|
1
|
Liu X, Zhang X, Peng Z, Li C, Wang Z, Wang
C, Deng Z, Wu B, Cui Y, Wang Z, et al: Deubiquitylase OTUD6B
Governs pVHL stability in an enzyme-independent manner and
suppresses hepatocellular carcinoma metastasis. Adv Sci (Weinh).
7:19020402020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Forner A, Reig M and Bruix J:
Hepatocellular carcinoma. Lancet. 391:1301–1314. 2018. View Article : Google Scholar
|
|
3
|
Wang X, Li L, Zhao K, Lin Q, Li H, Xue X,
Ge W, He H, Liu D, Xie H, et al: A novel LncRNA HITT forms a
regulatory loop with HIF-1α to modulate angiogenesis and tumor
growth. Cell Death Differ. 27:1431–1446. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Guo Y, Xiao Z, Yang L, Gao Y, Zhu Q, Hu L,
Huang D and Xu Q: Hypoxia-inducible factors in hepatocellular
carcinoma (Review). Oncol Rep. 43:3–15. 2020.PubMed/NCBI
|
|
5
|
Méndez-Blanco C, Fernández-Palanca P,
Fondevila F, González-Gallego J and Mauriz JL: Prognostic and
clinicopathological significance of hypoxia-inducible factors 1α
and 2α in hepatocellular carcinoma: A systematic review with
meta-analysis. Ther Adv Med Oncol. 13:17588359209870712021.
View Article : Google Scholar
|
|
6
|
Mu H, Yu G, Li H, Wang M, Cui Y, Zhang T,
Song T and Liu C: Mild chronic hypoxia-induced HIF-2α interacts
with c-MYC through competition with HIF-1α to induce hepatocellular
carcinoma cell proliferation. Cell Oncol (Dordr). 44:1151–1166.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Wang X, Dong J, Jia L, Zhao T, Lang M, Li
Z, Lan C, Li X, Hao J, Wang H, et al: HIF-2-dependent expression of
stem cell factor promotes metastasis in hepatocellular carcinoma.
Cancer Lett. 393:113–124. 2017. View Article : Google Scholar
|
|
8
|
Chen J, Chen J, Huang J, Li Z, Gong Y, Zou
B, Liu X, Ding L, Li P, Zhu Z, et al: HIF-2α upregulation mediated
by hypoxia promotes NAFLD-HCC progression by activating lipid
synthesis via the PI3K-AKT-mTOR pathway. Aging (Albany NY).
11:10839–10860. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Tian H, Huang P, Zhao Z, Tang W and Xia J:
HIF-1α plays a role in the chemotactic migration of hepatocarcinoma
cells through the modulation of CXCL6 expression. Cell Physiol
Biochem. 34:1536–1546. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Albadari N, Deng S and Li W: The
transcriptional factors HIF-1 and HIF-2 and their novel inhibitors
in cancer therapy. Expert Opin Drug Discov. 14:667–682. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Prabhakar NR and Semenza GL: Adaptive and
maladaptive cardiorespiratory responses to continuous and
intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2.
Physiol Rev. 92:967–1003. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Jiang BH, Zheng JZ, Leung SW, Roe R and
Semenza GL: Transactivation and inhibitory domains of
hypoxia-inducible factor 1alpha. Modulation of transcriptional
activity by oxygen tension. J Biol Chem. 272:19253–19260. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Lando D, Peet DJ, Gorman JJ, Whelan DA,
Whitelaw ML and Bruick RK: FIH-1 is an asparaginyl hydroxylase
enzyme that regulates the transcriptional activity of
hypoxia-inducible factor. Genes Dev. 16:1466–1471. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Chen C and Lou T: Hypoxia inducible
factors in hepatocellular carcinoma. Oncotarget. 8:46691–46703.
2017. View Article : Google Scholar
|
|
15
|
Hur E, Kim HH, Choi SM, Kim JH, Yim S,
Kwon HJ, Choi Y, Kim DK, Lee MO and Park H: Reduction of
hypoxia-induced transcription through the repression of
hypoxia-inducible factor-1alpha/aryl hydrocarbon receptor nuclear
translocator DNA binding by the 90-kDa heat-shock protein inhibitor
radicicol. Mol Pharmacol. 62:975–982. 2002. View Article : Google Scholar
|
|
16
|
Luo D, Wang Z and Wu J, Jiang C and Wu J:
The role of hypoxia inducible factor-1 in hepatocellular carcinoma.
