|
1
|
Ferlay J, Colombet M, Soerjomataram I,
Parkin DM, Piñeros M, Znaor A and Bray F: Cancer statistics for the
year 2020: An overview. Int J Cancer. Apr 5–2021.(Epub ahead of
print). View Article : Google Scholar
|
|
2
|
Ferlay J, Colombet M, Soerjomataram I,
Mathers C, Parkin DM, Piñeros M, Znaor A and Bray F: Estimating the
global cancer incidence and mortality in 2018: GLOBOCAN sources and
methods. Int J Cancer. 144:1941–1953. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Barta JA, Powell CA and Wisnivesky JP:
Global epidemiology of lung cancer. Ann Glob Health. 85:82019.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Shi J, Li D, Liang D and He Y:
Epidemiology and prognosis in young lung cancer patients aged under
45 years old in northern China. Sci Rep. 11:68172021. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Hamard C, Mignard X, Pecuchet N, Mathiot
N, Blons H, Laurent-Puig P, Leroy K, Lupo A, Chapron J, Giraud F,
et al: IHC, FISH, CISH, NGS in non-small cell lung cancer: What
changes in the biomarker era? Rev Pneumol Clin. 74:327–338.
2018.(In French). View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lim AS and Lim TH: Fluorescence in situ
hybridization on tissue sections. Methods Mol Biol. 1541:119–125.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Morganti S, Tarantino P, Ferraro E,
D'Amico P, Duso BA and Curigliano G: Next generation sequencing
(NGS): A revolutionary technology in pharmacogenomics and
personalized medicine in cancer. Adv Exp Med Biol. 1168:9–30. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Gao S, Zhang G, Lian Y, Yan L and Gao H:
Exploration and analysis of the value of tumor-marker joint
detection in the pathological type of lung cancer. Cell Mol Biol
(Noisy-le-grand). 66:93–97. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Camidge DR, Dziadziuszko R, Peters S, Mok
T, Noe J, Nowicka M, Gadgeel SM, Cheema P, Pavlakis N, de Marinis
F, et al: Updated efficacy and safety data and impact of the
EML4-ALK fusion variant on the efficacy of alectinib in untreated
ALK-positive advanced non-small cell lung cancer in the global
phase III ALEX study. J Thorac Oncol. 14:1233–1243. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Heigener DF and Reck M: Crizotinib. Recent
Results Cancer Res. 211:57–65. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Soda M, Choi YL, Enomoto M, Takada S,
Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K,
Hatanaka H, et al: Identification of the transforming EML4-ALK
fusion gene in non-small-cell lung cancer. Nature. 448:561–566.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Soda M, Takada S, Takeuchi K, Choi YL,
Enomoto M, Ueno T, Haruta H, Hamada T, Yamashita Y, Ishikawa Y, et
al: A mouse model for EML4-ALK-positive lung cancer. Proc Natl Acad
Sci USA. 105:19893–19897. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Suprenant KA, Dean K, McKee J and Hake S:
EMAP, an echinoderm microtubule-associated protein found in
microtubule-ribosome complexes. J Cell Sci. 104:445–450. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Fry AM, O'Regan L, Montgomery J, Adib R
and Bayliss R: EML proteins in microtubule regulation and human
disease. Biochem Soc Trans. 44:1281–1288. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Richards MW, O'Regan L, Roth D, Montgomery
JM, Straube A, Fry AM and Bayliss R: Microtubule association of EML
proteins and the EML4-ALK variant 3 oncoprotein require an
N-terminal trimerization domain. Biochem J. 467:529–536. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Richards MW, Law EW, Rennalls LP, Busacca
S, O'Regan L, Fry AM, Fennell DA and Bayliss R: Crystal structure
of EML1 reveals the basis for Hsp90 dependence of oncogenic
EML4-ALK by disruption of an atypical β-propeller domain. Proc Natl
Acad Sci USA. 111:5195–5200. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Mano H: The EML4-ALK oncogene: Targeting
an essential growth driver in human cancer. Proc Jpn Acad Ser B
Phys Biol Sci. 91:193–201. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Tulpule A, Guan J, Neel DS, Allegakoen HR,
Lin YP, Brown D, Chou YT, Heslin A, Chatterjee N, Perati S, et al:
Kinase-mediated RAS signaling via membraneless cytoplasmic protein
granules. Cell. 184:2649–2664.e18. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ladanyi M, Cavalchire G, Morris SW,
Downing J and Filippa DA: Reverse transcriptase polymerase chain
reaction for the Ki-1 anaplastic large cell lymphoma-associated
t(2;5) translocation in Hodgkin's disease. Am J Pathol.
