu Y, Zhang H, Wang Z, Zhou
N and Yan X: FXYD6 is a new biomarker of cholangiocarcinoma. Oncol
Lett. 7:393–398. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Gao Q, Chen X, Duan H, Wang Z, Feng J,
Yang D, Song L, Zhou N and Yan X: FXYD6: A novel therapeutic target
toward hepatocellular carcinoma. Protein Cell. 5:532–543. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Raman P, Purwin T, Pestell R and Tozeren
A: FXYD5 is a marker for poor prognosis and a potential driver for
metastasis in ovarian carcinomas. Cancer Inform. 14:113–119. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Casemore D and Xing C: SERCA as a target
for cancer therapies. Integr Cancer Sci Therap. 2:100–103.
2015.
|
|
69
|
Aubier M and Viires N: Calcium ATPase and
respiratory muscle function. Eur Respir J. 11:758–766.
1998.PubMed/NCBI
|
|
70
|
Chemaly ER, Troncone L and Lebeche D:
SERCA control of cell death and survival. Cell Calcium. 69:46–61.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Arbabian A, Brouland JP, Apáti Á, Pászty
K, Hegedűs L, Enyedi Á, Chomienne C and Papp B: Modulation of
endoplasmic reticulum calcium pump expression during lung cancer
cell differentiation. FEBS J. 280:5408–5418. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Colomer-Saucedo JB, Loulousis MM, Copello
VA, Krager SL, Tischkau SL and Copello JA: Pharmacological
targeting of SERCA in breast cancer. FASEB J. 34 (Suppl):S12020.
View Article : Google Scholar
|
|
73
|
Primeau JO, Armanious GP, Fisher ME and
Young HS: The SarcoEndoplasmic reticulum calcium ATPase. Subcell
Biochem. 87:229–258. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Sacchetto R, Bertipaglia I, Giannetti S,
Cendron L, Mascarello F, Damiani E, Carafoli E and Zanotti G:
Crystal structure of sarcoplasmic reticulum Ca2+-ATPase (SERCA)
from bovine muscle. J Struct Biol. 178:38–44. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Stewart TA, Yapa KT and Monteith GR:
Altered calcium signaling in cancer cells. Biochim Biophys Acta.
1848:2502–2511. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Celsi F, Pizzo P, Brini M, Leo S, Fotino
C, Pinton P and Rizzuto R: Mitochondria, calcium and cell death: A
deadly triad in neurodegeneration. Biochim Biophys Acta.
1787:335–344. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Yousef M, Vlachogiannis IA and Tsiani E:
Effects of resveratrol against lung cancer: In vitro and in vivo
studies. Nutrients. 9:12312017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Papp B, Brouland JP, Arbabian A, Gélébart
P, Kovács T, Bobe R, Enouf J, Varin-Blank N and Apáti A:
Endoplasmic reticulum calcium pumps and cancer cell
differentiation. Biomolecules. 2:165–186. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Sagara Y, Wade JB and Inesi G: A
conformational mechanism for formation of a dead-end complex by the
sarcoplasmic reticulum ATPase with thapsigargin. J Biol Chem.
267:1286–1292. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Jaskulska A, Janecka AE and Gach-Janczak
K: Thapsigargin-from traditional medicine to anticancer drug. Int J
Mol Sci. 22:42020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Mahalingam D, Wilding G, Denmeade S,
Sarantopoulas J, Cosgrove D, Cetnar J, Azad N, Bruce J, Kurman M,
Allgood VE and Carducci M: Mipsagargin, a novel thapsigargin-based
PSMA-activated prodrug: Results of a first-in-man phase I clinical
trial in patients with refractory, advanced or metastatic solid
tumours. Br J Cancer. 114:986–994. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Gu J, Liu H, Fu T and Xu Y: Thapsigargin
increases apoptotic cell death in human hepatoma BEL-7404 cells.
Cell Res. 5:59–65. 1995. View Article : Google Scholar
|
|
83
|
Denmeade SR, Jakobsen CM, Janssen S, Khan
SR, Garrett ES, Lilja H, Christensen SB and Isaacs JT:
Prostate-specific antigen-activated thapsigargin prodrug as
targeted therapy for prostate cancer. J Natl Cancer Inst.
