Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
August-2022 Volume 24 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2022 Volume 24 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Tumor metabolic reprogramming in lung cancer progression (Review)

  • Authors:
    • Xin Li
    • Minghui Liu
    • Hongyu Liu
    • Jun Chen
  • View Affiliations / Copyright

    Affiliations: Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China, Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 287
    |
    Published online on: June 28, 2022
       https://doi.org/10.3892/ol.2022.13407
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Metabolic reprogramming is an important characteristic of tumor cells. Tumor cells reprogram their metabolic pathways to meet the material, energy and redox force needs for rapid proliferation. Metabolic reprogramming changes the level or type of specific metabolites inside and outside cells, and promotes tumor growth by affecting gene expression, cell state and the tumor microenvironment. Glucose metabolism, glutamine metabolism and lipid metabolism are significant metabolic pathways in tumors. Targeting metabolic reprogramming can significantly inhibit tumor growth and induce apoptosis. Metabolic reprogramming also plays an important role in maintaining the growth advantage of tumor cells and enhancing the chemotherapy tolerance of lung cancer. This review summarizes abnormal changes in the metabolism of glucose, fat and amino acids in lung cancer, and the underlying molecular mechanism, with the aim of providing novel ideas for the prevention, early diagnosis and treatment of lung cancer.
View Figures

Figure 1

View References

1 

Tammemagi MC, Berg CD, Riley TL, Cunningham CR and Taylor KL: Impact of lung cancer screening results on smoking cessation. J Natl Cancer Inst. 106:dju0842014. View Article : Google Scholar

2 

Sun S, Schiller JH and Gazdar AF: Lung cancer in never smokers-a different disease. Nat Rev Cancer. 7:778–790. 2007. View Article : Google Scholar : PubMed/NCBI

3 

Relli V, Trerotola M, Guerra E and Alberti S: Abandoning the notion of non-small cell lung cancer. Trends Mol Med. 25:585–594. 2019. View Article : Google Scholar : PubMed/NCBI

4 

Zheng H, Zhan Y, Liu S, Lu J, Luo J, Feng J and Fan S: The roles of tumor-derived exosomes in non-small cell lung cancer and their clinical implications. J Exp Clin Cancer Res. 37:2262018. View Article : Google Scholar : PubMed/NCBI

5 

Fernandez Y, Viesca M and Arvanitakis M: Early diagnosis and management of malignant distal biliary obstruction: A review on current recommendations and guidelines. Clin Exp Gastroenterol. 12:415–432. 2019. View Article : Google Scholar

6 

Murphy RM, Watt MJ and Febbraio MA: Metabolic communication during exercise. Nat Metab. 2:805–816. 2020. View Article : Google Scholar : PubMed/NCBI

7 

Gururaja Rao S: Mitochondrial changes in cancer. Handb Exp Pharmacol. 240:211–227. 2017. View Article : Google Scholar

8 

Chen Y, Chen Z, Feng JH, Chen YB, Liao NS, Su Y and Zou CY: Metabolic profiling of normal hepatocyte and hepatocellular carcinoma cells via 1H nuclear magnetic resonance spectroscopy. Cell Biol Int. 42:425–434. 2018. View Article : Google Scholar

9 

Guppy M: The hypoxic core: A possible answer to the cancer paradox. Biochem Biophys Res Commun. 299:676–680. 2002. View Article : Google Scholar : PubMed/NCBI

10 

Kalyanaraman B: Teaching the basics of cancer metabolism: Developing antitumor strategies by exploiting the differences between normal and cancer cell metabolism. Redox Biol. 12:833–842. 2017. View Article : Google Scholar

11 

Levine AJ and Puzio-Kuter AM: The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science. 330:1340–1344. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Stine ZE, Walton ZE, Altman BJ, Hsieh AL and Dang CV: MYC, metabolism, and cancer. Cancer Discov. 5:1024–1039. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Moretti M, Bennett J, Tornatore L, Thotakura AK and Franzoso G: Cancer: NF-κB regulates energy metabolism. Int J Biochem Cell Biol. 44:2238–2243. 2012. View Article : Google Scholar

14 

Courtnay R, Ngo DC, Malik N, Ververis K, Tortorella SM and Karagiannis TC: Cancer metabolism and the Warburg effect: The role of HIF-1 and PI3K. Mol Biol Rep. 42:841–851. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL and Cantley LC: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 452:230–233. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Ward PS and Thompson CB: Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell. 21:297–308. 2012. View Article : Google Scholar

