Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
June-2022 Volume 23 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2022 Volume 23 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Genome maintenance in retinoblastoma: Implications for therapeutic vulnerabilities (Review)

  • Authors:
    • Chunsik Lee
    • Jong Kyong Kim
  • View Affiliations / Copyright

    Affiliations: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
    Copyright: © Lee et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 192
    |
    Published online on: April 29, 2022
       https://doi.org/10.3892/ol.2022.13312
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Retinoblastoma (RB) is a pediatric ocular malignancy that is initiated mostly by biallelic inactivation of the RB transcriptional corepressor 1 (RB1) tumor suppressor gene in the developing retina. Unlike the prevailing prediction based on multiple studies involving RB1 gene disruption in experimental models, human RB tumors have been demonstrated to possess a relatively stable genome, characterized by a low mutation rate and a few recurrent chromosomal alterations related to somatic copy number changes. This suggests that RB may harbor heightened genome maintenance mechanisms to counteract or compensate for the risk of massive genome instability, which can potentially be driven by the early RB1 loss as a tumor‑initiating event. Although the genome maintenance mechanisms might have been evolved to promote RB cell survival by preventing lethal genomic defects, emerging evidence suggests that the dependency of RB cells on these mechanisms also exposes their unique vulnerability to chemotherapy, particularly when the genome maintenance machineries are tumor cell‑specific. This review summarizes the genome maintenance mechanisms identified in RB, including findings on the roles of chromatin regulators in DNA damage response/repair and protein factors involved in maintaining chromosome stability and promoting survival in RB. In addition, advantages and challenges for exploiting these therapeutic vulnerabilities in RB are discussed.
View Figures

Figure 1

Figure 2

View References

1 

Dimaras H, Corson TW, Cobrinik D, White A, Zhao J, Munier FL, Abramson DH, Shields CL, Chantada GL, Njuguna F and Gallie BL: Retinoblastoma. Nat Rev Dis Primers. 1:150212015. View Article : Google Scholar : PubMed/NCBI

2 

Benavente CA and Dyer MA: Genetics and epigenetics of human retinoblastoma. Annu Rev Pathol. 10:547–562. 2015. View Article : Google Scholar

3 

Theriault BL, Dimaras H, Gallie BL and Corson TW: The genomic landscape of retinoblastoma: A review. Clin Exp Ophthalmol. 42:33–52. 2014. View Article : Google Scholar

4 

Burkhart DL and Sage J: Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer. 8:671–682. 2008. View Article : Google Scholar : PubMed/NCBI

5 

Dick FA, Goodrich DW, Sage J and Dyson NJ: Non-canonical functions of the RB protein in cancer. Nat Rev Cancer. 18:442–451. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Talluri S and Dick FA: Regulation of transcription and chromatin structure by pRB: Here, there and everywhere. Cell Cycle. 11:3189–3198. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Uchida C: Roles of pRB in the regulation of nucleosome and chromatin structures. Biomed Res Int. 2016:59597212016. View Article : Google Scholar

8 

Knudsen ES, Pruitt SC, Hershberger PA, Witkiewicz AK and Goodrich DW: Cell cycle and beyond: Exploiting New RB1 controlled mechanisms for cancer therapy. Trends Cancer. 5:308–324. 2019. View Article : Google Scholar : PubMed/NCBI

9 

Linn P, Kohno S, Sheng J, Kulathunga N, Yu H, Zhang Z, Voon D, Watanabe Y and Takahashi C: Targeting RB1 loss in cancers. Cancers (Basel). 13:37372021. View Article : Google Scholar : PubMed/NCBI

10 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar

11 

Velez-Cruz R and Johnson DG: The Retinoblastoma (RB) tumor suppressor: Pushing back against genome instability on multiple fronts. Int J Mol Sci. 18:17762017. View Article : Google Scholar

12 

Cook R, Zoumpoulidou G, Luczynski MT, Rieger S, Moquet J, Spanswick VJ, Hartley JA, Rothkamm K, Huang PH and Mittnacht S: Direct involvement of retinoblastoma family proteins in DNA repair by non-homologous end-joining. Cell Rep. 10:2006–2018. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Velez-Cruz R, Manickavinayaham S, Biswas AK, Clary RW, Premkumar T, Cole F and Johnson DG: RB localizes to DNA double-strand breaks and promotes DNA end resection and homologous recombination through the recruitment of BRG1. Genes Dev. 30:2500–2512. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Manickavinayaham S, Velez-Cruz R, Biswas AK, Chen J, Guo R and Johnson DG: The E2F1 transcription factor and RB tumor suppressor moonlight as DNA repair factors. Cell Cycle. 19:2260–2269. 2020. View Article : Google Scholar : PubMed/NCBI

