|
1
|
Auperin A: Epidemiology of head and neck
cancers: An update. Curr Opin Oncol. 32:178–186. 2020. View Article : Google Scholar
|
|
2
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer Statistics, 2021. CA Cancer J Clin. 71:7–33. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Dos Santos ES, Wagner VP, Cabral Ramos J,
Lambert DW, Castilho RM and Paes Leme AF: Epigenetic modulation of
the tumor microenvironment in head and neck cancer: Challenges and
opportunities. Crit Rev Oncol Hematol. 164:1033972021. View Article : Google Scholar
|
|
5
|
Prime SS, Thakker NS, Pring M, Guest PG
and Paterson IC: A review of inherited cancer syndromes and their
relevance to oral squamous cell carcinoma. Oral Oncol. 37:1–16.
2001. View Article : Google Scholar
|
|
6
|
Bennardo L, Bennardo F, Giudice A,
Passante M, Dastoli S, Morrone P, Provenzano E, Patruno C and
Nisticò SP: Local chemotherapy as an adjuvant treatment in
unresectable squamous cell carcinoma: What do we know so far? Curr
Oncol. 28:2317–2325. 2021. View Article : Google Scholar
|
|
7
|
Pentangelo G, Nisticò SP, Provenzano E,
Cisale GY and Bennardo L: Topical 5% imiquimod sequential to
surgery for HPV-related squamous cell carcinoma of the lip.
Medicina (Kaunas). 57:5632021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Venugopal R, Bavle RM, Konda P,
Muniswamappa S and Makarla S: Familial cancers of head and neck
region. J Clin Diagn Res. 11:ZE01–ZE06. 2017.PubMed/NCBI
|
|
9
|
Plavc G, Jesenko T, Oražem M and Strojan
P: Challenges in combining immunotherapy with radiotherapy in
recurrent/metastatic head and neck cancer. Cancers (Basel).
12:31972020. View Article : Google Scholar
|
|
10
|
Caudell JJ, Torres-Roca JF, Gillies RJ,
Enderling H, Kim S, Rishi A, Moros EG and Harrison LB: The future
of personalised radiotherapy for head and neck cancer. Lancet
Oncol. 18:e266–e273. 2017. View Article : Google Scholar
|
|
11
|
Bakhtiar SM, Ali A and Barh D: Epigenetics
in head and neck cancer. Methods Mol Biol. 1238:751–769. 2015.
View Article : Google Scholar
|
|
12
|
Gazdzicka J, Golabek K, Strzelczyk JK and
Ostrowska Z: Epigenetic modifications in head and neck cancer.
Biochem Genet. 58:213–244. 2020. View Article : Google Scholar
|
|
13
|
Armeanu S, Bitzer M, Lauer UM, Venturelli
S, Pathil A, Krusch M, Kaiser S, Jobst J, Smirnow I, Wagner A, et
al: Natural killer cell-mediated lysis of hepatoma cells via
specific induction of NKG2D ligands by the histone deacetylase
inhibitor sodium valproate. Cancer Res. 65:6321–6329. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Chiappinelli KB, Zahnow CA, Ahuja N and
Baylin SB: Combining epigenetic and immunotherapy to combat cancer.
Cancer Res. 76:1683–1689. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Dunn J and Rao S: Epigenetics and
immunotherapy: The current state of play. Mol Immunol. 87:227–239.
2017. View Article : Google Scholar
|
|
16
|
Leemans CR, Snijders PJF and Brakenhoff
RH: The molecular landscape of head and neck cancer. Nat Rev
Cancer. 18:269–282. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ferris RL: Immunology and immunotherapy of
head and neck cancer. J Clin Oncol. 33:3293–3304. 2015. View Article : Google Scholar
|
|
18
|
Motzer RJ, Penkov K, Haanen J, Rini B,
Albiges L, Campbell MT, Venugopal B, Kollmannsberger C, Negrier S,
Uemura M, et al: Avelumab plus Axitinib versus sunitinib for
advanced Renal-Cell carcinoma. N Engl J Med. 380:1103–1115. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Chu L, Chen Y, Liu Q, Liang F, Wang S, Liu
Q, Yu H, Wu X, Zhang J, Deng J, et al: A phase II study of apatinib
in patients with chemotherapy-refractory esophageal squamous cell
carcinoma (ESO-Shanghai 11). Oncologist. 26:e925–e935. 2021.