17 

Pavlova NN and Thompson CB: The emerging hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Liberti MV and Locasale JW: The warburg effect: How does it benefit cancer cells? Trends Biochem Sci. 41:211–218. 2016. View Article : Google Scholar

19 

Nagao A, Kobayashi M, Koyasu S, Chow CCT and Harada H: HIF-1-dependent reprogramming of glucose metabolic pathway of cancer cells and its therapeutic significance. Int J Mol Sci. 20:2382019. View Article : Google Scholar

20 

Musharraf SG, Mazhar S, Choudhary MI, Rizi N and Atta-ur-Rahman: Plasma metabolite profiling and chemometric analyses of lung cancer along with three controls through gas chromatography-mass spectrometry. Sci Rep. 5:86072015. View Article : Google Scholar : PubMed/NCBI

21 

Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Patra KC and Hay N: The pentose phosphate pathway and cancer. Trends Biochem Sci. 39:347–354. 2014. View Article : Google Scholar

23 

Lam C, Low JY, Tran PT and Wang H: The hexosamine biosynthetic pathway and cancer: Current knowledge and future therapeutic strategies. Cancer Lett. 503:11–18. 2021. View Article : Google Scholar

24 

Amelio I, Cutruzzola F, Antonov A, Agostini M and Melino G: Serine and glycine metabolism in cancer. Trends Biochem Sci. 39:191–198. 2014. View Article : Google Scholar

25 

Liu Y, Cao Y, Zhang W, Bergmeier S, Qian Y, Akbar H, Colvin R, Ding J, Tong L, Wu S, et al: A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther. 11:1672–1682. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Xu S and Herschman HR: A tumor agnostic therapeutic strategy for hexokinase 1-Null/Hexokinase 2-positive cancers. Cancer Res. 79:5907–5914. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Zhang XY, Zhang M, Cong Q, Zhang MX, Zhang MY, Lu YY and Xu CJ: Hexokinase 2 confers resistance to cisplatin in ovarian cancer cells by enhancing cisplatin-induced autophagy. Int J Biochem Cell Biol. 95:9–16. 2018. View Article : Google Scholar

28 

Maschek G, Savaraj N, Priebe W, Braunschweiger P, Hamilton K, Tidmarsh GF, De Young LR and Lampidis TJ: 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res. 64:31–34. 2004. View Article : Google Scholar : PubMed/NCBI

29 

Kim SM, Yun MR, Hong YK, Solca F, Kim JH, Kim HJ and Cho BC: Glycolysis inhibition sensitizes non-small cell lung cancer with T790M mutation to irreversible EGFR inhibitors via translational suppression of Mcl-1 by AMPK activation. Mol Cancer Ther. 12:2145–2156. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Lin S, Li Y, Wang D, Huang C, Marino D, Bollt O, Wu C, Taylor MD, Li W, DeNicola GM, et al: Fascin promotes lung cancer growth and metastasis by enhancing glycolysis and PFKFB3 expression. Cancer Lett. 518:230–242. 2021. View Article : Google Scholar

31 

Shen J, Jin Z, Lv H, Jin K, Jonas K, Zhu C and Chen B: PFKP is highly expressed in lung cancer and regulates glucose metabolism. Cell Oncol (Dordr). 43:617–629. 2020. View Article : Google Scholar : PubMed/NCBI

32 

Guo W, Zhang Y, Chen T, Wang Y, Xue J, Zhang Y, Xiao W, Mo X and Lu Y: Efficacy of RNAi targeting of pyruvate kinase M2 combined with cisplatin in a lung cancer model. J Cancer Res Clin Oncol. 137:65–72. 2011. View Article : Google Scholar

33 

Shi HS, Li D, Zhang J, Wang YS, Yang L, Zhang HL, Wang XH, Mu B, Wang W, Ma Y, et al: Silencing of pkm2 increases the efficacy of docetaxel in human lung cancer xenografts in mice. Cancer Sci. 101:1447–1453. 2010. View Article : Google Scholar

34 

Morita M, Sato T, Nomura M, Sakamoto Y, Inoue Y, Tanaka R, Ito S, Kurosawa K, Yamaguchi K, Sugiura Y, et al: PKM1 confers metabolic advantages and promotes cell-autonomous tumor cell growth. Cancer Cell. 33:355–367. e72018. View Article : Google Scholar