145:1296–1300. 1994.PubMed/NCBI
|
|
20
|
Hurley SP, Clary DO, Copie V and Lefcort
F: Anaplastic lymphoma kinase is dynamically expressed on subsets
of motor neurons and in the peripheral nervous system. J Comp
Neurol. 495:202–212. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Morris SW, Naeve C, Mathew P, James PL,
Kirstein MN, Cui X and Witte DP: ALK, the chromosome 2 gene locus
altered by the t(2;5) in non-Hodgkin's lymphoma, encodes a novel
neural receptor tyrosine kinase that is highly related to leukocyte
tyrosine kinase (LTK). Oncogene. 14:2175–2188. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Golding B, Luu A, Jones R and
Viloria-Petit AM: The function and therapeutic targeting of
anaplastic lymphoma kinase (ALK) in non-small cell lung cancer
(NSCLC). Mol Cancer. 17:522018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Hallberg B and Palmer RH: The role of the
ALK receptor in cancer biology. Ann Oncol. 27 (Suppl 3):iii4–iii15.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Roskoski R Jr: Anaplastic lymphoma kinase
(ALK): Structure, oncogenic activation, and pharmacological
inhibition. Pharmacol Res. 68:68–94. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Bennasroune A, Mazot P, Boutterin MC and
Vigny M: Activation of the orphan receptor tyrosine kinase ALK by
zinc. Biochem Biophys Res Commun. 398:702–706. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wong DW, Leung EL, So KK, Tam IY, Sihoe
AD, Cheng LC, Ho KK, Au JS, Chung LP and Pik Wong M; University of
Hong Kong Lung Cancer Study Group, : The EML4-ALK fusion gene is
involved in various histologic types of lung cancers from
nonsmokers with wild-type EGFR and KRAS. Cancer. 115:1723–1733.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Vašíková A: EML4-ALK fusion gene in
patients with lung carcinoma: Biology, diagnostics and targeted
therapy. Klin Onkol. 25:434–439. 2012.PubMed/NCBI
|
|
28
|
Kodama T, Motoi N, Ninomiya H, Sakamoto H,
Kitada K, Tsukaguchi T, Satoh Y, Nomura K, Nagano H, Ishii N, et
al: A novel mechanism of EML4-ALK rearrangement mediated by
chromothripsis in a patient-derived cell line. J Thorac Oncol.
9:1638–1646. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Yang T, Liu H and Chen J: EML4-ALK fusion
gene in lung cancer and its biological function. Zhongguo Fei Ai Za
Zhi. 15:112–116. 2012.(In Chinese). PubMed/NCBI
|
|
30
|
Bayliss R, Choi J, Fennell DA, Fry AM and
Richards MW: Molecular mechanisms that underpin EML4-ALK driven
cancers and their response to targeted drugs. Cell Mol Life Sci.
73:1209–1224. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Robertson FM, Petricoin Iii EF, Van Laere
SJ, Bertucci F, Chu K, Fernandez SV, Mu Z, Alpaugh K, Pei J, Circo
R, et al: Presence of anaplastic lymphoma kinase in inflammatory
breast cancer. Springerplus. 2:4972013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
McQuitty E, Zhang W, Hendrickson H, Tio
FO, Jagirdar J, Olsen R and Cagle PT: Lung adenocarcinoma biomarker
incidence in Hispanic versus non-Hispanic white patients. Arch
Pathol Lab Med. 138:390–394. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sampson J, Richards MW, Choi J, Fry AM and
Bayliss R: Phase-separated foci of EML4-ALK facilitate signalling
and depend upon an active kinase conformation. EMBO Rep.