15 

Bester AC, Roniger M, Oren YS, Im MM, Sarni D, Chaoat M, Bensimon A, Zamir G, Shewach DS and Kerem B: Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell. 145:435–446. 2011. View Article : Google Scholar

16 

Longworth MS, Herr A, Ji JY and Dyson NJ: RBF1 promotes chromatin condensation through a conserved interaction with the Condensin II protein dCAP-D3. Genes Dev. 22:1011–1024. 2008. View Article : Google Scholar : PubMed/NCBI

17 

Manning AL, Longworth MS and Dyson NJ: Loss of pRB causes centromere dysfunction and chromosomal instability. Genes Dev. 24:1364–1376. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Manning AL, Yazinski SA, Nicolay B, Bryll A, Zou L and Dyson NJ: Suppression of genome instability in pRB-deficient cells by enhancement of chromosome cohesion. Mol Cell. 53:993–1004. 2014. View Article : Google Scholar

19 

Coschi CH, Ishak CA, Gallo D, Marshall A, Talluri S, Wang J, Cecchini MJ, Martens AL, Percy V, Welch I, et al: Haploinsufficiency of an RB-E2F1-Condensin II complex leads to aberrant replication and aneuploidy. Cancer Discov. 4:840–853. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Coschi CH, Martens AL, Ritchie K, Francis SM, Chakrabarti S, Berube NG and Dick FA: Mitotic chromosome condensation mediated by the retinoblastoma protein is tumor-suppressive. Genes Dev. 24:1351–1363. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Ishak CA, Marshall AE, Passos DT, White CR, Kim SJ, Cecchini MJ, Ferwati S, MacDonald WA, Howlett CJ, Welch ID, et al: An RB-EZH2 complex mediates silencing of repetitive DNA Sequences. Mol Cell. 64:1074–1087. 2016. View Article : Google Scholar

22 

Gonzalo S, Garcia-Cao M, Fraga MF, Schotta G, Peters AH, Cotter SE, Eguia R, Dean DC, Esteller M, Jenuwein T and Blasco MA: Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat Cell Biol. 7:420–428. 2005. View Article : Google Scholar

23 

Isaac CE, Francis SM, Martens AL, Julian LM, Seifried LA, Erdmann N, Binne UK, Harrington L, Sicinski P, Berube NG, et al: The retinoblastoma protein regulates pericentric heterochromatin. Mol Cell Biol. 26:3659–3671. 2006. View Article : Google Scholar

24 

Montoya-Durango DE, Ramos KA, Bojang P, Ruiz L, Ramos IN and Ramos KS: LINE-1 silencing by retinoblastoma proteins is effected through the nucleosomal and remodeling deacetylase multiprotein complex. BMC Cancer. 16:382016. View Article : Google Scholar : PubMed/NCBI

25 

Zhang J, Benavente CA, McEvoy J, Flores-Otero J, Ding L, Chen X, Ulyanov A, Wu G, Wilson M, Wang J, et al: A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature. 481:329–334. 2012. View Article : Google Scholar : PubMed/NCBI

26 

McEvoy J, Nagahawatte P, Finkelstein D, Richards-Yutz J, Valentine M, Ma J, Mullighan C, Song G, Chen X, Wilson M, et al: RB1 gene inactivation by chromothripsis in human retinoblastoma. Oncotarget. 5:438–450. 2014. View Article : Google Scholar

27 

Davies HR, Broad KD, Onadim Z, Price EA, Zou X, Sheriff I, Karaa EK, Scheimberg I, Reddy MA, Sagoo MS, et al: Whole-Genome sequencing of retinoblastoma reveals the diversity of rearrangements disrupting RB1 and uncovers a treatment-related mutational signature. Cancers (Basel). 13:7542021. View Article : Google Scholar : PubMed/NCBI

28 

Kooi IE, Mol BM, Massink MP, Ameziane N, Meijers-Heijboer H, Dommering CJ, van Mil SE, de Vries Y, van der Hout AH, Kaspers GJ, et al: Somatic genomic alterations in retinoblastoma beyond RB1 are rare and limited to copy number changes. Sci Rep. 6:252642016. View Article : Google Scholar : PubMed/NCBI