Biomed Res Int. 2014:4092722014. View Article : Google Scholar
|
|
17
|
Mossenta M, Busato D, Dal Bo M and Toffoli
G: Glucose metabolism and oxidative stress in hepatocellular
carcinoma: Role and possible implications in novel therapeutic
strategies. Cancers (Basel). 12:16682020. View Article : Google Scholar
|
|
18
|
Jiang BH, Rue E, Wang GL, Roe R and
Semenza GL: Dimerization, DNA binding, and transactivation
properties of hypoxia-inducible factor 1. J Biol Chem.
271:17771–17778. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Huang LE, Arany Z, Livingston DM and Bunn
HF: Activation of hypoxia-inducible transcription factor depends
primarily upon redox-sensitive stabilization of its alpha subunit.
J Biol Chem. 271:32253–32259. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Fu C, An N, Liu J, A J, Zhang B, Liu M,
Zhang Z, Fu L, Tian X, Wang D and Dong JT: The transcription factor
ZFHX3 is crucial for the angiogenic function of hypoxia-inducible
factor 1α in liver cancer cells. J Biol Chem. 295:7060–7074. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wiener CM, Booth G and Semenza GL: In vivo
expression of mRNAs encoding hypoxia-inducible factor 1. Biochem
Biophys Res Commun. 225:485–488. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Wang GL, Jiang BH, Rue EA and Semenza GL:
Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS
heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci
USA. 92:5510–5514. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wang GL and Semenza GL: Purification and
characterization of hypoxia-inducible factor 1. J Biol Chem.
270:1230–1237. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Bao MH and Wong CC: Hypoxia, metabolic
reprogramming, and drug resistance in liver cancer. Cells.
10:17152021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yang YM, Kim SY and Seki E: Inflammation
and liver cancer: Molecular mechanisms and therapeutic targets.
Semin Liver Dis. 39:26–42. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhang J, Zhang Q, Lou Y, Fu Q, Chen Q, Wei
T, Yang J, Tang J, Wang J, Chen Y, et al: Hypoxia-inducible
factor-1α/interleukin-1β signaling enhances hepatoma
epithelial-mesenchymal transition through macrophages in a
hypoxic-inflammatory microenvironment. Hepatology. 67:1872–1889.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ye M, Fang Z, Gu H, Song R, Ye J, Li H, Wu
Z, Zhou S, Li P, Cai X, et al: Histone deacetylase 5 promotes the
migration and invasion of hepatocellular carcinoma via increasing
the transcription of hypoxia-inducible factor-1α under hypoxia
condition. Tumour Biol. 39:10104283177050342017. View Article : Google Scholar
|
|
28
|
Habas R, Kato Y and He X: Wnt/Frizzled
activation of Rho regulates vertebrate gastrulation and requires a
novel Formin homology protein Daam1. Cell. 107:843–854. 2001.
View Article : Google Scholar
|
|
29
|
Fang X, Zhang D, Zhao W, Gao L and Wang L:
Dishevelled associated activator of morphogenesis (DAAM)
facilitates invasion of hepatocellular carcinoma by upregulating
hypoxia-inducible factor 1α (HIF-1α) Expression. Med Sci Monit.
26:e9246702020. View Article : Google Scholar
|
|
30
|
Ma H, Xie L, Zhang L, Yin X, Jiang H, Xie
X, Chen R, Lu H and Ren Z: Activated hepatic stellate cells promote
epithelial-to-mesenchymal transition in hepatocellular carcinoma
through transglutaminase 2-induced pseudohypoxia. Commun Biol.