22:e536932021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Li Y, Li Y, Zhang H, Shi R, Zhang Z, Liu H
and Chen J: EML4-ALK-mediated activation of the JAK2-STAT pathway
is critical for non-small cell lung cancer transformation. BMC Pulm
Med. 21:1902021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Yang L, Li G, Zhao L, Pan F, Qiang J and
Han S: Blocking the PI3K pathway enhances the efficacy of
ALK-targeted therapy in EML4-ALK-positive nonsmall-cell lung
cancer. Tumour Biol. 35:9759–9767. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Takezawa K, Okamoto I, Nishio K, Jänne PA
and Nakagawa K: Role of ERK-BIM and STAT3-survivin signaling
pathways in ALK inhibitor-induced apoptosis in EML4-ALK-positive
lung cancer. Clin Cancer Res. 17:2140–2148. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Ducray SP, Natarajan K, Garland GD, Turner
SD and Egger G: The transcriptional roles of ALK fusion proteins in
tumorigenesis. Cancers (Basel). 11:10742019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Tao H, Shi L, Zhou A, Li H, Gai F, Huang
Z, Che N and Liu Z: Distribution of EML4-ALK fusion variants and
clinical outcomes in patients with resected non-small cell lung
cancer. Lung Cancer. 149:154–161. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Heuckmann JM, Balke-Want H, Malchers F,
Peifer M, Sos ML, Koker M, Meder L, Lovly CM, Heukamp LC, Pao W, et
al: Differential protein stability and ALK inhibitor sensitivity of
EML4-ALK fusion variants. Clin Cancer Res. 18:4682–4690. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Maus MK, Stephens C, Zeger G, Grimminger
PP and Huang E: Identification of novel variant of EML4-ALK fusion
gene in NSCLC: Potential benefits of the RT-PCR method. Int J
Biomed Sci. 8:1–6. 2012.PubMed/NCBI
|
|
41
|
Li T, Maus MK, Desai SJ, Beckett LA,
Stephens C, Huang E, Hsiang J, Zeger G, Danenberg KD, Astrow SH and
Gandara DR: Large-scale screening and molecular characterization of
EML4-ALK fusion variants in archival non-small-cell lung cancer
tumor specimens using quantitative reverse transcription polymerase
chain reaction assays. J Thorac Oncol. 9:18–25. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Cha YJ, Kim HR and Shim HS: Clinical
outcomes in ALK-rearranged lung adenocarcinomas according to ALK
fusion variants. J Transl Med. 14:2962016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhang SS, Nagasaka M, Zhu VW and Ou SI:
Going beneath the tip of the iceberg. Identifying and understanding
EML4-ALK variants and TP53 mutations to optimize treatment of ALK
fusion positive (ALK+) NSCLC. Lung Cancer. 158:126–136. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Qin Z, Sun H, Yue M, Pan X, Chen L, Feng
X, Yan X, Zhu X and Ji H: Phase separation of EML4-ALK in firing
downstream signaling and promoting lung tumorigenesis. Cell Discov.
7:332021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Patel M, Malhotra J and Jabbour SK:
Examining EML4-ALK variants in the clinical setting: The next
frontier? J Thorac Dis. 10 (Suppl 33):S4104–S4107. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Schneider F and Dacic S: Histopathologic
and molecular approach to staging of multiple lung nodules. Transl
Lung Cancer Res. 6:540–549. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Panico F, Rizzi F, Fabbri LM, Bettuzzi S
and Luppi F: Clusterin (CLU) and lung cancer. Adv Cancer Res.