35 

Israelsen WJ and Vander Heiden MG: Pyruvate kinase: Function, regulation and role in cancer. Semin Cell Dev Biol. 43:43–51. 2015. View Article : Google Scholar

36 

Zhang X, Guo M, Fan J, Lv Z, Huang Q, Han J, Wu F, Hu G, Xu J and Jin Y: Prognostic significance of serum LDH in small cell lung cancer: A systematic review with meta-analysis. Cancer Biomark. 16:415–423. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Costa Leite T, Da Silva D, Guimaraes Coelho R, Zancan P and Sola-Penna M: Lactate favours the dissociation of skeletal muscle 6-phosphofructo-1-kinase tetramers down-regulating the enzyme and muscle glycolysis. Biochem J. 408:123–130. 2007. View Article : Google Scholar : PubMed/NCBI

38 

Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, Esparza LA, Reya T, Le Zhan, Yanxiang Guo J, et al: Glucose feeds the TCA cycle via circulating lactate. Nature. 551:115–118. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, et al: Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 513:559–563. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Zhao Y, Liu H, Liu Z, Ding Y, Ledoux SP, Wilson GL, Voellmy R, Lin Y, Lin W, Nahta R, et al: Overcoming trastuzumab resistance in breast cancer by targeting dysregulated glucose metabolism. Cancer Res. 71:4585–4597. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Zhou M, Zhao Y, Ding Y, Liu H, Liu Z, Fodstad O, Riker AI, Kamarajugadda S, Lu J, Owen LB, et al: Warburg effect in chemosensitivity: Targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Mol Cancer. 9:332010. View Article : Google Scholar : PubMed/NCBI

42 

Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, Yang C, Do QN, Doucette S, Burguete D, et al: Lactate metabolism in human lung tumors. Cell. 171:358–371. e92017. View Article : Google Scholar

43 

Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Jin E, Kim J, Jiang L, Ko B, Skelton R, Loudat L, et al: Metabolic heterogeneity in human lung tumors. Cell. 164:681–694. 2016. View Article : Google Scholar

44 

Xie N, Tan Z, Banerjee S, Cui H, Ge J, Liu RM, Bernard K, Thannickal VJ and Liu G: Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am J Respir Crit Care Med. 192:1462–1474. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Chang YC, Chan YC, Chang WM, Lin YF, Yang CJ, Su CY, Huang MS, Wu ATH and Hsiao M: Feedback regulation of ALDOA activates the HIF-1α/MMP9 axis to promote lung cancer progression. Cancer Lett. 403:28–36. 2017. View Article : Google Scholar

46 

Romero OA, Torres-Diz M, Pros E, Savola S, Gomez A, Moran S, Saez C, Iwakawa R, Villanueva A, Montuenga LM, et al: MAX inactivation in small cell lung cancer disrupts MYC-SWI/SNF programs and is synthetic lethal with BRG1. Cancer Discov. 4:292–303. 2014. View Article : Google Scholar : PubMed/NCBI

47 

de Koning TJ: Amino acid synthesis deficiencies. J Inherit Metab Dis. 40:609–620. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Cluntun AA, Lukey MJ, Cerione RA and Locasale JW: Glutamine metabolism in cancer: Understanding the heterogeneity. Trends Cancer. 3:169–180. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Altman BJ, Stine ZE and Dang CV: From Krebs to clinic: Glutamine metabolism to cancer therapy. Nat Rev Cancer. 16:7732016. View Article : Google Scholar : PubMed/NCBI

50 

Scalise M, Pochini L, Galluccio M, Console L and Indiveri C: Glutamine transport and mitochondrial metabolism in cancer cell growth. Front Oncol. 7:3062017. View Article : Google Scholar

51 

Serizawa M, Kusuhara M, Zangiacomi V, Urakami K, Watanabe M, Takahashi T, Yamaguchi K, Yamamoto N and Koh Y: Identification of metabolic signatures associated with erlotinib resistance of non-small cell lung cancer cells. Anticancer Res. 34:2779–2787. 2014.PubMed/NCBI

52 

Dunphy MPS, Harding JJ, Venneti S, Zhang H, Burnazi EM, Bromberg J, Omuro AM, Hsieh JJ, Mellinghoff IK, Staton K, et al: In vivo PET assay of tumor glutamine flux and metabolism: In-Human Trial of 18F-(2S,4R)-4-Fluoroglutamine. Radiology. 287:667–675. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Jeon SM, Chandel NS and Hay N: AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature. 485:661–665. 2012. View Article : Google Scholar : PubMed/NCBI