1:1682018. View Article : Google Scholar
|
|
31
|
Ientile R, Curro M, Caccamo D, Ferlazzo N,
Gangemi C and Gugliandolo A: Transglutaminase 2 is involved in the
inflammatory response through mechanisms linked to NF-kappa B/HIF-1
alpha pathways. Amino Acids. 27:1630–1631. 2015.
|
|
32
|
Kim DS, Choi YB, Han BG, Park SY, Jeon Y,
Kim DH, Ahn ER, Shin JE, Lee BI, Lee H, et al: Cancer cells promote
survival through depletion of the von Hippel-Lindau tumor
suppressor by protein crosslinking. Oncogene. 30:4780–4790. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Chu Q, Gu X, Zheng Q and Zhu H: Regulatory
mechanism of HIF-1α and its role in liver diseases: A narrative
review. Ann Transl Med. 10:1092022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Makwana V, Ryan P, Patel B, Dukie SA and
Rudrawar S: Essential role of O-GlcNAcylation in stabilization of
oncogenic factors. Biochim Biophys Acta Gen Subj. 1863:1302–1317.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wu HT, Kuo YC, Hung JJ, Huang CH, Chen WY,
Chou TY, Chen Y, Chen YJ, Chen YJ, Cheng WC, et al:
K63-polyubiquitinated HAUSP deubiquitinates HIF-1α and dictates
H3K56 acetylation promoting hypoxia-induced tumour progression. Nat
Commun. 7:136442016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wu KJ: The role of miRNA biogenesis and
DDX17 in tumorigenesis and cancer stemness. Biomed J. 43:107–114.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang Y, Chen W, Lian J, Zhang H, Yu B,
Zhang M, Wei F, Wu J, Jiang J, Jia Y, et al: The lncRNA PVT1
regulates nasopharyngeal carcinoma cell proliferation via
activating the KAT2A acetyltransferase and stabilizing HIF-1α. Cell
Death Differ. 27:695–710. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Jung JE, Kim HS, Lee CS, Shin YJ, Kim YN,
Kang GH, Kim TY, Juhnn YS, Kim SJ, Park JW, et al: STAT3 inhibits
the degradation of HIF-1alpha by pVHL-mediated ubiquitination. Exp
Mol Med. 40:479–485. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Lin MC, Lin JJ, Hsu CL, Juan HF, Lou PJ
and Huang MC: GATA3 interacts with and stabilizes HIF-1α to enhance
cancer cell invasiveness. Oncogene. 36:4243–4252. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Wang D, Zhang X, Lu Y, Wang X and Zhu L:
Hypoxia inducible factor 1α in hepatocellular carcinoma with
cirrhosis: Association with prognosis. Pathol Res Pract.
214:1987–1992. 2018. View Article : Google Scholar
|
|
41
|
Ding L, Chen XP and Wang HP: Expression
and clinical significance of HIF-1a protein in hepatocellular
carcinoma tissues. Zhonghua Gan Zang Bing Za Zhi. 12:656–659.
2004.(In Chinese).
|
|
42
|
Cheng W, Cheng Z, Yang Z, Xing D and Zhang
M: Upregulation of hypoxia-inducible factor 1α mRNA expression was
associated with poor prognosis in patients with hepatocellular
carcinoma. Onco Targets Ther. 12:6285–6296. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Cao S, Yang S, Wu C, Wang Y, Jiang J and
Lu Z: Protein expression of hypoxia-inducible factor-1 alpha and
hepatocellular carcinoma: A systematic review with meta-analysis.
Clin Res Hepatol Gastroenterol. 38:598–603. 2014. View Article : Google Scholar
|
|
44
|
Qian Y, Li Y, Ge Y, Song W and Fan H:
Elevated LncRNA TRERNA1 correlated with activation of HIF-1α
predicts poor prognosis in hepatocellular carcinoma. Pathol Res
Pract. 227:1536122021. View Article : Google Scholar
|
|
45
|
Ding ZN, Dong ZR, Chen ZQ, Yang YF, Yan
LJ, Li HC, Liu KX, Yao CY, Yan YC, Yang CC and Li T: Effects of
hypoxia-inducible factor-1α and hypoxia-inducible factor-2α
overexpression on hepatocellular carcinoma survival: A systematic
review with meta-analysis. J Gastroenterol Hepatol. 36:1487–1496.
2021. View Article : Google Scholar
|
|
46
|
Chitty JL, Filipe EC, Lucas MC, Herrmann
D, Cox TR and Timpson P: Recent advances in understanding the
complexities of metastasis. F1000Res 7: F1000 Faculty Rev-1169.