29 

Afshar AR, Pekmezci M, Bloomer MM, Cadenas NJ, Stevers M, Banerjee A, Roy R, Olshen AB, Van Ziffle J, Onodera C, et al: Next-Generation sequencing of retinoblastoma identifies pathogenic alterations beyond RB1 inactivation that correlate with aggressive histopathologic features. Ophthalmology. 127:804–813. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Francis JH, Richards AL, Mandelker DL, Berger MF, Walsh MF, Dunkel IJ, Donoghue MTA and Abramson DH: Molecular changes in retinoblastoma beyond RB1: Findings from next-generation sequencing. Cancers (Basel). 13:1492021. View Article : Google Scholar

31 

Mendonca V, Evangelista AC, P Matta B, M Moreira MÂ, Faria P, Lucena E and Seuanez HN: Molecular alterations in retinoblastoma beyond RB1. Exp Eye Res. 211:1087532021. View Article : Google Scholar : PubMed/NCBI

32 

Corson TW and Gallie BL: One hit, two hits, three hits, more? Genomic changes in the development of retinoblastoma. Genes Chromosomes Cancer. 46:617–634. 2007. View Article : Google Scholar : PubMed/NCBI

33 

Liu J, Ottaviani D, Sefta M, Desbrousses C, Chapeaublanc E, Aschero R, Sirab N, Lubieniecki F, Lamas G, Tonon L, et al: A high-risk retinoblastoma subtype with stemness features, dedifferentiated cone states and neuronal/ganglion cell gene expression. Nat Commun. 12:55782021. View Article : Google Scholar : PubMed/NCBI

34 

Grobner SN, Worst BC, Weischenfeldt J, Buchhalter I, Kleinheinz K, Rudneva VA, Johann PD, Balasubramanian GP, Segura-Wang M, Brabetz S, et al: The landscape of genomic alterations across childhood cancers. Nature. 555:321–327. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Alexandrov LB, Jones PH, Wedge DC, Sale JE, Campbell PJ, Nik-Zainal S and Stratton MR: Clock-like mutational processes in human somatic cells. Nat Genet. 47:1402–1407. 2015. View Article : Google Scholar

36 

Polski A, Xu L, Prabakar RK, Gai X, Kim JW, Shah R, Jubran R, Kuhn P, Cobrinik D, Hicks J and Berry JL: Variability in retinoblastoma genome stability is driven by age and not heritability. Genes Chromosomes Cancer. 59:584–590. 2020. View Article : Google Scholar : PubMed/NCBI

37 

Kato MV, Shimizu T, Ishizaki K, Kaneko A, Yandell DW, Toguchida J and Sasaki MS: Loss of heterozygosity on chromosome 17 and mutation of the p53 gene in retinoblastoma. Cancer Lett. 106:75–82. 1996. View Article : Google Scholar

38 

Kondo Y, Kondo S, Liu J, Haqqi T, Barnett GH and Barna BP: Involvement of p53 and WAF1/CIP1 in gamma-irradiation-induced apoptosis of retinoblastoma cells. Exp Cell Res. 236:51–56. 1997. View Article : Google Scholar : PubMed/NCBI

39 

Xu XL, Fang Y, Lee TC, Forrest D, Gregory-Evans C, Almeida D, Liu A, Jhanwar SC, Abramson DH and Cobrinik D: Retinoblastoma has properties of a cone precursor tumor and depends upon cone-specific MDM2 signaling. Cell. 137:1018–1031. 2009. View Article : Google Scholar

40 

Xu XL, Singh HP, Wang L, Qi DL, Poulos BK, Abramson DH, Jhanwar SC and Cobrinik D: Rb suppresses human cone-precursor-derived retinoblastoma tumours. Nature. 514:385–388. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, Fuller C, Teunisse A, Lam S, Ramos Y, Mohan A, et al: Inactivation of the p53 pathway in retinoblastoma. Nature. 444:61–66. 2006. View Article : Google Scholar : PubMed/NCBI

42 

Chakraborty S, Khare S, Dorairaj SK, Prabhakaran VC, Prakash DR and Kumar A: Identification of genes associated with tumorigenesis of retinoblastoma by microarray analysis. Genomics. 90:344–353. 2007. View Article : Google Scholar : PubMed/NCBI