54 

Yu Y, Newman H, Shen L, Sharma D, Hu G, Mirando AJ, Zhang H, Knudsen E, Zhang GF, Hilton MJ and Karner CM: Glutamine metabolism regulates proliferation and lineage allocation in skeletal stem cells. Cell Metab. 29:966–978. e42019. View Article : Google Scholar : PubMed/NCBI

55 

Simon J, Nunez-Garcia M, Fernandez-Tussy P, Barbier-Torres L, Fernández-Ramos D, Gómez-Santos B, Buqué X, Lopitz-Otsoa F, Goikoetxea-Usandizaga N, Serrano-Macia M, et al: Targeting hepatic glutaminase 1 ameliorates non-alcoholic steatohepatitis by restoring very-low-density lipoprotein triglyceride assembly. Cell Metab. 31:605–622. e102020. View Article : Google Scholar : PubMed/NCBI

56 

Mates JM, Campos-Sandoval JA and Marquez J: Glutaminase isoenzymes in the metabolic therapy of cancer. Biochim Biophys Acta Rev Cancer. 1870:158–164. 2018. View Article : Google Scholar : PubMed/NCBI

57 

Daemen A, Liu B, Song K, Kwong M, Gao M, Hong R, Nannini M, Peterson D, Liederer BM, de la Cruz C, et al: Pan-Cancer metabolic signature predicts co-dependency on glutaminase and de novo glutathione synthesis linked to a high-mesenchymal cell state. Cell Metab. 28:383–399. e3892018. View Article : Google Scholar : PubMed/NCBI

58 

Han T, Zhan W, Gan M, Liu F, Yu B, Chin YE and Wang JB: Phosphorylation of glutaminase by PKCε is essential for its enzymatic activity and critically contributes to tumorigenesis. Cell Res. 28:655–669. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Jacque N, Ronchetti AM, Larrue C, Meunier G, Birsen R, Willems L, Saland E, Decroocq J, Maciel TT, Lambert M, et al: Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition. Blood. 126:1346–1356. 2015. View Article : Google Scholar : PubMed/NCBI

60 

van den Heuvel AP, Jing J, Wooster RF and Bachman KE: Analysis of glutamine dependency in non-small cell lung cancer: GLS1 splice variant GAC is essential for cancer cell growth. Cancer Biol Ther. 13:1185–1194. 2012. View Article : Google Scholar : PubMed/NCBI

61 

Kim J, Lee HM, Cai F, Ko B, Yang C, Lieu EL, Muhammad N, Rhyne S, Li K, Haloul M, et al: The hexosamine biosynthesis pathway is a targetable liability in KRAS/LKB1 mutant lung cancer. Nat Metab. 2:1401–1412. 2020. View Article : Google Scholar : PubMed/NCBI

62 

Sezgin E, Levental I, Mayor S and Eggeling C: The mystery of membrane organization: Composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol. 18:361–374. 2017. View Article : Google Scholar

63 

Snaebjornsson MT, Janaki-Raman S and Schulze A: Greasing the wheels of the cancer machine: The role of lipid metabolism in cancer. Cell Metab. 31:62–76. 2020. View Article : Google Scholar : PubMed/NCBI

64 

Menendez JA and Lupu R: Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 7:763–777. 2007. View Article : Google Scholar : PubMed/NCBI

65 

Corbet C and Feron O: Cancer cell metabolism and mitochondria: Nutrient plasticity for TCA cycle fueling. Biochim Biophys Acta Rev Cancer. 1868:7–15. 2017. View Article : Google Scholar : PubMed/NCBI

66 

Svensson RU, Parker SJ, Eichner LJ, Kolar MJ, Wallace M, Brun SN, Lombardo PS, Van Nostrand JL, Hutchins A, Vera L, et al: Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat Med. 22:1108–1119. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Tadros S, Shukla SK, King RJ, Gunda V, Vernucci E, Abrego J, Chaika NV, Yu F, Lazenby AJ, Berim L, et al: De novo lipid synthesis facilitates gemcitabine resistance through endoplasmic reticulum stress in pancreatic cancer. Cancer Res. 77:5503–5517. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Buckley D, Duke G, Heuer TS, O'Farrell M, Wagman AS, McCulloch W and Kemble G: Fatty acid synthase-Modern tumor cell biology insights into a classical oncology target. Pharmacol Ther. 177:23–31. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Currie E, Schulze A, Zechner R, Walther TC and Farese RV Jr: Cellular fatty acid metabolism and cancer. Cell Metab. 18:153–161. 2013. View Article : Google Scholar : PubMed/NCBI