95:990–1000. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Søhoel H, Jensen AM, Møller JV, Nissen P,
Denmeade SR, Isaacs JT, Olsen CE and Christensen SB: Natural
products as starting materials for development of second-generation
SERCA inhibitors targeted towards prostate cancer cells. Bioorg Med
Chem. 14:2810–2815. 2006. View Article : Google Scholar
|
|
85
|
Park KC, Kim SW, Jeon JY, Jo AR, Choi HJ,
Kim J, Lee HG, Kim Y, Mills GB, Noh SH, et al: Survival of cancer
stem-like cells under metabolic stress via CaMK2α-mediated
upregulation of sarco/endoplasmic reticulum calcium ATPase
expression. Clin Cancer Res. 24:1677–1690. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Riganti C, Doublier S, Viarisio D,
Miraglia E, Pescarmona G, Ghigo D and Bosia A: Artemisinin induces
doxorubicin resistance in human colon cancer cells via
calcium-dependent activation of HIF-1alpha and P-glycoprotein
overexpression. Br J Pharmacol. 156:1054–1066. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
De Ford C, Heidersdorf B, Haun F, Murillo
R, Friedrich T, Borner C and Merfort I: The clerodane diterpene
casearin J induces apoptosis of T-ALL cells through SERCA
inhibition, oxidative stress, and interference with Notch1
signaling. Cell Death Dis. 7:e20702016. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Kim SL, Kim SH, Trang KT, Kim IH, Lee SO,
Lee ST, Kim DG, Kang SB and Kim SW: Synergistic antitumor effect of
5-fluorouracil in combination with parthenolide in human colorectal
cancer. Cancer Lett. 335:479–486. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Izquierdo-Torres E, Rodríguez G,
Meneses-Morales I and Zarain-Herzberg A: ATP2A3 gene as an
important player for resveratrol anticancer activity in breast
cancer cells. Mol Carcinog. 56:1703–1711. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Vander Stricht DV, Raussens V, Oberg KA,
Ruysschaert JM and Goormaghtigh E: Difference between the E1 and E2
conformations of gastric H+/K+-ATPase in a multilamellar lipid film
system: Characterization by fluorescence and ATR-FTIR spectroscopy
under a continuous buffer flow. Eur J Biochem. 268:2873–2880. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Streif D, Iglseder E, Hauser-Kronberger C,
Fink KG, Jakab M and Ritter M: Expression of the non-gastric H+/K+
ATPase ATP12A in normal and pathological human prostate tissue.
Cell Physiol Biochem. 28:1287–1294. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Abe K, Tani K, Nishizawa T and Fujiyoshi
Y: Inter-subunit interaction of gastric H+,K+-ATPase prevents
reverse reaction of the transport cycle. EMBO J. 28:1637–1643.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Sachs G, Shin JM, Vagin O, Lambrecht N,
Yakubov I and Munson K: The gastric H,K ATPase as a drug target:
Past, present, and future. J Clin Gastroenterol. 41 (Suppl
2):S226–S242. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Ward RM and Kearns GL: Proton pump
inhibitors in pediatrics: Mechanism of action, pharmacokinetics,
pharmacogenetics, and pharmacodynamics. Paediatr Drugs. 15:119–131.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Sakai H, Fujii T and Takeguchi N:
Proton-potassium (H(+)/K(+)) ATPases: Properties and roles in
health and diseases. Met Ions Life Sci. 16:459–483. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Dubey V, Han M, Kopec W, Solov'yov IA, Abe
K and Khandelia H: K+ binding and proton redistribution
in the E2P state of the H+, K+-ATPase. Sci
Rep. 8:127322018. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Shin JM, Munson K, Vagin O and Sachs G:
The gastric HK-ATPase: Structure, function, and inhibition.
Pflugers Arch. 457:609–622. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
McCormick CA, Samuels TL, Battle MA,
Frolkis T, Blumin JH, Bock JM, Wells C, Yan K, Altman KW and
Johnston N: H+/K+ATPase expression in the larynx of
laryngopharyngeal reflux and laryngeal cancer patients.