43 

Ganguly A and Shields CL: Differential gene expression profile of retinoblastoma compared to normal retina. Mol Vis. 16:1292–1303. 2010.PubMed/NCBI

44 

Kapatai G, Brundler MA, Jenkinson H, Kearns P, Parulekar M, Peet AC and McConville CM: Gene expression profiling identifies different sub-types of retinoblastoma. Br J Cancer. 109:512–525. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Rajasekaran S, Nagarajha Selvan LD, Dotts K, Kumar R, Rishi P, Khetan V, Bisht M, Sivaraman K, Krishnakumar S, Sahoo D, et al: Non-coding and coding transcriptional profiles are significantly altered in pediatric retinoblastoma tumors. Front Oncol. 9:2212019. View Article : Google Scholar

46 

Aubry A, Pearson JD, Huang K, Livne-Bar I, Ahmad M, Jagadeesan M, Khetan V, Ketela T, Brown KR, Yu T, et al: Functional genomics identifies new synergistic therapies for retinoblastoma. Oncogene. 39:5338–5357. 2020. View Article : Google Scholar : PubMed/NCBI

47 

Markey MP, Bergseid J, Bosco EE, Stengel K, Xu H, Mayhew CN, Schwemberger SJ, Braden WA, Jiang Y, Babcock GF, et al: Loss of the retinoblastoma tumor suppressor: Differential action on transcriptional programs related to cell cycle control and immune function. Oncogene. 26:6307–6318. 2007. View Article : Google Scholar : PubMed/NCBI

48 

Mayhew CN, Carter SL, Fox SR, Sexton CR, Reed CA, Srinivasan SV, Liu X, Wikenheiser-Brokamp K, Boivin GP, Lee JS, et al: RB loss abrogates cell cycle control and genome integrity to promote liver tumorigenesis. Gastroenterology. 133:976–984. 2007. View Article : Google Scholar : PubMed/NCBI

49 

Black EP, Huang E, Dressman H, Rempel R, Laakso N, Asa SL, Ishida S, West M and Nevins JR: Distinct gene expression phenotypes of cells lacking Rb and Rb family members. Cancer Res. 63:3716–3723. 2003.PubMed/NCBI

50 

Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA and Dynlacht BD: E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev. 16:245–256. 2002. View Article : Google Scholar : PubMed/NCBI

51 

Bracken AP, Ciro M, Cocito A and Helin K: E2F target genes: Unraveling the biology. Trends Biochem Sci. 29:409–417. 2004. View Article : Google Scholar

52 

Mun JY, Baek SW, Park WY, Kim WT, Kim SK, Roh YG, Jeong MS, Yang GE, Lee JH, Chung JW, et al: E2F1 promotes progression of bladder cancer by modulating RAD54L involved in homologous recombination repair. Int J Mol Sci. 21:90252020. View Article : Google Scholar

53 

Sakthivel KM and Hariharan S: Regulatory players of DNA damage repair mechanisms: Role in cancer chemoresistance. Biomed Pharmacother. 93:1238–1245. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Hosoya N and Miyagawa K: Targeting DNA damage response in cancer therapy. Cancer Sci. 105:370–388. 2014. View Article : Google Scholar

55 

O'Connor MJ: Targeting the DNA damage response in cancer. Mol Cell. 60:547–560. 2015. View Article : Google Scholar

56 

Jeggo PA and Downs JA: Roles of chromatin remodellers in DNA double strand break repair. Exp Cell Res. 329:69–77. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Lee C and Kim JK: Chromatin regulators in retinoblastoma: Biological roles and therapeutic applications. J Cell Physiol. 236:2318–2332. 2021. View Article : Google Scholar

58 

Bronner C, Krifa M and Mousli M: Increasing role of UHRF1 in the reading and inheritance of the epigenetic code as well as in tumorogenesis. Biochem Pharmacol. 86:1643–1649. 2013. View Article : Google Scholar

59 

Alhosin M, Omran Z, Zamzami MA, Al-Malki AL, Choudhry H, Mousli M and Bronner C: Signalling pathways in UHRF1-dependent regulation of tumor suppressor genes in cancer. J Exp Clin Cancer Res. 35:1742016. View Article : Google Scholar : PubMed/NCBI