2018. View Article : Google Scholar
|
|
47
|
Zhang X, Li Y, Ma Y, Yang L, Wang T, Meng
X, Zong Z, Sun X, Hua X and Li H: Yes-associated protein (YAP)
binds to HIF-1α and sustains HIF-1α protein stability to promote
hepatocellular carcinoma cell glycolysis under hypoxic stress. J
Exp Clin Cancer Res. 37:2162018. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Schito L and Semenza GL: Hypoxia-inducible
factors: Master regulators of cancer progression. Trends Cancer.
2:758–770. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Chiu DK, Tse AP, Xu IM, Di Cui J, Lai RK,
Li LL, Koh HY, Tsang FH, Wei LL, Wong CM, et al: Hypoxia inducible
factor HIF-1 promotes myeloid-derived suppressor cells accumulation
through ENTPD2/CD39L1 in hepatocellular carcinoma. Nat Commun.
8:5172017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Hinshaw DC and Shevde LA: The tumor
microenvironment innately modulates cancer progression. Cancer Res.
79:4557–4566. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Pang L, Ng KT, Liu J, Yeung WO, Zhu J,
Chiu TS, Liu H, Chen Z, Lo CM and Man K: Plasmacytoid dendritic
cells recruited by HIF-1α/eADO/ADORA1 signaling induce
immunosuppression in hepatocellular carcinoma. Cancer Lett.
522:80–92. 2021. View Article : Google Scholar
|
|
52
|
He Q, Liu M, Huang W, Chen X, Zhang B,
Zhang T, Wang Y, Liu D, Xie M, Ji X, et al: IL-1β-induced elevation
of solute carrier family 7 member 11 promotes hepatocellular
carcinoma metastasis through up-regulating programmed death ligand
1 and colony-stimulating factor 1. Hepatology. 74:3174–3193. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Song Y, Wang H, Zou XJ, Zhang YX, Guo ZQ,
Liu L, Wu DH and Zhang DY: Reciprocal regulation of HIF-1α and
Uroplakin 1A promotes glycolysis and proliferation in
Hepatocellular Carcinoma. J Cancer. 11:6737–6747. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhou Y, Huang Y, Hu K, Zhang Z, Yang J and
Wang Z: HIF1A activates the transcription of lncRNA RAET1K to
modulate hypoxia-induced glycolysis in hepatocellular carcinoma
cells via miR-100-5p. Cell Death Dis. 11:1762020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
He H, Chen T, Mo H, Chen S, Liu Q and Guo
C: Hypoxia-inducible long noncoding RNA NPSR1-AS1 promotes the
proliferation and glycolysis of hepatocellular carcinoma cells by
regulating the MAPK/ERK pathway. Biochem Biophys Res Commun.
533:886–892. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wang M, Zhao X, Zhu D, Liu T, Liang X, Liu
F, Zhang Y, Dong X and Sun B: HIF-1α promoted vasculogenic mimicry
formation in hepatocellular carcinoma through LOXL2 up-regulation
in hypoxic tumor microenvironment. J Exp Clin Cancer Res.
36:602017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Liu Z, Wang Y, Dou C, Xu M, Sun L, Wang L,
Yao B, Li Q, Yang W, Tu K and Liu Q: Hypoxia-induced up-regulation
of VASP promotes invasiveness and metastasis of hepatocellular
carcinoma. Theranostics. 8:4649–4663. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Liu Z, Tu K, Wang Y, Yao B, Li Q, Wang L,
Dou C, Liu Q and Zheng X: Hypoxia accelerates aggressiveness of
hepatocellular carcinoma cells involving oxidative stress,
epithelial-mesenchymal transition and non-canonical hedgehog
signaling. Cell Physiol Biochem. 44:1856–1868. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zhang L, Huang G, Li X, Zhang Y, Jiang Y,
Shen J, Liu J, Wang Q, Zhu J, Feng X, et al: Hypoxia induces
epithelial-mesenchymal transition via activation of SNAI1 by
hypoxia-inducible factor-1α in hepatocellular carcinoma. BMC
Cancer. 13:1082013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yu Y, Min Z, Zhou Zhihang, Linhong M, Tao
R, Yan L and Song H: Hypoxia-induced exosomes promote
hepatocellular carcinoma proliferation and metastasis via miR-1273f
transfer. Exp Cell Res. 385:1116492019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Cui CP, Wong CC, Kai AK, Ho DW, Lau EY,
Tsui YM, Chan LK, Cheung TT, Chok KS, Chan ACY, et al: SENP1
promotes hypoxia-induced cancer stemness by HIF-1α deSUMOylation
and SENP1/HIF-1α positive feedback loop. Gut. 66:2149–2159. 2017.