70 

Shen M, Tsai Y, Zhu R, Keng PC, Chen Y, Chen Y and Lee SO: FASN-TGF-β1-PD-L1 axis contributes to the development of resistance to NK cell cytotoxicity of cisplatin-resistant lung cancer cells. Biochim Biophys Acta Mol Cell Biol Lipids. 1863:313–322. 2018. View Article : Google Scholar : PubMed/NCBI

71 

Ali A, Levantini E, Teo JT, Goggi J, Clohessy JG, Wu CS, Chen L, Yang H, Krishnan I, Kocher O, et al: Fatty acid synthase mediates EGFR palmitoylation in EGFR mutated non-small cell lung cancer. EMBO Mol Med. 10:e83132018. View Article : Google Scholar : PubMed/NCBI

72 

Falchook G, Infante J, Arkenau HT, Patel MR, Dean E, Borazanci E, Brenner A, Cook N, Lopez J, Pant S, et al: First-in-human study of the safety, pharmacokinetics, and pharmacodynamics of first-in-class fatty acid synthase inhibitor TVB-2640 alone and with a taxane in advanced tumors. EClinicalMedicine. 34:1007972021. View Article : Google Scholar : PubMed/NCBI

73 

Jones SF and Infante JR: Molecular pathways: Fatty acid synthase. Clin Cancer Res. 21:5434–5438. 2015. View Article : Google Scholar : PubMed/NCBI

74 

Dang L, Yen K and Attar EC: IDH mutations in cancer and progress toward development of targeted therapeutics. Ann Oncol. 27:599–608. 2016. View Article : Google Scholar

75 

Chen C, Liu Y, Lu C, Cross JR, Morris JP IV, Shroff AS, Ward PS, Bradner JE, Thompson C and Lowe SW: Cancer-associated IDH2 mutants drive an acute myeloid leukemia that is susceptible to Brd4 inhibition. Genes Dev. 27:1974–1985. 2013. View Article : Google Scholar : PubMed/NCBI

76 

Migita T, Narita T, Nomura K, Miyagi E, Inazuka F, Matsuura M, Ushijima M, Mashima T, Seimiya H, Satoh Y, et al: ATP citrate lyase: Activation and therapeutic implications in non-small cell lung cancer. Cancer Res. 68:8547–8554. 2008. View Article : Google Scholar : PubMed/NCBI

77 

Chajes V, Cambot M, Moreau K, Lenoir GM and Joulin V: Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival. Cancer Res. 66:5287–5294. 2006. View Article : Google Scholar : PubMed/NCBI

78 

Carrer A, Trefely S, Zhao S, Campbell SL, Norgard RJ, Schultz KC, Sidoli S, Parris JLD, Affronti HC, Sivanand S, et al: Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis. Cancer Discov. 9:416–435. 2019. View Article : Google Scholar : PubMed/NCBI

79 

Zaidi N, Swinnen JV and Smans K: ATP-citrate lyase: A key player in cancer metabolism. Cancer Res. 72:3709–3714. 2012. View Article : Google Scholar : PubMed/NCBI

80 

Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, Hingorani SR, Tuveson DA and Thompson CB: ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell. 8:311–321. 2005. View Article : Google Scholar

81 

Lin R, Tao R, Gao X, Li T, Zhou X, Guan KL, Xiong Y and Lei QY: Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol Cell. 51:506–518. 2013. View Article : Google Scholar

82 

Niu J, Sun Y, Chen B, Zheng B, Jarugumilli GK, Walker SR, Hata AN, Mino-Kenudson M, Frank DA and Wu X: Fatty acids and cancer-amplified ZDHHC19 promote STAT3 activation through S-palmitoylation. Nature. 573:139–143. 2019. View Article : Google Scholar : PubMed/NCBI

83 

Mashima T, Oh-hara T, Sato S, Mochizuki M, Sugimoto Y, Yamazaki K, Hamada J, Tada M, Moriuchi T, Ishikawa Y, et al: p53-defective tumors with a functional apoptosome-mediated pathway: A new therapeutic target. J Natl Cancer Inst. 97:765–777. 2005. View Article : Google Scholar