105:63–76. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zhang X, Wu L, Xu Y, Zhang B, Wu X, Wang Y
and Pang Z: Trends in the incidence rate of lung cancer by
histological type and gender in Sichuan, China, 1995–2015: A
single-center retrospective study. Thorac Cancer. 9:532–541. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Sasaki T, Rodig SJ, Chirieac LR and Jänne
PA: The biology and treatment of EML4-ALK non-small cell lung
cancer. Eur J Cancer. 46:1773–1780. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Aydemirli MD, van Eendenburg JDH, van
Wezel T, Oosting J, Corver WE, Kapiteijn E and Morreau H: Targeting
EML4-ALK gene fusion variant 3 in thyroid cancer. Endocr Relat
Cancer. 28:377–389. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Akimoto E, Tokunaga M, Sato R, Yoshida A,
Naito Y, Yamashita R, Kinoshita T and Kuwata T: Gastric mesenchymal
tumor with smooth muscle differentiation and echinoderm
microtubule-associated protein-like 4-anaplastic lymphoma kinase
(EML4-ALK) fusion. Pathol Int. 71:707–711. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ferrara MG, Di Noia V, D'Argento E, Vita
E, Damiano P, Cannella A, Ribelli M, Pilotto S, Milella M, Tortora
G and Bria E: Oncogene-addicted non-small-cell lung cancer:
Treatment opportunities and future perspectives. Cancers (Basel).
12:11962020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ohba T, Toyokawa G, Osoegawa A, Hirai F,
Yamaguchi M, Taguchi K, Seto T, Takenoyama M, Ichinose Y and Sugio
K: Mutations of the EGFR, K-ras, EML4-ALK, and BRAF genes in
resected pathological stage I lung adenocarcinoma. Surg Today.
46:1091–1098. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Guo Y, Ma J, Lyu X, Liu H, Wei B, Zhao J,
Fu S, Ding L and Zhang J: Non-small cell lung cancer with EML4-ALK
translocation in Chinese male never-smokers is characterized with
early-onset. BMC Cancer. 14:8342014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Lin C, Shi X, Yang S, Zhao J, He Q, Jin Y
and Yu X: Comparison of ALK detection by FISH, IHC and NGS to
predict benefit from crizotinib in advanced non-small-cell lung
cancer. Lung Cancer. 131:62–68. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Teixidó C, Karachaliou N, Peg V,
Gimenez-Capitan A and Rosell R: Concordance of IHC, FISH and RT-PCR
for EML4-ALK rearrangements. Transl Lung Cancer Res. 3:70–74.
2014.PubMed/NCBI
|
|
57
|
Pekar-Zlotin M, Hirsch FR, Soussan-Gutman
L, Ilouze M, Dvir A, Boyle T, Wynes M, Miller VA, Lipson D, Palmer
GA, et al: Fluorescence in situ hybridization,
immunohistochemistry, and next-generation sequencing for detection
of EML4-ALK rearrangement in lung cancer. Oncologist. 20:316–322.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Bayani J and Squire JA: Fluorescence in
situ hybridization (FISH). Curr Protoc Cell Biol. Chapter 22: Unit
22.4. 2004. View Article : Google Scholar
|
|
59
|
Querido E, Dekakra-Bellili L and Chartrand
P: RNA fluorescence in situ hybridization for high-content
screening. Methods. 126:149–155. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Liu L, Zhan P, Zhou X, Song Y, Zhou X, Yu
L and Wang J: Detection of EML4-ALK in lung adenocarcinoma using
pleural effusion with FISH, IHC, and RT-PCR methods. PLoS One.
10:e01170322015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wang Y, Zhang J, Gao G, Li X, Zhao C, He
Y, Su C, Zhang S, Chen X, Zhang J, et al: EML4-ALK fusion detected
by RT-PCR confers similar response to crizotinib as detected by
FISH in patients with advanced non-small-cell lung cancer. J Thorac
Oncol. 10:1546–1552. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Behjati S and Tarpey PS: What is next
generation sequencing? Arch Dis Child Educ Pract Ed. 98:236–238.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Hume S, Nelson TN, Speevak M, McCready E,
Agatep R, Feilotter H, Parboosingh J, Stavropoulos DJ, Taylor S and
Stockley TL; Canadian College of Medical Geneticists (CCMG), : CCMG
practice guideline: Laboratory guidelines for next-generation
sequencing. J Med Genet. 56:792–800. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Jennings LJ, Arcila ME, Corless C,
Kamel-Reid S, Lubin IM, Pfeifer J, Temple-Smolkin RL, Voelkerding
KV and Nikiforova MN: Guidelines for validation of next-generation
sequencing-based oncology panels: A joint consensus recommendation
of the association for molecular pathology and college of American
pathologists. J Mol Diagn. 19:341–365. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ma PC: Personalized targeted therapy in
advanced non-small cell lung cancer. Cleve Clin J Med. 79
(Electronic Suppl 1):eS56–eS60. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Fallet V, Toper C, Antoine M, Cadranel J
and Wislez M: Management of crizotinib, a new individualized
treatment. Bull Cancer. 99:787–791. 2012.(In French). View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Khan M, Lin J, Liao G, Tian Y, Liang Y, Li
R, Liu M and Yuan Y: ALK inhibitors in the treatment of ALK
positive NSCLC. Front Oncol. 8:5572019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Cameron LB, Hitchen N, Chandran E, Morris
T, Manser R, Solomon BJ and Jordan V: Targeted therapy for advanced
anaplastic lymphoma kinase (<I>ALK</I>)-rearranged
non-small cell lung cancer. Cochrane Database Syst Rev.