Laryngoscope. 131:130–135. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Judd LM, Andringa A, Rubio CA, Spicer Z,
Shull GE and Miller ML: Gastric achlorhydria in
H/K-ATPase-deficient (Atp4a(−/-)) mice causes severe hyperplasia,
mucocystic metaplasia and upregulation of growth factors. J
Gastroenterol Hepatol. 20:1266–1278. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Jakab M, Hofer S, Ravasio A, Huber F,
Schmidt S, Hitzl W, Geibel JP, Fürst J and Ritter M: The putative
role of the non-gastric H+/K+-ATPase ATP12A (ATP1AL1) as
anti-apoptotic ion transporter: Effect of the H+/K+ ATPase
inhibitor SCH28080 on butyrate-stimulated myelomonocytic HL-60
Cells. Cell Physiol Biochem. 34:1507–1526. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Yan D, Hu Y, Li S and Cheng M: A model of
3D-structure of H+, K+-ATPase catalytic subunit derived by homology
modeling. Acta Pharmacol Sin. 25:474–479. 2004.PubMed/NCBI
|
|
102
|
Wang X, Liu C, Wang J, Fan Y, Wang Z and
Wang Y: Proton pump inhibitors increase the chemosensitivity of
patients with advanced colorectal cancer. Oncotarget.
8:58801–58808. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Ihraiz WG, Ahram M and Bardaweel SK:
Proton pump inhibitors enhance chemosensitivity, promote apoptosis,
and suppress migration of breast cancer cells. Acta Pharm.
70:179–190. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Hálfdánarson ÓÖ, Pottegård A, Lund SH,
Ogmundsdottir MH, Ogmundsdottir HM and Zoega H: Use of proton pump
inhibitors and mortality among Icelandic patients with prostate
cancer. Basic Clin Pharmacol Toxicol. 126:484–491. 2020. View Article : Google Scholar
|
|
105
|
Tozzi M, Sørensen CE, Magni L, Christensen
NM, Bouazzi R, Buch CM, Stefanini M, Duranti C, Arcangeli A and
Novak I: Proton pump inhibitors reduce pancreatic adenocarcinoma
progression by selectively targeting H+,
K+-ATPases in pancreatic cancer and stellate cells.
Cancers (Basel). 12:6402020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Lin S, Lin B, Wang X, Pan Y, Xu Q, He JS,
Gong W, Xing R, He Y, Guo L, et al: Silencing of ATP4B of ATPase
H+/K+ transporting beta subunit by intragenic
epigenetic alteration in human gastric cancer cells. Oncol Res.
25:317–329. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Zhang Q, Huang N, Wang J, Luo H, He H,
Ding M, Deng WQ and Zou K: The H+/K+-ATPase inhibitory activities
of trametenolic acid B from trametes lactinea (Berk.) Pat, and its
effects on gastric cancer cells. Fitoterapia. 89:210–217. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Yeo M, Kim DK, Kim YB, Oh TY, Lee JE, Cho
SW, Kim HC and Hahm KB: Selective induction of apoptosis with
proton pump inhibitor in gastric cancer cells. Clin Cancer Res.
10:8687–8696. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Lindner K, Borchardt C, Schöpp M, Bürgers
A, Stock C, Hussey DJ, Haier J and Hummel R: Proton pump inhibitors
(PPIs) impact on tumour cell survival, metastatic potential and
chemotherapy resistance, and affect expression of
resistance-relevant miRNAs in esophageal cancer. J Exp Clin Cancer
Res. 33:732014. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Ferrari S, Perut F, Fagioli F, Brach Del
Prever A, Meazza C, Parafioriti A, Picci P, Gambarotti M, Avnet S,
Baldini N and Fais S: Proton pump inhibitor chemosensitization in
human osteosarcoma: From the bench to the patients' bed. J Transl
Med. 11:2682013. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Goh W, Sleptsova-Freidrich I and Petrovic
N: Use of proton pump inhibitors as adjunct treatment for
triple-negative breast cancers. An introductory study. J Pharm
Pharm Sci. 17:439–446. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Lugini L, Sciamanna I, Federici C, Iessi
E, Spugnini EP and Fais S: Antitumor effect of combination of the
inhibitors of two new oncotargets: Proton pumps and reverse
transcriptase. Oncotarget. 8:4147–4155. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Wu DC, Kuo CH, Tsay FW, Hsu WH, Chen A and
Hsu PI: A pilot randomized controlled study of dexlansoprazole
mr-based triple therapy for Helicobacter pylori infection.