View Article : Google Scholar
|
|
62
|
Rankin EB and Giaccia AJ: Hypoxic control
of metastasis. Science. 352:175–180. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Liu Y and Cao X: Immunosuppressive cells
in tumor immune escape and metastasis. J Mol Med (Berl).
94:509–522. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Jing X, Yang F, Shao C, Wei K, Xie M, Shen
H and Shu Y: Role of hypoxia in cancer therapy by regulating the
tumor microenvironment. Mol Cancer. 18:1572019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kiss M, Vande Walle L, Saavedra PHV,
Lebegge E, Van Damme H, Murgaski A, Qian J, Ehling M, Pretto S,
Bolli E, et al: IL1β promotes immune suppression in the tumor
microenvironment independent of the inflammasome and gasdermin D.
Cancer Immunol Res. 9:309–323. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Feng J, Li J, Wu L, Yu Q, Ji J, Wu J, Dai
W and Guo C: Emerging roles and the regulation of aerobic
glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res.
39:1262020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Yuan K, Xie K, Lan T, Xu L, Chen X, Li X,
Liao M, Li J, Huang J, Zeng Y and Wu H: TXNDC12 promotes EMT and
metastasis of hepatocellular carcinoma cells via activation of
β-catenin. Cell Death Differ. 27:1355–1368. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Venhuizen JH, Jacobs FJC, Span PN and
Zegers MM: P120 and E-cadherin: Double-edged swords in tumor
metastasis. Semin Cancer Biol. 60:107–120. 2020. View Article : Google Scholar
|
|
69
|
Na TY, Schecterson L, Mendonsa AM and
Gumbiner BM: The functional activity of E-cadherin controls tumor
cell metastasis at multiple steps. Proc Natl Acad Sci USA.
117:5931–5937. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Evans AJ, Russell RC, Roche O, Burry TN,
Fish JE, Chow VW, Kim WY, Saravanan A, Maynard MA, Gervais ML, et
al: VHL promotes E2 box-dependent E-cadherin transcription by
HIF-mediated regulation of SIP1 and snail. Mol Cell Biol.
27:157–169. 2007. View Article : Google Scholar
|
|
71
|
Wu Y, Zhang J, Zhang X, Zhou H, Liu G and
Li Q: Cancer stem cells: A potential breakthrough in HCC-targeted
therapy. Front Pharmacol. 11:1982020. View Article : Google Scholar
|
|
72
|
Liu YC, Yeh CT and Lin KH: Cancer stem
cell functions in hepatocellular carcinoma and comprehensive
therapeutic strategies. Cells. 9:13312020. View Article : Google Scholar
|
|
73
|
Lambert AW, Pattabiraman DR and Weinberg
RA: Emerging biological principles of metastasis. Cell.
168:670–691. 2017. View Article : Google Scholar
|
|
74
|
Wang N, Wang S, Li MY, Hu BG, Liu LP, Yang
SL, Yang S, Gong Z, Lai PBS and Chen GG: Cancer stem cells in
hepatocellular carcinoma: An overview and promising therapeutic
strategies. Ther Adv Med Oncol. 10:17588359188162872018. View Article : Google Scholar
|
|
75
|
Lee TK, Guan XY and Ma S: Cancer stem
cells in hepatocellular carcinoma-from origin to clinical
implications. Nat Rev Gastroenterol Hepatol. 19:26–44. 2022.