View Article : Google Scholar
|
|
20
|
Mollica Poeta V, Massara M, Capucetti A
and Bonecchi R: Chemokines and Chemokine receptors: New targets for
cancer immunotherapy. Front Immunol. 10:3792019. View Article : Google Scholar
|
|
21
|
Pooler DB, Ness DB, Sarantopoulos J,
Squittieri N, Ravichandran S, Britten CD, Amaravadi RK,
Vaishampayan U, LoRusso P, Shapiro GI, et al: The effect of
sonidegib (LDE225) on the pharmacokinetics of bupropion and
warfarin in patients with advanced solid tumours. Br J Clin
Pharmacol. 87:1291–1302. 2021. View Article : Google Scholar
|
|
22
|
Karam SD and Raben D: Radioimmunotherapy
for the treatment of head and neck cancer. Lancet Oncol.
20:e404–e416. 2019. View Article : Google Scholar
|
|
23
|
Ferris RL, Blumenschein G Jr, Fayette J,
Guigay J, Colevas AD, Licitra L, Harrington K, Kasper S, Vokes EE,
Even C, et al: Nivolumab for Recurrent Squamous-Cell Carcinoma of
the Head and Neck. N Engl J Med. 375:1856–1867. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Burtness B, Harrington KJ, Greil R,
Soulières D, Tahara M, de Castro G Jr, Psyrri A, Basté N, Neupane
P, Bratland Å, et al: Pembrolizumab alone or with chemotherapy
versus cetuximab with chemotherapy for recurrent or metastatic
squamous cell carcinoma of the head and neck (KEYNOTE-048): A
randomised, open-label, phase 3 study. Lancet. 394:1915–1928. 2019.
View Article : Google Scholar
|
|
25
|
Billan S, Kaidar-Person O and Gil Z:
Treatment after progression in the era of immunotherapy. Lancet
Oncol. 21:e463–e476. 2020. View Article : Google Scholar
|
|
26
|
Janjigian YY, Shitara K, Moehler M,
Garrido M, Salman P, Shen L, Wyrwicz L, Yamaguchi K, Skoczylas T,
Campos Bragagnoli A, et al: First-line nivolumab plus chemotherapy
versus chemotherapy alone for advanced gastric, gastro-oesophageal
junction, and oesophageal adenocarcinoma (CheckMate 649): A
randomised, open-label, phase 3 trial. Lancet. 398:27–40. 2021.
View Article : Google Scholar
|
|
27
|
Tarhini AA: Tremelimumab: A review of
development to date in solid tumors. Immunotherapy. 5:215–229.
2013. View
Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wu Y, Han L, Sheng Y and Wu S: Cetuximab
monotherapy for relapsing high-grade mucoepidermoid carcinoma: A
case report and review of the literature. Oral Oncol.
107:1048242020. View Article : Google Scholar
|
|
29
|
Chester C, Sanmamed MF, Wang J and Melero
I: Immunotherapy targeting 4-1BB: Mechanistic rationale, clinical
results, and future strategies. Blood. 131:49–57. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Garcia J, Hurwitz HI, Sandler AB, Miles D,
Coleman RL, Deurloo R and Chinot OL: Bevacizumab
(Avastin®) in cancer treatment: A review of 15 years of
clinical experience and future outlook. Cancer Treat Rev.
86:1020172020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Scagliotti GV, Novello S and von Pawel J:
The emerging role of MET/HGF inhibitors in oncology. Cancer Treat
Rev. 39:793–801. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Shih YH, Chen PC and Chu CY: Severe
refractory scarring alopecia associated with combinational use of
ficlatuzumab (AV-299) and gefitinib. J Clin Oncol. 31:e335–e337.
2013. View Article : Google Scholar
|
|
33
|
Greiner JW, Morillon YM II and Schlom J:
NHS-IL12, a tumor-targeting immunocytokine. Immunotargets Ther.
10:155–169. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Jones PA: Functions of DNA methylation:
Islands, start sites, gene bodies and beyond. Nat Rev Genet.