Medicine (Baltimore). 95:e26982016. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Otake K, Sakurai Y, Nishida H, Fukui H,
Tagawa Y, Yamasaki H, Karashima M, Otsuka K and Inatomi N:
Characteristics of the novel potassium-competitive acid blocker
vonoprazan fumarate (TAK-438). Adv Ther. 33:1140–1157. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Inatomi N, Matsukawa J, Sakurai Y and
Otake K: Potassium-competitive acid blockers: Advanced therapeutic
option for acid-related diseases. Pharmacol Ther. 168:12–22. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Singh N, Singh P, Shrivastva S, Mishra SK,
Lakshmi V, Sharma R and Palit G: Gastroprotective effect of
anti-cancer compound rohitukine: Possible role of gastrin
antagonism and H(+) K (+)-ATPase inhibition. Naunyn-Schmiedebergs
Arch Pharmacol. 385:277–286. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Mijatovic T, Dufrasne F and Kiss R:
Cardiotonic steroids-mediated targeting of the Na(+)/K(+)-ATPase to
combat chemoresistant cancers. Curr Med Chem. 19:627–646. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Bindu PH, Sastry GM, Murty US and Sastry
GN: Structural and conformational changes concomitant with the
E1-E2 transition in H(+)K(+)-ATPase: A comparative protein modeling
study. Biochem Biophys Res Commun. 319:312–320. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Frankel AE, Eskiocak U, Gill JG, Yuan S,
Ramesh V, Froehlich TW, Ahn C and Morrison SJ: Digoxin plus
trametinib therapy achieves disease control in BRAF wild-type
metastatic melanoma patients. Neoplasia. 19:255–260. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Koch KM, Smith DA, Botbyl J, Arya N,
Briley LP, Cartee L, White JH, Beyer J, Dar MM, Chung HC, et al:
Effect of lapatinib on oral digoxin absorption in patients. Clin
Pharmacol Drug Dev. 4:449–453. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Lin J, Zhan T, Duffy D, Hoffman-Censits J,
Kilpatrick D, Trabulsi EJ, Lallas CD, Chervoneva I, Limentani K,
Kennedy B, et al: A pilot phase II Study of digoxin in patients
with recurrent prostate cancer as evident by a rising PSA. Am J
Cancer Ther Pharmacol. 2:21–32. 2014.PubMed/NCBI
|
|
122
|
Jankowski JAZ, de Caestecker J, Love SB,
Reilly G, Watson P, Sanders S, Ang Y, Morris D, Bhandari P, Brooks
C, et al: Esomeprazole and aspirin in Barrett's oesophagus
(AspECT): A randomised factorial trial. Lancet. 392:400–408. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Cheung KS and Leung WK: Long-term use of
proton-pump inhibitors and risk of gastric cancer: A review of the
current evidence. Therap Adv Gastroenterol. 12:1756284819834512019.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Hammadi M, Adi M, John R, Khoder GA and
Karam SM: Dysregulation of gastric H,K-ATPase by cigarette smoke
extract. World J Gastroenterol. 15:4016–4022. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Robertson DJ, Larsson H, Friis S, Pedersen
L, Baron JA and Sørensen HT: Proton pump inhibitor use and risk of
colorectal cancer: A population-based, case-control study.
Gastroenterology. 133:755–760. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Roche VF: The chemically elegant proton
pump inhibitors. Am J Pharm Educ. 70:1012006. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Inge LJ, Rajasekaran SA, Yoshimoto K,
Mischel PS, McBride W, Landaw E and Rajasekaran AK: Evidence for a
potential tumor suppressor role for the Na,K-ATPase beta1-subunit.
Histol Histopathol. 23:459–467. 2008.PubMed/NCBI
|
|
128
|
Alevizopoulos K, Dimas K, Papadopoulou N,
Schmidt EM, Tsapara A, Alkahtani S, Honisch S, Prousis KC, Alarifi
S, Calogeropoulou T, et al: Functional characterization and
anti-cancer action of the clinical phase II cardiac Na+/K+ ATPase
inhibitor istaroxime: In vitro and in vivo properties and cross
talk with the membrane androgen receptor. Oncotarget.
7:24415–22428. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Chow DC and Forte JG: Functional
significance of the beta-subunit for heterodimeric P-type ATPases.
J Exp Biol. 198:1–17. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Peterson JA, Oblad RV, Mecham JC and
Kenealey JD: Resveratrol inhibits plasma membrane
Ca2+-ATPase inducing an increase in cytoplasmic calcium.