View Article : Google Scholar
|
|
76
|
Du B and Shim JS: Targeting
epithelial-mesenchymal transition (EMT) to overcome drug resistance
in cancer. Molecules. 21:9652016. View Article : Google Scholar
|
|
77
|
Wang R, Sun Q, Wang P, Liu M, Xiong S, Luo
J, Huang H, Du Q, Geller DA and Cheng B: Notch and Wnt/β-catenin
signaling pathway play important roles in activating liver cancer
stem cells. Oncotarget. 7:5754–5768. 2016. View Article : Google Scholar
|
|
78
|
Liu LP, Ho RL, Chen GG and Lai PB:
Sorafenib inhibits hypoxia-inducible factor-1α synthesis:
Implications for antiangiogenic activity in hepatocellular
carcinoma. Clin Cancer Res. 18:5662–5671. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Méndez-Blanco C, Fondevila F,
García-Palomo A, González-Gallego J and Mauriz JL: Sorafenib
resistance in hepatocarcinoma: Role of hypoxia-inducible factors.
Exp Mol Med. 50:1–9. 2018. View Article : Google Scholar
|
|
80
|
Liang Y, Zheng T, Song R, Wang J, Yin D,
Wang L, Liu H, Tian L, Fang X, Meng X, et al: Hypoxia-mediated
sorafenib resistance can be overcome by EF24 through Von
Hippel-Lindau tumor suppressor-dependent HIF-1α inhibition in
hepatocellular carcinoma. Hepatology. 57:1847–1857. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wu FQ, Fang T, Yu LX, Lv GS, Lv HW, Liang
D, Li T, Wang CZ, Tan YX, Ding J, et al: ADRB2 signaling promotes
HCC progression and sorafenib resistance by inhibiting autophagic
degradation of HIF1α. J Hepatol. 65:314–324. 2016. View Article : Google Scholar
|
|
82
|
Li S, Li J, Dai W, Zhang Q, Feng J, Wu L,
Liu T, Yu Q, Xu S, Wang W, et al: Genistein suppresses aerobic
glycolysis and induces hepatocellular carcinoma cell death. Br J
Cancer. 117:1518–1528. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Feng J, Dai W, Mao Y, Wu L, Li J, Chen K,
Yu Q, Kong R, Li S, Zhang J, et al: Simvastatin re-sensitizes
hepatocellular carcinoma cells to sorafenib by inhibiting
HIF-1α/PPAR-γ/PKM2-mediated glycolysis. J Exp Clin Cancer Res.
39:242020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Song DS, Nam SW, Bae SH, Kim JD, Jang JW,
Song MJ, Lee SW, Kim HY, Lee YJ, Chun HJ, et al: Outcome of
transarterial chemoembolization-based multi-modal treatment in
patients with unresectable hepatocellular carcinoma. World J
Gastroenterol. 21:2395–2404. 2015. View Article : Google Scholar
|
|
85
|
Liu K, Min XL, Peng J, Yang K, Yang L and
Zhang XM: The changes of HIF-1α and VEGF expression After TACE in
patients with hepatocellular carcinoma. J Clin Med Res. 8:297–302.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Huang M, Wang L, Chen J, Bai M, Zhou C,
Liu S and Lin Q: Regulation of COX-2 expression and
epithelial-to-mesenchymal transition by hypoxia-inducible factor-1α
is associated with poor prognosis in hepatocellular carcinoma
patients post TACE surgery. Int J Oncol. 48:2144–2154. 2016.
View Article : Google Scholar
|
|
87
|
Ribas A and Wolchok JD: Cancer
immunotherapy using checkpoint blockade. Science. 359:1350–1355.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Sangro B, Sarobe P, Hervás-Stubbs S and
Melero I: Advances in immunotherapy for hepatocellular carcinoma.