13:484–492. 2012. View Article : Google Scholar
|
|
35
|
Koch A, Joosten SC, Feng Z, de Ruijter TC,
Draht MX, Melotte V, Smits KM, Veeck J, Herman JG, Van Neste L, et
al: Analysis of DNA methylation in cancer: Location revisited. Nat
Rev Clin Oncol. 15:459–466. 2018. View Article : Google Scholar
|
|
36
|
Klutstein M, Nejman D, Greenfield R and
Cedar H: DNA methylation in cancer and aging. Cancer Res.
76:3446–3450. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Eads CA, Lord RV, Wickramasinghe K, Long
TI, Kurumboor SK, Bernstein L, Peters JH, DeMeester SR, DeMeester
TR, Skinner KA and Laird PW: Epigenetic patterns in the progression
of esophageal adenocarcinoma. Cancer Res. 61:3410–3418.
2001.PubMed/NCBI
|
|
38
|
Chen Y, Jiang X, Li X, Yan D, Liu J, Yang
J and Yan S: The methylation modification of m6A regulators
contributes to the prognosis of head and neck squamous cell
carcinoma. Ann Transl Med. 9:13462021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhou C, Ye M, Ni S, Li Q, Ye D, Li J, Shen
Z and Deng H: DNA methylation biomarkers for head and neck squamous
cell carcinoma. Epigenetics. 13:398–409. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hier J, Vachon O, Bernstein A, Ibrahim I,
Mlynarek A, Hier M, Alaoui-Jamali MA, Maschietto M and da Silva SD:
Portrait of DNA methylated genes predictive of poor prognosis in
head and neck cancer and the implication for targeted therapy. Sci
Rep. 11:100122021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhao JJ, Li HY, Wang D, Yao H and Sun DW:
Abnormal MGMT promoter methylation may contribute to the risk of
esophageal cancer: A meta-analysis of cohort studies. Tumour Biol.
35:10085–10093. 2014. View Article : Google Scholar
|
|
42
|
Ji X, Guan C, Jiang X and Li H: Diagnostic
accuracy of DNA methylation for head and neck cancer varies by
sample type and number of markers tested. Oncotarget.
7:80019–80032. 2016. View Article : Google Scholar
|
|
43
|
Koutsimpelas D, Pongsapich W, Heinrich U,
Mann S, Mann WJ and Brieger J: Promoter methylation of MGMT, MLH1
and RASSF1A tumor suppressor genes in head and neck squamous cell
carcinoma: Pharmacological genome demethylation reduces
proliferation of head and neck squamous carcinoma cells. Oncol Rep.
27:1135–1141. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Schmitt K, Molfenter B, Laureano NK, Tawk
B, Bieg M, Hostench XP, Weichenhan D, Ullrich ND, Shang V, Richter
D, et al: Somatic mutations and promotor methylation of the
ryanodine receptor 2 is a common event in the pathogenesis of head
and neck cancer. Int J Cancer. 145:3299–3310. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ban Y, Tan P, Cai J, Li J, Hu M, Zhou Y,
Mei Y, Tan Y, Li X, Zeng Z, et al: LNCAROD is stabilized by m6A
methylation and promotes cancer progression via forming a ternary
complex with HSPA1A and YBX1 in head and neck squamous cell
carcinoma. Mol Oncol. 14:1282–1296. 2020. View Article : Google Scholar
|
|
46
|
Bai G, Song J, Yuan Y, Chen Z, Tian Y, Yin
X, Niu Y and Liu J: Systematic analysis of differentially
methylated expressed genes and site-specific methylation as
potential prognostic markers in head and neck cancer. J Cell
Physiol. 234:22687–22702. 2019. View Article : Google Scholar
|
|
47
|
Misawa K, Mochizuki D, Endo S, Mima M,
Misawa Y, Imai A, Shinmura K, Kanazawa T, Carey TE and Mineta H:
Site-specific methylation patterns of the GAL and GALR1/2 genes in
head and neck cancer: Potential utility as biomarkers for
prognosis. Mol Carcinog. 56:1107–1116. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Misawa K, Imai A, Matsui H, Kanai A,
Misawa Y, Mochizuki D, Mima M, Yamada S, Kurokawa T, Nakagawa T and
Mineta H: Identification of novel methylation markers in
HPV-associated oropharyngeal cancer: Genome-wide discovery, tissue
verification and validation testing in ctDNA. Oncogene.
39:4741–4755. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Castilho RM, Squarize CH and Almeida LO:
Epigenetic modifications and head and neck cancer: Implications for
tumor progression and resistance to therapy. Int J Mol Sci.