60 

Tian Y, Paramasivam M, Ghosal G, Chen D, Shen X, Huang Y, Akhter S, Legerski R, Chen J, Seidman MM, et al: UHRF1 contributes to DNA damage repair as a lesion recognition factor and nuclease scaffold. Cell Rep. 10:1957–1966. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Liang CC, Zhan B, Yoshikawa Y, Haas W, Gygi SP and Cohn MA: UHRF1 is a sensor for DNA interstrand crosslinks and recruits FANCD2 to initiate the Fanconi anemia pathway. Cell Rep. 10:1947–1956. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Zhang H, Liu H, Chen Y, Yang X, Wang P, Liu T, Deng M, Qin B, Correia C, Lee S, et al: A cell cycle-dependent BRCA1-UHRF1 cascade regulates DNA double-strand break repair pathway choice. Nat Commun. 7:102012016. View Article : Google Scholar : PubMed/NCBI

63 

Mancini M, Magnani E, Macchi F and Bonapace IM: The multi-functionality of UHRF1: Epigenome maintenance and preservation of genome integrity. Nucleic Acids Res. 49:6053–6068. 2021. View Article : Google Scholar : PubMed/NCBI

64 

Muto M, Kanari Y, Kubo E, Takabe T, Kurihara T, Fujimori A and Tatsumi K: Targeted disruption of Np95 gene renders murine embryonic stem cells hypersensitive to DNA damaging agents and DNA replication blocks. J Biol Chem. 277:34549–34555. 2002. View Article : Google Scholar : PubMed/NCBI

65 

He H, Lee C and Kim JK: UHRF1 depletion sensitizes retinoblastoma cells to chemotherapeutic drugs via downregulation of XRCC4. Cell Death Dis. 9:1642018. View Article : Google Scholar : PubMed/NCBI

66 

Kim JK, Kan G, Mao Y, Wu Z, Tan X, He H and Lee C: UHRF1 downmodulation enhances antitumor effects of histone deacetylase inhibitors in retinoblastoma by augmenting oxidative stress-mediated apoptosis. Mol Oncol. 14:329–346. 2020. View Article : Google Scholar

67 

Sharma V, Collins LB, Chen TH, Herr N, Takeda S, Sun W, Swenberg JA and Nakamura J: Oxidative stress at low levels can induce clustered DNA lesions leading to NHEJ mediated mutations. Oncotarget. 7:25377–25390. 2016. View Article : Google Scholar

68 

Karanjawala ZE, Murphy N, Hinton DR, Hsieh CL and Lieber MR: Oxygen metabolism causes chromosome breaks and is associated with the neuronal apoptosis observed in DNA double-strand break repair mutants. Curr Biol. 12:397–402. 2002. View Article : Google Scholar

69 

Mao Y, Sun Y, Wu Z, Zheng J, Zhang J, Zeng J, Lee C and Kim JK: Targeting of histone methyltransferase DOT1L plays a dual role in chemosensitization of retinoblastoma cells and enhances the efficacy of chemotherapy. Cell Death Dis. 12:11412021. View Article : Google Scholar : PubMed/NCBI

70 

Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K and Zhang Y: Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol. 12:1052–1058. 2002. View Article : Google Scholar

71 

Wood K, Tellier M and Murphy S: DOT1L and H3K79 methylation in transcription and genomic stability. Biomolecules. 8:112018. View Article : Google Scholar

72 

Wakeman TP, Wang Q, Feng J and Wang XF: Bat3 facilitates H3K79 dimethylation by DOT1L and promotes DNA damage-induced 53BP1 foci at G1/G2 cell-cycle phases. EMBO J. 31:2169–2181. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Kari V, Raul SK, Henck JM, Kitz J, Kramer F, Kosinsky RL, Ubelmesser N, Mansour WY, Eggert J, Spitzner M, et al: The histone methyltransferase DOT1L is required for proper DNA damage response, DNA repair, and modulates chemotherapy responsiveness. Clin Epigenetics. 11:42019. View Article : Google Scholar : PubMed/NCBI

74 

Liu W, Deng L, Song Y and Redell M: DOT1L inhibition sensitizes MLL-rearranged AML to chemotherapy. PLoS One. 9:e982702014. View Article : Google Scholar : PubMed/NCBI

75 

Chau KY, Manfioletti G, Cheung-Chau KW, Fusco A, Dhomen N, Sowden JC, Sasabe T, Mukai S and Ono SJ: Derepression of HMGA2 gene expression in retinoblastoma is associated with cell proliferation. Mol Med. 9:154–165. 2003. View Article : Google Scholar : PubMed/NCBI