1:CD0134532022.PubMed/NCBI
|
|
69
|
Zhu Q, Hu H, Jiang F, Guo CY, Yang XW, Liu
X and Kuang YK: Meta-analysis of incidence and risk of severe
adverse events and fatal adverse events with crizotinib monotherapy
in patients with ALK-positive NSCLC. Oncotarget. 8:75372–75380.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Solomon BJ, Mok T, Kim DW, Wu YL, Nakagawa
K, Mekhail T, Felip E, Cappuzzo F, Paolini J, Usari T, et al:
First-line crizotinib versus chemotherapy in ALK-positive lung
cancer. N Engl J Med. 371:2167–2177. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Casaluce F, Sgambato A, Sacco PC,
Palazzolo G, Maione P, Rossi A, Ciardiello F and Gridelli C:
Resistance to crizotinib in advanced non-small cell lung cancer
(NSCLC) with ALK rearrangement: Mechanisms, treatment strategies
and new targeted therapies. Curr Clin Pharmacol. 11:77–87. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Dhillon S and Clark M: Ceritinib: First
global approval. Drugs. 74:1285–1291. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Spencer SA, Riley AC, Matthew A and Di
Pasqua AJ: Brigatinib: Novel ALK inhibitor for non-small-cell lung
cancer. Ann Pharmacother. 53:621–626. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Herden M and Waller CF: Alectinib. Recent
Results Cancer Res. 211:247–256. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Shaw AT, Solomon BJ, Besse B, Bauer TM,
Lin CC, Soo RA, Riely GJ, Ou SI, Clancy JS, Li S, et al: ALK
resistance mutations and efficacy of lorlatinib in advanced
anaplastic lymphoma kinase-positive non-small-cell lung cancer. J
Clin Oncol. 37:1370–1379. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Yun MR, Kim DH, Kim SY, Joo HS, Lee YW,
Choi HM, Park CW, Heo SG, Kang HN, Lee SS, et al: Repotrectinib
exhibits potent antitumor activity in treatment-naïve and
solvent-front-mutant ROS1-rearranged non-small cell lung cancer.
Clin Cancer Res. 26:3287–3295. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Drilon A, Ou SI, Cho BC, Kim DW, Lee J,
Lin JJ, Zhu VW, Ahn MJ, Camidge DR, Nguyen J, et al: Repotrectinib
(TPX-0005) is a next-generation ROS1/TRK/ALK inhibitor that
potently inhibits ROS1/TRK/ALK solvent-front mutations. Cancer
Discov. 8:1227–1236. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Revannasiddaiah S, Thakur P, Bhardwaj B,
Susheela SP and Madabhavi I: Pulmonary adenocarcinoma: Implications
of the recent advances in molecular biology, treatment and the
IASLC/ATS/ERS classification. J Thorac Dis. 6 (Suppl 5):S502–S525.
2014.PubMed/NCBI
|
|
79
|
Lu Z, Wang X, Luo Y, Wei J, Zeng Z, Xiong
Q, Cai J and Liu A: EGFR (p. G719A+L747V)/EML4-ALK co-alterations
in lung adenocarcinoma with leptomeningeal metastasis responding to
afatinib treatment: A case report. Onco Targets Ther. 14:2823–2828.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Rybarczyk-Kasiuchnicz A, Ramlau R and
Stencel K: Treatment of brain metastases of non-small cell lung
carcinoma. Int J Mol Sci. 22:5932021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Okada K, Araki M, Sakashita T, Ma B,
Kanada R, Yanagitani N, Horiike A, Koike S, Oh-Hara T, Watanabe K,
et al: Prediction of ALK mutations mediating ALK-TKIs resistance
and drug re-purposing to overcome the resistance. EBioMedicine.