18:15062017. View Article : Google Scholar
|
|
50
|
Chang S, Yim S and Park H: The cancer
driver genes IDH1/2, JARID1C/KDM5C, and UTX/KDM6A: Crosstalk
between histone demethylation and hypoxic reprogramming in cancer
metabolism. Exp Mol Med. 51:1–17. 2017. View Article : Google Scholar
|
|
51
|
Ma H, Chang H, Yang W, Lu Y, Hu J and Jin
SA: Novel IFNα-induced long noncoding RNA negatively regulates
immunosuppression by interrupting H3K27 acetylation in head and
neck squamous cell carcinoma. Mol Cancer. 19:42020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhou L, Mudianto T, Ma X, Riley R and
Uppaluri R: Targeting EZH2 enhances antigen presentation, antitumor
immunity, and circumvents anti-PD-1 resistance in head and neck
cancer. Clin Cancer Res. 26:290–300. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wang Y, Chen W, Lian J, Zhang H, Yu B,
Zhang M, Wei F, Wu J, Jiang J, Jia Y, et al: The lncRNA PVT1
regulates nasopharyngeal carcinoma cell proliferation via
activating the KAT2A acetyltransferase and stabilizing HIF-1α. Cell
Death Differ. 27:695–710. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhang E, Han L, Yin D, He X, Hong L, Si X,
Qiu M, Xu T, De W, Xu L, et al: H3K27 acetylation activated-long
non-coding RNA CCAT1 affects cell proliferation and migration by
regulating SPRY4 and HOXB13 expression in esophageal squamous cell
carcinoma. Nucleic Acids Res. 45:3086–3101. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kadoch C: Diverse compositions and
functions of chromatin remodeling machines in cancer. Sci Transl
Med. 11:eaay10182019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yi M, Tan Y, Wang L, Cai J, Li X, Zeng Z,
Xiong W, Li G, Li X, Tan P and Xiang B: TP63 links chromatin
remodeling and enhancer reprogramming to epidermal differentiation
and squamous cell carcinoma development. Cell Mol Life Sci.
77:4325–4346. 2020. View Article : Google Scholar
|
|
57
|
Portney BA, Arad M, Gupta A, Brown RA,
Khatri R, Lin PN, Hebert AM, Angster KH, Silipino LE, Meltzer WA,
et al: ZSCAN4 facilitates chromatin remodeling and promotes the
cancer stem cell phenotype. Oncogene. 39:4970–4982. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Alajez NM, Shi W, Wong D, Lenarduzzi M,
Waldron J, Weinreb I and Liu FF: Lin28b promotes head and neck
cancer progression via modulation of the insulin-like growth factor
survival pathway. Oncotarget. 3:1641–1652. 2012. View Article : Google Scholar
|
|
59
|
He X, Yan B, Liu S, Jia J, Lai W, Xin X,
Tang CE, Luo D, Tan T, Jiang Y, et al: Chromatin remodeling factor
LSH drives cancer progression by suppressing the activity of
fumarate hydratase. Cancer Res. 76:5743–5755. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Saladi SV, Ross K, Karaayvaz M, Tata PR,
Mou H, Rajagopal J, Ramaswamy S and Ellisen LW: ACTL6A Is
Co-Amplified with p63 in squamous cell carcinoma to drive YAP
activation, regenerative proliferation, and poor prognosis. Cancer
Cell. 31:35–49. 2017. View Article : Google Scholar
|
|
61
|
Quinn JJ and Chang HY: Unique features of
long non-coding RNA biogenesis and function. Nat Rev Genet.
17:47–62. 2016. View Article : Google Scholar
|
|
62
|
Kopp F and Mendell JT: Functional
classification and experimental dissection of long noncoding RNAs.
Cell. 172:393–407. 2018. View Article : Google Scholar
|
|
63
|
Wang R, Ma Z, Feng L, Yang Y, Tan C, Shi
Q, Lian M, He S, Ma H and Fang J: LncRNA MIR31HG targets HIF1A and
P21 to facilitate head and neck cancer cell proliferation and
tumorigenesis by promoting cell-cycle progression. Mol Cancer.