76 

Palmieri D, Valentino T, D'Angelo D, De Martino I, Postiglione I, Pacelli R, Croce CM, Fedele M and Fusco A: HMGA proteins promote ATM expression and enhance cancer cell resistance to genotoxic agents. Oncogene. 30:3024–3035. 2011. View Article : Google Scholar : PubMed/NCBI

77 

Natarajan S, Hombach-Klonisch S, Droge P and Klonisch T: HMGA2 inhibits apoptosis through interaction with ATR-CHK1 signaling complex in human cancer cells. Neoplasia. 15:263–280. 2013. View Article : Google Scholar

78 

Nalini V, Deepa PR, Raguraman R, Khetan V, Reddy MA and Krishnakumar S: Targeting HMGA2 in Retinoblastoma Cells in vitro using the aptamer strategy. Ocul Oncol Pathol. 2:262–269. 2016. View Article : Google Scholar

79 

Kollarovic G, Topping CE, Shaw EP and Chambers AL: The human HELLS chromatin remodelling protein promotes end resection to facilitate homologous recombination and contributes to DSB repair within heterochromatin. Nucleic Acids Res. 48:1872–1885. 2020. View Article : Google Scholar : PubMed/NCBI

80 

Costelloe T, Louge R, Tomimatsu N, Mukherjee B, Martini E, Khadaroo B, Dubois K, Wiegant WW, Thierry A, Burma S, et al: The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection. Nature. 489:581–584. 2012. View Article : Google Scholar : PubMed/NCBI

81 

Zocchi L, Mehta A, Wu SC, Wu J, Gu Y, Wang J, Suh S, Spitale RC and Benavente CA: Chromatin remodeling protein HELLS is critical for retinoblastoma tumor initiation and progression. Oncogenesis. 9:252020. View Article : Google Scholar : PubMed/NCBI

82 

Manning AL and Dyson NJ: RB: Mitotic implications of a tumour suppressor. Nat Rev Cancer. 12:220–226. 2012. View Article : Google Scholar : PubMed/NCBI

83 

Pappas L, Xu XL, Abramson DH and Jhanwar SC: Genomic instability and proliferation/survival pathways in RB1-deficient malignancies. Adv Biol Regul. 64:20–32. 2017. View Article : Google Scholar

84 

Salehi F, Kovacs K, Scheithauer BW, Lloyd RV and Cusimano M: Pituitary tumor-transforming gene in endocrine and other neoplasms: A review and update. Endocr Relat Cancer. 15:721–743. 2008. View Article : Google Scholar : PubMed/NCBI

85 

Holland AJ and Cleveland DW: Boveri revisited: Chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol. 10:478–487. 2009. View Article : Google Scholar

86 

Gong X, Du J, Parsons SH, Merzoug FF, Webster Y, Iversen PW, Chio LC, Van Horn RD, Lin X, Blosser W, et al: Aurora A kinase inhibition is synthetic lethal with loss of the RB1 tumor suppressor gene. Cancer Discov. 9:248–263. 2019. View Article : Google Scholar : PubMed/NCBI

87 

Oser MG, Fonseca R, Chakraborty AA, Brough R, Spektor A, Jennings RB, Flaifel A, Novak JS, Gulati A, Buss E, et al: Cells lacking the RB1 tumor suppressor gene are hyperdependent on Aurora B kinase for survival. Cancer Discov. 9:230–247. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Willems E, Dedobbeleer M, Digregorio M, Lombard A, Lumapat PN and Rogister B: The functional diversity of Aurora kinases: A comprehensive review. Cell Div. 13:72018. View Article : Google Scholar : PubMed/NCBI

89 

Borah NA, Sradhanjali S, Barik MR, Jha A, Tripathy D, Kaliki S, Rath S, Raghav SK, Patnaik S, Mittal R and Reddy MM: Aurora Kinase B expression, its regulation and therapeutic targeting in human retinoblastoma. Invest Ophthalmol Vis Sci. 62:162021. View Article : Google Scholar

90 

Singh L, Pushker N, Sen S, Singh MK, Chauhan FA and Kashyap S: Prognostic significance of polo-like kinases in retinoblastoma: Correlation with patient outcome, clinical and histopathological parameters. Clin Exp Ophthalmol. 43:550–557. 2015. View Article : Google Scholar

