|
1
|
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Pelcovits A and Niroula R: Acute myeloid leukemia: A review. R I Med J (2013). 103:38–40. 2020.PubMed/NCBI
|
|
3
|
Burnett A, Wetzler M and Löwenberg B: Therapeutic advances in acute myeloid leukemia. J Clin Oncol. 29:487–494. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Llave C, Xie Z, Kasschau KD and Carrington JC: Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science. 297:2053–2056. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Ciardiello F and Tortora G: A novel approach in the treatment of cancer: Targeting the epidermal growth factor receptor. Clin Cancer Res. 7:2958–2970. 2001.PubMed/NCBI
|
|
6
|
Hattori M: Finishing the euchromatic sequence of the human genome. Tanpakushitsu Kakusan Koso. 50:162–168. 2005.(In Japanese). PubMed/NCBI
|
|
7
|
Hunger SP and Mullighan CG: Acute lymphoblastic leukemia in children. N Engl J Med. 373:1541–1552. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Mavrea K, Efthymiou V, Katsibardi K, Tsarouhas K, Kanaka-Gantenbein C, Spandidos DA, Chrousos G, Kattamis A and Bacopoulou F: Cognitive function of children and adolescent survivors of acute lymphoblastic leukemia: A meta-analysis. Oncol Lett. 21:2622021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Pääkkö E, Harila-Saari A, Vanionpää L, Himanen S, Pyhtinen J and Lanning M: White matter changes on MRI during treatment in children with acute lymphoblastic leukemia: Correlation with neuropsychological findings. Med Pediatr Oncol. 35:456–461. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Nelson C and Ambros V: A cohort of caenorhabditis species lacking the highly conserved let-7 microRNA. G3 (Bethesda). 11:jkab0222021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Siomi H and Siomi MC: Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell. 38:323–332. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Jiang X, Huang H, Li Z, Li Y, Wang X, Gurbuxani S, Chen P, He C, You D, Zhang S, et al: Blockade of miR-150 maturation by MLL-fusion/MYC/LIN-28 is required for MLL-associated leukemia. Cancer Cell. 22:524–535. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Agostini M, Ganini C, Candi E and Melino G: The role of noncoding RNAs in epithelial cancer. Cell Death Discov. 6:132020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Virga F, Quirico L, Cucinelli S, Mazzone M, Taverna D and Orso F: MicroRNA-mediated metabolic shaping of the tumor microenvironment. Cancers (Basel). 13:1272021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Lan FF, Wang H, Chen YC, Chan CY, Ng SS, Li K, Xie D, He ML, Lin MC and Kung HF: Hsa-let-7g inhibits proliferation of hepatocellular carcinoma cells by downregulation of c-Myc and upregulation of p16(INK4A). Int J Cancer. 128:319–331. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Viswanathan SR and Daley GQ: Lin28: A microRNA regulator with a macro role. Cell. 140:445–449. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Conti I, Varano G, Simioni C, Laface I, Milani D, Rimondi E and Neri LM: miRNAs as influencers of cell-cell communication in tumor microenvironment. Cells. 9:2202020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Linck-Paulus L, Hellerbrand C, Bosserhoff AK and Dietrich P: Dissimilar appearances are deceptive-common microRNAs and therapeutic strategies in liver cancer and melanoma. Cells. 9:1142020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Trino S, Lamorte D, Caivano A, Laurenzana I, Tagliaferri D, Falco G, Del Vecchio L, Musto P and De Luca L: MicroRNAs as new biomarkers for diagnosis and prognosis, and as potential therapeutic targets in acute myeloid leukemia. Int J Mol Sci. 19:4602018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Wong NW, Chen Y, Chen S and Wang X: OncomiR: An online resource for exploring pan-cancer microRNA dysregulation. Bioinformatics. 34:713–715. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Villanueva A, Hoshida Y, Toffanin S, Lachenmayer A, Alsinet C, Savic R, Cornella H and Llovet JM: New strategies in hepatocellular carcinoma: Genomic prognostic markers. Clin Cancer Res. 16:4688–4694. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR and Ruvkun G: The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 403:901–906. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Bozgeyik E: Bioinformatic analysis and in vitro validation of Let-7b and Let-7c in breast cancer. Comput Biol Chem. 84:1071912020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lelli D, Pedone C, Majeed M and Sahebkar A: Curcumin and lung cancer: The role of microRNAs. Curr Pharm Des. 23:3440–3444. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Rougvie AE: Control of developmental timing in animals. Nat Rev Genet. 2:690–701. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ambros V: microRNAs: Tiny regulators with great potential. Cell. 107:823–826. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Büssing I, Slack FJ and Grosshans H: let-7 microRNAs in development, stem cells and cancer. Trends Mol Med. 14:400–409. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Nimmo RA and Slack FJ: An elegant miRror: microRNAs in stem cells, developmental timing and cancer. Chromosoma. 118:405–418. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Roush S and Slack FJ: The let-7 family of microRNAs. Trends Cell Biol. 18:505–516. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Brancati G and Großhans H: An interplay of miRNA abundance and target site architecture determines miRNA activity and specificity. Nucleic Acids Res. 46:3259–3269. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Hammond SM: An overview of microRNAs. Adv Drug Deliv Rev. 87:3–14. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Perdas E, Stawski R, Kaczka K and Zubrzycka M: Analysis of Let-7 family miRNA in plasma as potential predictive biomarkers of diagnosis for papillary thyroid cancer. Diagnostics (Basel). 10:1302020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Jiang S: A regulator of metabolic reprogramming: MicroRNA Let-7. Transl Oncol. 12:1005–1013. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Powers JT, Tsanov KM, Pearson DS, Roels F, Spina CS, Ebright R, Seligson M, de Soysa Y, Cahan P, Theißen J, et al: Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma. Nature. 535:246–251. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wang T, Wang G, Hao D, Liu X, Wang D, Ning N and Li X: Aberrant regulation of the LIN28A/LIN28B and let-7 loop in human malignant tumors and its effects on the hallmarks of cancer. Mol Cancer. 14:1252015. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Vignali R and Marracci S: HMGA genes and proteins in development and evolution. Int J Mol Sci. 21:6542020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Chae HJ, Seo JB, Kim SH, Jeon YJ and Suh SS: Fhit induces the reciprocal suppressions between Lin28/Let-7 and miR-17/92miR. Int J Med Sci. 18:706–714. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Chen C, Liu JM and Luo YP: MicroRNAs in tumor immunity: Functional regulation in tumor-associated macrophages. J Zhejiang Univ Sci B. 21:12–28. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Sun JD, Li XM, Liu JL, Li J and Zhou H: Effects of miR-150-5p on cerebral infarction rats by regulating the Wnt signaling pathway via p53. Eur Rev Med Pharmacol Sci. 24:3882–3891. 2020.PubMed/NCBI
|
|
40
|
Jia Y and Wei Y: Modulators of MicroRNA function in the immune system. Int J Mol Sci. 21:23572020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Khalaj M, Tavakkoli M, Stranahan AW and Park CY: Pathogenic microRNA's in myeloid malignancies. Front Genet. 5:3612014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Shaham L, Binder V, Gefen N, Borkhardt A and Izraeli S: MiR-125 in normal and malignant hematopoiesis. Leukemia. 26:2011–2018. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kim VN: Small RNAs: Classification, biogenesis, and function. Mol Cells. 19:1–15. 2005.PubMed/NCBI
|
|
44
|
Jinlong S, Lin F, Yonghui L, Li Y and Weidong W: Identification of let-7a-2-3p or/and miR-188-5p as prognostic biomarkers in cytogenetically normal acute myeloid leukemia. PLoS One. 10:e01180992015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lee H, Han S, Kwon CS and Lee D: Biogenesis and regulation of the let-7 miRNAs and their functional implications. Protein Cell. 7:100–113. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Emmrich S, Rasche M, Schöning J, Reimer C, Keihani S, Maroz A, Xie Y, Li Z, Schambach A, Reinhardt D and Klusmann JH: miR-99a/100~125b tricistrons regulate hematopoietic stem and progenitor cell homeostasis by shifting the balance between TGFβ and Wnt signaling. Genes Dev. 28:858–874. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Chen Y, Chen S, Lu J, Yuan D, He L, Qin P, Tan H and Xu L: MicroRNA-363-3p promote the development of acute myeloid leukemia with RUNX1 mutation by targeting SPRYD4 and FNDC3B. Medicine (Baltimore). 100:e258072021. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ha Sen Ta Na, Nuo M, Meng QT and Xia ZY: The pathway of Let-7a-1/2-3p and HMGB1 mediated dexmedetomidine inhibiting microglia activation in spinal cord ischemia-reperfusion injury mice. J Mol Neurosci. 69:106–114. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zhang H, Luo XQ, Feng DD, Zhang XJ, Wu J, Zheng YS, Chen X, Xu L and Chen YQ: Upregulation of microRNA-125b contributes to leukemogenesis and increases drug resistance in pediatric acute promyelocytic leukemia. Mol Cancer. 10:1082011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ward E, DeSantis C, Robbins A, Kohler B and Jemal A: Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin. 64:83–103. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Liao Q, Wang B, Li X and Jiang G: miRNAs in acute myeloid leukemia. Oncotarget. 8:3666–3682. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wang X, Zhang G, Cheng Z, Dai L, Jia L, Jing X, Wang H, Zhang R, Liu M, Jiang T, et al: Knockdown of lncRNA ANRIL inhibits the development of cisplatin resistance by upregulating miR-98 in lung cancer cells. Oncol Rep. 44:1025–1036. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Huang Y, Hong X, Hu J and Lu Q: Targeted regulation of MiR-98 on E2F1 increases chemosensitivity of leukemia cells K562/A02. Onco Targets Ther. 10:3233–3239. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kato M and Manabe A: Treatment and biology of pediatric acute lymphoblastic leukemia. Pediatr Int. 60:4–12. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Mi S, Lu J, Sun M, Li Z, Zhang H, Neilly MB, Wang Y, Qian Z, Jin J, Zhang Y, et al: MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci USA. 104:19971–19976. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Shafik RE, Abd El Wahab N, Senoun SA, Ebeid E and El Taweel MA: Expression of Micro-RNA 128 and Let-7b in pediatric acute lymphoblastic leukemia cases. Asian Pac J Cancer Prev. 19:2263–2267. 2018.PubMed/NCBI
|
|
57
|
Schotte D, Chau JC, Sylvester G, Liu G, Chen C, van der Velden VH, Broekhuis MJ, Peters TC, Pieters R and den Boer ML: Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia. 23:313–322. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
de Oliveira JC, Scrideli CA, Brassesco MS, Morales AG, Pezuk JA, Queiroz Rde P, Yunes JA, Brandalise SR and Tone LG: Differential miRNA expression in childhood acute lymphoblastic leukemia and association with clinical and biological features. Leuk Res. 36:293–298. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zhang H, Luo XQ, Zhang P, Huang LB, Zheng YS, Wu J, Zhou H, Qu LH, Xu L and Chen YQ: MicroRNA patterns associated with clinical prognostic parameters and CNS relapse prediction in pediatric acute leukemia. PLoS One. 4:e78262009. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Lieberman J: Tapping the RNA world for therapeutics. Nat Struct Mol Biol. 25:357–364. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, et al: Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 99:15524–15529. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ and Hammond SM: A microRNA polycistron as a potential human oncogene. Nature. 435:828–833. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP and Burge CB: Prediction of mammalian microRNA targets. Cell. 115:787–798. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, et al: Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64:3753–3756. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhang J, Jiang Y, Han X, Roy M, Liu W, Zhao X and Liu J: Differential expression profiles and functional analysis of plasma miRNAs associated with chronic myeloid leukemia phases. Future Oncol. 15:763–776. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC and Lempicki RA: DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 4:P32003. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ma L, Teruya-Feldstein J and Weinberg RA: Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 449:682–688. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, et al: Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 105:10513–10518. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Ding Y, Wang ZC, Zheng Y, Hu Z, Li Y, Luo DF and Wang SY: C-Myc functions as a competing endogenous RNA in acute promyelocytic leukemia. Oncotarget. 7:56422–56430. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Delgado MD and León J: Myc roles in hematopoiesis and leukemia. Genes Cancer. 1:605–616. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Nesbit CE, Tersak JM and Prochownik EV: MYC oncogenes and human neoplastic disease. Oncogene. 18:3004–3016. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Müller-Tidow C, Steffen B, Cauvet T, Tickenbrock L, Ji P, Diederichs S, Sargin B, Köhler G, Stelljes M, Puccetti E, et al: Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol Cell Biol. 24:2890–2904. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Hoffman B and Liebermann DA: Apoptotic signaling by c-MYC. Oncogene. 27:6462–6472. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Johansen LM, Iwama A, Lodie TA, Sasaki K, Felsher DW, Golub TR and Tenen DG: c-Myc is a critical target for c/EBPalpha in granulopoiesis. Mol Cell Biol. 21:3789–3806. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Felsher DW and Bishop JM: Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell. 4:199–207. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Li T, Huang Y, Zhou W and Yan Q: Let-7c-3p regulates autophagy under oxidative stress by targeting ATG3 in lens epithelial cells. Biomed Res Int. 2020:60693902020.PubMed/NCBI
|
|
77
|
Pelosi A, Careccia S, Lulli V, Romania P, Marziali G, Testa U, Lavorgna S, Lo-Coco F, Petti MC, Calabretta B, et al: miRNA let-7c promotes granulocytic differentiation in acute myeloid leukemia. Oncogene. 32:3648–3654. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Karreth FA, Tay Y, Perna D, Ala U, Tan SM, Rust AG, DeNicola G, Webster KA, Weiss D, Perez-Mancera PA, et al: In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell. 147:382–395. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Fasihi-Ramandi M, Moridnia A, Najafi A and Sharifi M: Inducing apoptosis and decreasing cell proliferation in human acute promyelocytic leukemia through regulation expression of CASP3 by Let-7a-5p blockage. Indian J Hematol Blood Transfus. 34:70–77. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Wang W, Corrigan-Cummins M, Barber EA, Saleh LM, Zingone A, Ghafoor A, Costello R, Zhang Y, Kurlander RJ, Korde N, et al: Aberrant levels of miRNAs in bone marrow microenvironment and peripheral blood of myeloma patients and disease progression. J Mol Diagn. 17:669–678. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Liu Y, Cheng Z, Pang Y, Cui L, Qian T, Quan L, Zhao H, Shi J, Ke X and Fu L: Role of microRNAs, circRNAs and long noncoding RNAs in acute myeloid leukemia. J Hematol Oncol. 12:512019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Li Y, Li P and Wang N: Effect of let-7c on the PI3K/Akt/FoxO signaling pathway in hepatocellular carcinoma. Oncol Lett. 21:962021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Yang X, Liu M, Li M, Zhang S, Hiju H, Sun J, Mao Z, Zheng M and Feng B: Epigenetic modulations of noncoding RNA: A novel dimension of cancer biology. Mol Cancer. 19:642020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Allegra A, Musolino C, Tonacci A, Pioggia G, Casciaro M and Gangemi S: Clinico-biological implications of modified levels of cytokines in chronic lymphocytic leukemia: A possible therapeutic role. Cancers (Basel). 12:5242020. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Mauri C and Bosma A: Immune regulatory function of B cells. Annu Rev Immunol. 30:221–241. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Bajan S and Hutvagner G: RNA-based therapeutics: From antisense oligonucleotides to miRNAs. Cells. 9:1372020. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Chakraborty C, Sharma AR, Sharma G and Lee SS: The interplay among miRNAs, major cytokines, and cancer-related inflammation. Mol Ther Nucleic Acids. 20:606–620. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Fernandez-Piñeiro I, Badiola I and Sanchez A: Nanocarriers for microRNA delivery in cancer medicine. Biotechnol Adv. 35:350–360. 2017. View Article : Google Scholar : PubMed/NCBI
|