17:1622017. View Article : Google Scholar
|
|
64
|
Jiangm Y, Cao W, Wu K, Qin X, Wang X, Li
Y, Yu B, Zhang Z, Wang X, Yan M, et al: LncRNA LINC00460 promotes
EMT in head and neck squamous cell carcinoma by facilitating
peroxiredoxin-1 into the nucleus. J Exp Clin Cancer Res.
38:3652019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Yuan J, Song Y, Pan W, Li Y, Xu Y, Xie M,
Shen Y, Zhang N, Liu J, Hua H, et al: LncRNA SLC26A4-AS1 suppresses
the MRN complex-mediated DNA repair signaling and thyroid cancer
metastasis by destabilizing DDX5. Oncogene. 39:6664–6676. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Xiong HG, Li H, Xiao Y, Yang QC, Yang LL,
Chen L, Bu LL, Zhang WF, Zhang JL and Sun ZJ: Long noncoding RNA
MYOSLID promotes invasion and metastasis by modulating the partial
epithelial-mesenchymal transition program in head and neck squamous
cell carcinoma. J Exp Clin Cancer Res. 38:2782019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Kristensen LS, Hansen TB, Venø MT and
Kjems J: Circular RNAs in cancer: Opportunities and challenges in
the field. Oncogene. 37:555–565. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Goodall GJ and Wickramasinghe VO: RNA in
cancer. Nat Rev Cancer. 21:22–36. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Bi W, Huang J, Nie C, Liu B, He G, Han J,
Pang R, Ding Z, Xu J and Zhang J: CircRNA circRNA_102171 promotes
papillary thyroid cancer progression through modulating
CTNNBIP1-dependent activation of β-catenin pathway. J Exp Clin
Cancer Res. 37:2752018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Chen L, Zhang S, Wu J, Cui J, Zhong L,
Zeng L and Ge S: CircRNA_100290 plays a role in oral cancer by
functioning as a sponge of the miR-29 family. Oncogene.
36:4551–4561. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Verduci L, Ferraiuolo M, Sacconi A, Ganci
F, Vitale J, Colombo T, Paci P, Strano S, Macino G, Rajewsky N and
Blandino G: The oncogenic role of circPVT1 in head and neck
squamous cell carcinoma is mediated through the mutant p53/YAP/TEAD
transcription-competent complex. Genome Biol. 18:2372017.
View Article : Google Scholar
|
|
72
|
Hu X, Wu D, He X, Zhao H, He Z, Lin J,
Wang K, Wang W, Pan Z, Lin H and Wang M: circGSK3β promotes
metastasis in esophageal squamous cell carcinoma by augmenting
β-catenin signaling. Mol Cancer. 18:1602019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Liu J, Xue N, Guo Y, Niu K, Gao L, Zhang
S, Gu H, Wang X, Zhao D and Fan R: CircRNA_100367 regulated the
radiation sensitivity of esophageal squamous cell carcinomas
through miR-217/Wnt3 pathway. Aging (Albany NY). 11:12412–12427.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Qin X, Guo H, Wang X, Zhu X, Yan M, Wang
X, Xu Q, Shi J, Lu E, Chen W and Zhang J: Exosomal miR-196a derived
from cancer-associated fibroblasts confers cisplatin resistance in
head and neck cancer through targeting CDKN1B and ING5. Genome
Biol. 20:122019. View Article : Google Scholar
|
|
75
|
Yu B, Wu K, Wang X, Zhang J, Wang L, Jiang
Y, Zhu X, Chen W and Yan M: Periostin secreted by cancer-associated
fibroblasts promotes cancer stemness in head and neck cancer by
activating protein tyrosine kinase 7. Cell Death Dis. 9:10822018.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
New J, Arnold L, Ananth M, Alvi S,
Thornton M, Werner L, Tawfik O, Dai H, Shnayder Y, Kakarala K, et
al: Secretory autophagy in cancer-associated fibroblasts promotes
head and neck cancer progression and offers a novel therapeutic
target. Cancer Res. 77:6679–6691. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Qin X, Yan M, Wang X, Xu Q, Wang X, Zhu X,
Shi J, Li Z, Zhang J and Chen W: Cancer-associated
fibroblast-derived IL-6 promotes head and neck cancer progression
via the osteopontin-NF-kappa B signaling pathway. Theranostics.
8:921–940. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Takahashi H, Sakakura K, Kudo T, Toyoda M,
Kaira K, Oyama T and Chikamatsu K: Cancer-associated fibroblasts
promote an immunosuppressive microenvironment through the induction
and accumulation of protumoral macrophages. Oncotarget.