91 

Ma H, Nie C, Chen Y, Li J, Xie Y, Tang Z, Gao Y, Ai S, Mao Y, Sun Q and Lu R: Therapeutic Targeting PLK1 by ON-01910.Na is effective in local treatment of retinoblastoma. Oncol Res. 28:745–761. 2021. View Article : Google Scholar : PubMed/NCBI

92 

Takaki T, Trenz K, Costanzo V and Petronczki M: Polo-like kinase 1 reaches beyond mitosis-cytokinesis, DNA damage response, and development. Curr Opin Cell Biol. 20:650–660. 2008. View Article : Google Scholar

93 

Sun J, Xi HY, Shao Q and Liu QH: Biomarkers in retinoblastoma. Int J Ophthalmol. 13:325–341. 2020. View Article : Google Scholar

94 

Chai P, Jia R, Li Y, Zhou C, Gu X, Yang L, Shi H, Tian H, Lin H, Yu J, et al: Regulation of epigenetic homeostasis in uveal melanoma and retinoblastoma. Prog Retin Eye Res. Dec 1–2021.(Epub ahead of print). View Article : Google Scholar

95 

Chan HS, Gallie BL, Munier FL and Beck Popovic M: Chemotherapy for retinoblastoma. Ophthalmol Clin North Am. 1855–63. (viii)2005. View Article : Google Scholar : PubMed/NCBI

96 

Gombos DS, Hungerford J, Abramson DH, Kingston J, Chantada G, Dunkel IJ, Antoneli CB, Greenwald M, Haik BG, Leal CA, et al: Secondary acute myelogenous leukemia in patients with retinoblastoma: Is chemotherapy a factor? Ophthalmology. 114:1378–1383. 2007. View Article : Google Scholar : PubMed/NCBI

97 

Mulvihill A, Budning A, Jay V, Vandenhoven C, Heon E, Gallie BL and Chan HS: Ocular motility changes after subtenon carboplatin chemotherapy for retinoblastoma. Arch Ophthalmol. 121:1120–1124. 2003. View Article : Google Scholar

98 

Zoumpoulidou G, Alvarez-Mendoza C, Mancusi C, Ahmed RM, Denman M, Steele CD, Tarabichi M, Roy E, Davies LR, Manji J, et al: Therapeutic vulnerability to PARP1,2 inhibition in RB1-mutant osteosarcoma. Nat Commun. 12:70642021. View Article : Google Scholar : PubMed/NCBI

99 

Basavapathruni A, Jin L, Daigle SR, Majer CR, Therkelsen CA, Wigle TJ, Kuntz KW, Chesworth R, Pollock RM, Scott MP, et al: Conformational adaptation drives potent, selective and durable inhibition of the human protein methyltransferase DOT1L. Chem Biol Drug Des. 80:971–980. 2012. View Article : Google Scholar : PubMed/NCBI

100 

Waters NJ: Preclinical Pharmacokinetics and pharmacodynamics of pinometostat (EPZ-5676), a First-in-Class, small Molecule S-Adenosyl methionine competitive inhibitor of DOT1L. Eur J Drug Metab Pharmacokinet. 42:891–901. 2017. View Article : Google Scholar

101 

Stein EM, Garcia-Manero G, Rizzieri DA, Tibes R, Berdeja JG, Savona MR, Jongen-Lavrenic M, Altman JK, Thomson B, Blakemore SJ, et al: The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood. 131:2661–2669. 2018. View Article : Google Scholar : PubMed/NCBI

102 

Shields CL, Manjandavida FP, Lally SE, Pieretti G, Arepalli SA, Caywood EH, Jabbour P and Shields JA: Intra-arterial chemotherapy for retinoblastoma in 70 eyes: Outcomes based on the international classification of retinoblastoma. Ophthalmology. 121:1453–1460. 2014. View Article : Google Scholar : PubMed/NCBI

103 

Munier FL, Gaillard MC, Balmer A, Soliman S, Podilsky G, Moulin AP and Beck-Popovic M: Intravitreal chemotherapy for vitreous disease in retinoblastoma revisited: From prohibition to conditional indications. Br J Ophthalmol. 96:1078–1083. 2012. View Article : Google Scholar