Biochem Biophys Rep. 7:253–258. 2016.PubMed/NCBI
|
|
131
|
Madreiter-Sokolowski CT, Gottschalk B,
Parichatikanond W, Eroglu E, Klec C, Waldeck-Weiermair M, Malli R
and Graier WF: Resveratrol specifically kills cancer cells by a
devastating increase in the Ca2+ coupling between the greatly
tethered endoplasmic reticulum and mitochondria. Cell Physiol
Biochem. 39:1404–1420. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Almasi S and El Hiani Y: Exploring the
therapeutic potential of membrane transport proteins: Focus on
cancer and chemoresistance. Cancers (Basel). 12:16242020.
View Article : Google Scholar : PubMed/NCBI
|
|
133
|
McConkey DJ, Lin Y, Nutt LK, Ozel HZ and
Newman RA: Cardiac glycosides stimulate Ca2+ increases and
apoptosis in androgen-independent, metastatic human prostate
adenocarcinoma cells. Cancer Res. 60:3807–3812. 2000.PubMed/NCBI
|
|
134
|
Li H, Wang P, Gao Y, Zhu X, Liu L, Cohen
L, Meng Z and Yang P: Na+/K+-ATPase α3 mediates sensitivity of
hepatocellular carcinoma cells to bufalin. Oncol Rep. 25:825–830.
2011.PubMed/NCBI
|
|
135
|
Numazawa S, Shinoki MA, Ito H, Yoshida T
and Kuroiwa Y: Involvement of Na+,K(+)-ATPase inhibition in K562
cell differentiation induced by bufalin. J Cell Physiol.
160:113–120. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Sun X, Ng TTH, Sham KWY, Zhang L, Chan
MTV, Wu WKK and Cheng CHK: Bufalin, a traditional Chinese medicine
compound, prevents tumor formation in two murine models of
colorectal cancer. Cancer Prev Res (Phila). 12:653–666. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Yu CH, Kan SF, Pu HF, Jea Chien E and Wang
PS: Apoptotic signaling in bufalin- and cinobufagin-treated
androgen-dependent and -independent human prostate cancer cells.
Cancer Sci. 99:2467–2476. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Kang MA, Kim MS, Kim W, Um JH, Shin YJ,
Song JY and Jeong JH: Lanatoside C suppressed colorectal cancer
cell growth by inducing mitochondrial dysfunction and increased
radiation sensitivity by impairing DNA damage repair. Oncotarget.
7:6074–6087. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Huang YT, Chueh SC, Teng CM and Guh JH:
Investigation of ouabain-induced anticancer effect in human
androgen-independent prostate cancer PC-3 cells. Biochem Pharmacol.
67:727–733. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Ono Y, Chiba S, Yano H, Nakayama N, Saio
M, Tsuruma K, Shimazawa M, Iwama T and Hara H: Glycoprotein
nonmetastatic melanoma protein B (GPNMB) promotes the progression
of brain glioblastoma via Na+/K+-ATPase.
Biochem Biophys Res Commun. 481:7–12. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Rocha SC, Pessoa MT, Neves LD, Alves SL,
Silva LM, Santos HL, Oliveira SM, Taranto AG, Comar M, Gomes IV, et
al: 21-Benzylidene digoxin: A proapoptotic cardenolide of cancer
cells that up-regulates Na,K-ATPase and epithelial tight junctions.
PLoS One. 9:e1087762014. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Denmeade SR and Isaacs JT: The SERCA pump
as a therapeutic target: Making a ‘smart bomb’ for prostate cancer.
Cancer Biol Ther. 4:21–29. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Fan L, Li A, Li W, Cai P, Yang B, Zhang M,
Gu Y, Shu Y, Sun Y, Shen Y, et al: Novel role of Sarco/endoplasmic
reticulum calcium ATPase 2 in development of colorectal cancer and
its regulation by F36, a curcumin analog. Biomed Pharmacother.
68:1141–1148. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Jia J, Qin Y, Zhang L, Guo C, Wang Y, Yue
X and Qian J: Artemisinin inhibits gallbladder cancer cell lines
through triggering cell cycle arrest and apoptosis. Mol Med Rep.
13:4461–4468. 2016. View Article : Google Scholar : PubMed/NCBI
|