8:8633–8647. 2017. View Article : Google Scholar
|
|
79
|
Davis RJ, Van Waes C and Allen CT:
Overcoming barriers to effective immunotherapy: MDSCs, TAMs, and
Tregs as mediators of the immunosuppressive microenvironment in
head and neck cancer. Oral Oncol. 58:59–70. 2016. View Article : Google Scholar
|
|
80
|
Greene S, Robbins Y, Mydlarz WK, Huynh AP,
Schmitt NC, Friedman J, Horn LA, Palena C, Schlom J, Maeda DY, et
al: Inhibition of MDSC trafficking with SX-682, a CXCR1/2
inhibitor, enhances NK-cell immunotherapy in head and neck cancer
models. Clin Cancer Res. 26:1420–1431. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Oweida AJ, Darragh L, Phan A, Binder D,
Bhatia S, Mueller A, Court BV, Milner D, Raben D, Woessner R, et
al: STAT3 modulation of regulatory T cells in response to radiation
therapy in head and neck cancer. J Natl Cancer Inst. 111:1339–1349.
2019. View Article : Google Scholar
|
|
82
|
Kwak T, Wang F, Deng H, Condamine T, Kumar
V, Perego M, Kossenkov A, Montaner LJ, Xu X, Xu W, et al: Distinct
populations of immune-suppressive macrophages differentiate from
monocytic myeloid-derived suppressor cells in cancer. Cell Rep.
33:1085712020. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhang CX, Ye SB, Ni JJ, Cai TT, Liu YN,
Huang DJ, Mai HQ, Chen QY, He J, Zhang XS, et al: STING signaling
remodels the tumor microenvironment by antagonizing myeloid-derived
suppressor cell expansion. Cell Death Differ. 26:2314–2328. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Cai TT, Ye SB, Liu YN, He J, Chen QY, Mai
HQ, Zhang CX, Cui J, Zhang XS, Busson P, et al: LMP1-mediated
glycolysis induces myeloid-derived suppressor cell expansion in
nasopharyngeal carcinoma. PLoS Pathog. 13:e10065032017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Liu JF, Ma SR, Mao L, Bu LL, Yu GT, Li YC,
Huang CF, Deng WW, Kulkarni AB, Zhang WF and Sun ZJ: T-cell
immunoglobulin mucin 3 blockade drives an antitumor immune response
in head and neck cancer. Mol Oncol. 11:235–247. 2017. View Article : Google Scholar
|
|
86
|
Larionova I, Cherdyntseva N, Liu T,
Patysheva M, Rakina M and Kzhyshkowska J: Interaction of
tumor-associated macrophages and cancer chemotherapy.
Oncoimmunology. 8:15960042019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Hsieh CH, Tai SK and Yang MH:
Snail-overexpressing cancer cells promote M2-Like polarization of
tumor-associated macrophages by delivering MiR-21-Abundant
Exosomes. Neoplasia. 20:775–788. 2018. View Article : Google Scholar
|
|
88
|
Cao MX, Zhang WL, Yu XH, Wu JS, Qiao XW,
Huang MC, Wang K, Wu JB, Tang YJ, Jiang J, et al: Interplay between
cancer cells and M2 macrophages is necessary for miR-550a-3-5p
down-regulation-mediated HPV-positive OSCC progression. J Exp Clin
Cancer Res. 39:1022020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Rigo A, Gottardi M, Zamò A, Mauri P,
Bonifacio M, Krampera M, Damiani E, Pizzolo G and Vinante F:
Macrophages may promote cancer growth via a GM-CSF/HB-EGF paracrine
loop that is enhanced by CXCL12. Mol Cancer. 9:2732010. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zhang F, Li P, Liu S, Yang M, Zeng S, Deng
J, Chen D, Yi Y and Liu H: β-Catenin-CCL2 feedback loop mediates
crosstalk between cancer cells and macrophages that regulates
breast cancer stem cells. Oncogene. 40:5854–5865. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Xiao M, Zhang J and Chen W and Chen W:
M1-like tumor-associated macrophages activated by
exosome-transferred THBS1 promote malignant migration in oral
squamous cell carcinoma. J Exp Clin Cancer Res. 37:1432018.
View Article : Google Scholar : PubMed/NCBI
|