104 

Ghassemi F, Shields CL, Ghadimi H, Khodabandeh A and Roohipoor R: Combined intravitreal melphalan and topotecan for refractory or recurrent vitreous seeding from retinoblastoma. JAMA Ophthalmol. 132:936–941. 2014. View Article : Google Scholar

105 

Lee JE and Kim MY: Cancer epigenetics: Past, present and future. Semin Cancer Biol. Mar 31–2021.(Epub ahead of print). View Article : Google Scholar

106 

He L and Lomberk G: Collateral Victim or Rescue Worker?-The role of histone methyltransferases in DNA damage repair and their targeting for therapeutic opportunities in cancer. Front Cell Dev Biol. 9:7351072021. View Article : Google Scholar

107 

Unoki M, Nishidate T and Nakamura Y: ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain. Oncogene. 23:7601–7610. 2004. View Article : Google Scholar : PubMed/NCBI

108 

Ganesan A, Arimondo PB, Rots MG, Jeronimo C and Berdasco M: The timeline of epigenetic drug discovery: From reality to dreams. Clin Epigenetics. 11:1742019. View Article : Google Scholar : PubMed/NCBI

109 

Chun AW, Cosenza SC, Taft DR and Maniar M: Preclinical pharmacokinetics and in vitro activity of ON 01910.Na, a novel anti-cancer agent. Cancer Chemother Pharmacol. 65:177–186. 2009. View Article : Google Scholar

110 

Ohnuma T, Lehrer D, Ren C, Cho SY, Maniar M, Silverman L, Sung M, Gretz HF III, Benisovich V, Navada S, et al: Phase 1 study of intravenous rigosertib (ON 01910.Na), a novel benzyl styryl sulfone structure producing G2/M arrest and apoptosis, in adult patients with advanced cancer. Am J Cancer Res. 3:323–338. 2013.PubMed/NCBI

111 

O'Neil BH, Scott AJ, Ma WW, Cohen SJ, Aisner DL, Menter AR, Tejani MA, Cho JK, Granfortuna J, Coveler L, et al: A phase II/III randomized study to compare the efficacy and safety of rigosertib plus gemcitabine versus gemcitabine alone in patients with previously untreated metastatic pancreatic cancer. Ann Oncol. 26:1923–1929. 2015. View Article : Google Scholar

112 

Bowles DW, Diamond JR, Lam ET, Weekes CD, Astling DP, Anderson RT, Leong S, Gore L, Varella-Garcia M, Vogler BW, et al: Phase I study of oral rigosertib (ON 01910.Na), a dual inhibitor of the PI3K and Plk1 pathways, in adult patients with advanced solid malignancies. Clin Cancer Res. 20:1656–1665. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Lee C and Kim JK: Genome maintenance in retinoblastoma: Implications for therapeutic vulnerabilities (Review). Oncol Lett 23: 192, 2022.
APA
Lee, C., & Kim, J.K. (2022). Genome maintenance in retinoblastoma: Implications for therapeutic vulnerabilities (Review). Oncology Letters, 23, 192. https://doi.org/10.3892/ol.2022.13312
MLA
Lee, C., Kim, J. K."Genome maintenance in retinoblastoma: Implications for therapeutic vulnerabilities (Review)". Oncology Letters 23.6 (2022): 192.
Chicago
Lee, C., Kim, J. K."Genome maintenance in retinoblastoma: Implications for therapeutic vulnerabilities (Review)". Oncology Letters 23, no. 6 (2022): 192. https://doi.org/10.3892/ol.2022.13312
Copy and paste a formatted citation
x
Spandidos Publications style
Lee C and Kim JK: Genome maintenance in retinoblastoma: Implications for therapeutic vulnerabilities (Review). Oncol Lett 23: 192, 2022.
APA
Lee, C., & Kim, J.K. (2022). Genome maintenance in retinoblastoma: Implications for therapeutic vulnerabilities (Review). Oncology Letters, 23, 192. https://doi.org/10.3892/ol.2022.13312
MLA
Lee, C., Kim, J. K."Genome maintenance in retinoblastoma: Implications for therapeutic vulnerabilities (Review)". Oncology Letters 23.6 (2022): 192.
Chicago
Lee, C., Kim, J. K."Genome maintenance in retinoblastoma: Implications for therapeutic vulnerabilities (Review)". Oncology Letters 23, no. 6 (2022): 192. https://doi.org/10.3892/ol.2022.13312
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team