Nat Rev Gastroenterol Hepatol. 18:525–543. 2021. View Article : Google Scholar
|
|
89
|
Ruiz de Galarreta M, Bresnahan E,
Molina-Sánchez P, Lindblad KE, Maier B, Sia D, Puigvehi M, Miguela
V, Casanova-Acebes M, Dhainaut M, et al: β-catenin activation
promotes immune escape and resistance to Anti-PD-1 therapy in
hepatocellular carcinoma. Cancer Discov. 9:1124–1141. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Kalantari Khandani N, Ghahremanloo A and
Hashemy SI: Role of tumor microenvironment in the regulation of
PD-L1: A novel role in resistance to cancer immunotherapy. J Cell
Physiol. 235:6496–6506. 2020. View Article : Google Scholar
|
|
91
|
Deng Z, Teng YJ, Zhou Q, Ouyang ZG, Hu YX,
Long HP, Hu MJ, Mei S, Lin FX, Dai XJ, et al: Shuyu pills inhibit
immune escape and enhance chemosensitization in hepatocellular
carcinoma. World J Gastrointest Oncol. 13:1725–1740. 2021.
View Article : Google Scholar
|
|
92
|
Chen P, Duan X, Li X, Li J, Ba Q and Wang
H: HIPK2 suppresses tumor growth and progression of hepatocellular
carcinoma through promoting the degradation of HIF-1α. Oncogene.
39:2863–2876. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Xu S, Ling S, Shan Q, Ye Q, Zhan Q, Jiang
G, Zhuo J, Pan B, Wen X, Feng T, et al: Self-activated
cascade-responsive sorafenib and USP22 shRNA Co-delivery system for
synergetic hepatocellular carcinoma therapy. Adv Sci (Weinh).
8:20030422021. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Ling S, Shan Q, Zhan Q, Ye Q, Liu P, Xu S,
He X, Ma J, Xiang J, Jiang G, et al: USP22 promotes hypoxia-induced
hepatocellular carcinoma stemness by a HIF1α/USP22 positive
feedback loop upon TP53 inactivation. Gut. 69:1322–1334. 2020.
View Article : Google Scholar
|
|
95
|
Korbecki J, Simińska D,
Gąssowska-Dobrowolska M, Listos J, Gutowska I, Chlubek D and
Baranowska-Bosiacka I: Chronic and cycling hypoxia: Drivers of
cancer chronic inflammation through HIF-1 and NF-κB Activation: A
review of the molecular mechanisms. Int J Mol Sci. 22:107012021.
View Article : Google Scholar
|
|
96
|
Jiang Y, Zhu Y, Wang X, Gong J, Hu C, Guo
B, Zhu B and Li Y: Temporal regulation of HIF-1 and NF-κB in
hypoxic hepatocarcinoma cells. Oncotarget. 6:9409–9419. 2015.
View Article : Google Scholar
|
|
97
|
Hu L, Zeng Z, Xia Q, Liu Z, Feng X, Chen
J, Huang M, Chen L, Fang Z, Liu Q, et al: Metformin attenuates
hepatoma cell proliferation by decreasing glycolytic flux through
the HIF-1α/PFKFB3/PFK1 pathway. Life Sci. 239:1169662019.
View Article : Google Scholar
|
|
98
|
Su Q, Fan M, Wang J, Ullah A, Ghauri MA,
Dai B, Zhan Y, Zhang D and Zhang Y: Sanguinarine inhibits
epithelial-mesenchymal transition via targeting HIF-1α/TGF-β
feed-forward loop in hepatocellular carcinoma. Cell Death Dis.
10:9392019. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Chen M, Wu J, Shi S, Chen Y, Wang H, Fan H
and Wang S: Structure analysis of a heteropolysaccharide from
Taraxacum mongolicum Hand.-Mazz. and anticomplementary activity of
its sulfated derivatives. Carbohydr Polym. 152:241–252. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Cai L, Wan D, Yi F and Luan L:
Purification, preliminary characterization and hepatoprotective
effects of polysaccharides from dandelion root. Molecules.
22:14092017. View Article : Google Scholar
|
|
101
|
Ren F, Wu K, Yang Y, Yang Y, Wang Y and Li
J: Dandelion polysaccharide exerts anti-angiogenesis effect on
hepatocellular carcinoma by regulating VEGF/HIF-1α expression.
Front Pharmacol. 11:4602020. View Article : Google Scholar
|
|
102
|
Shao C, Yang F, Miao S, Liu W, Wang C, Shu
Y and Shen H: Role of hypoxia-induced exosomes in tumor biology.
Mol Cancer. 17:1202018. View Article : Google Scholar : PubMed/NCBI
|