41:105–119. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Lin JJ, Zhu VW, Yoda S, Yeap BY, Schrock
AB, Dagogo-Jack I, Jessop NA, Jiang GY, Le LP, Gowen K, et al:
Impact of EML4-ALK variant on resistance mechanisms and clinical
outcomes in ALK-positive lung cancer. J Clin Oncol. 36:1199–1206.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Dagogo-Jack I and Shaw AT: Crizotinib
resistance: Implications for therapeutic strategies. Ann Oncol. 27
(Suppl 3):iii42–iii50. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Katayama R, Shaw AT, Khan TM,
Mino-Kenudson M, Solomon BJ, Halmos B, Jessop NA, Wain JC, Yeo AT,
Benes C, et al: Mechanisms of acquired crizotinib resistance in
ALK-rearranged lung Cancers. Sci Transl Med. 4:120ra172012.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Kunimasa K, Hirotsu Y, Kukita Y, Ueda Y,
Sato Y, Kimura M, Otsuka T, Hamamoto Y, Tamiya M, Inoue T, et al:
EML4-ALK fusion variant.3 and co-occurrent PIK3CA E542K mutation
exhibiting primary resistance to three generations of ALK
inhibitors. Cancer Genet. 256–257. 131–135. 2021.
|
|
86
|
Kwon JH, Kim KJ, Sung JH, Suh KJ, Lee JY,
Kim JW, Kim SH, Lee JO, Kim JW, Kim YJ, et al: Afatinib overcomes
pemetrexed-acquired resistance in non-small cell lung cancer cells
harboring an EML4-ALK rearrangement. Cells. 8:15382019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Mittal V: Epithelial mesenchymal
transition in tumor metastasis. Annu Rev Pathol. 13:395–412. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Shen J, Meng Y, Wang K, Gao M, Du J, Wang
J, Li Z, Zuo D and Wu Y: EML4-ALK G1202R mutation induces EMT and
confers resistance to ceritinib in NSCLC cells via activation of
STAT3/Slug signaling. Cell Signal. 92:1102642022. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Guo F, Liu X, Qing Q, Sang Y, Feng C, Li
X, Jiang L, Su P and Wang Y: EML4-ALK induces
epithelial-mesenchymal transition consistent with cancer stem cell
properties in H1299 non-small cell lung cancer cells. Biochem
Biophys Res Commun. 459:398–404. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Voena C, Varesio LM, Zhang L, Menotti M,
Poggio T, Panizza E, Wang Q, Minero VG, Fagoonee S, Compagno M, et
al: Oncogenic ALK regulates EMT in non-small cell lung carcinoma
through repression of the epithelial splicing regulatory protein 1.
Oncotarget. 7:33316–33330. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
De Mello RA, Liu DJ, Aguiar PN and
Tadokoro H: EGFR and EML4-ALK updated therapies in non-small cell
lung cancer. Recent Pat Anticancer Drug Discov. 11:393–400. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Guo J, Shi J, Yao M, Jin Y, Liu D, Liu W,
Wang K and Jiang D: A rare double ALK fusion variant EML4-ALK and
CDK15-ALK in lung adenocarcinoma and response to crizotinib: A case
report. Medicine (Baltimore). 99:e226312020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Laszlo A, Thotala D and Hallahan DE:
Membrane phospholipids, EML4-ALK, and Hsp90 as novel targets in
lung cancer treatment. Cancer J. 19:238–246. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Gelatti ACZ, Drilon A and Santini FC:
Optimizing the sequencing of tyrosine kinase inhibitors (TKIs) in
epidermal growth factor receptor (EGFR) mutation-positive non-small
cell lung cancer (NSCLC). Lung Cancer. 137:113–122. 2019.
View Article : Google Scholar : PubMed/NCBI
|