84 

Yarla NS, Bishayee A, Sethi G, Reddanna P, Kalle AM, Dhananjaya BL, Dowluru KS, Chintala R and Duddukuri GR: Targeting arachidonic acid pathway by natural products for cancer prevention and therapy. Semin Cancer Biol. 40–41:48–81. 2016. View Article : Google Scholar

85 

Murray M, Hraiki A, Bebawy M, Pazderka C and Rawling T: Anti-tumor activities of lipids and lipid analogues and their development as potential anticancer drugs. Pharmacol Ther. 150:109–128. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Vannitamby A, Saad MI, Aloe C, Wang H, Kumar B, Vlahos R, Selemidis S, Irving L, Steinfort D, Jenkins BJ and Bozinovski S: Aspirin-triggered resolvin D1 reduces proliferation and the neutrophil to lymphocyte ratio in a mutant KRAS-driven lung adenocarcinoma model. Cancers (Basel). 13:32242021. View Article : Google Scholar : PubMed/NCBI

87 

Riedl K, Krysan K, Pold M, Dalwadi H, Heuze-Vourc'h N, Dohadwala M, Liu M, Cui X, Figlin R, Mao JT, et al: Multifaceted roles of cyclooxygenase-2 in lung cancer. Drug Resist Updat. 7:169–184. 2004. View Article : Google Scholar

88 

Xin C, Chu L, Zhang L, Geng D, Wang Y, Sun D, Sui P, Zhao X, Gong Z, Sui M and Zhang W: Expression of cytosolic phospholipase A2 (cPLA2)-arachidonic acid (AA)-Cyclooxygenase-2 (COX-2) pathway factors in lung cancer patients and its implication in lung cancer early detection and prognosis. Med Sci Monit. 25:5543–5551. 2019. View Article : Google Scholar

89 

Yue S, Li J, Lee SY, Lee HJ, Shao T, Song B, Cheng L, Masterson TA, Liu X, Ratliff TL and Cheng JX: Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 19:393–406. 2014. View Article : Google Scholar : PubMed/NCBI

90 

Kopecka J, Trouillas P, Gasparovic AC, Gazzano E, Assaraf YG and Riganti C: Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets. Drug Resist Updat. 49:1006702020. View Article : Google Scholar

91 

Yeganeh B, Wiechec E, Ande SR, Sharma P, Moghadam AR, Post M, Freed DH, Hashemi M, Shojaei S, Zeki AA and Ghavami S: Targeting the mevalonate cascade as a new therapeutic approach in heart disease, cancer and pulmonary disease. Pharmacol Ther. 143:87–110. 2014. View Article : Google Scholar : PubMed/NCBI

92 

Gorin A, Gabitova L and Astsaturov I: Regulation of cholesterol biosynthesis and cancer signaling. Curr Opin Pharmacol. 12:710–716. 2012. View Article : Google Scholar

93 

Li D, Long W, Huang R, Chen Y and Xia M: 27-Hydroxycholesterol inhibits sterol regulatory element-binding protein 1 activation and hepatic lipid accumulation in mice. Obesity (Silver Spring). 26:713–722. 2018. View Article : Google Scholar : PubMed/NCBI

94 

Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S, Howe MK, Carver NJ, Pillai RV, Sullivan PM, Sondhi V, et al: 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science. 342:1094–1098. 2013. View Article : Google Scholar : PubMed/NCBI

95 

Wang B and Tontonoz P: Liver X receptors in lipid signalling and membrane homeostasis. Nat Rev Endocrinol. 14:452–463. 2018. View Article : Google Scholar

96 

Gibson DA, Collins F, Cousins FL, Esnal Zufiaurre A and Saunders PTK: The impact of 27-hydroxycholesterol on endometrial cancer proliferation. Endocr Relat Cancer. 25:381–391. 2018. View Article : Google Scholar : PubMed/NCBI

97 

Wu Y, Yu DD, Hu Y, Cao HX, Yu SR, Liu SW and Feng JF: LXR ligands sensitize EGFR-TKI-resistant human lung cancer cells in vitro by inhibiting Akt activation. Biochem Biophys Res Commun. 467:900–905. 2015. View Article : Google Scholar : PubMed/NCBI

98 

Lo Sasso G, Bovenga F, Murzilli S, Salvatore L, Di Tullio G, Martelli N, D'Orazio A, Rainaldi S, Vacca M, Mangia A, et al: Liver X receptors inhibit proliferation of human colorectal cancer cells and growth of intestinal tumors in mice. Gastroenterology. 144:1497–1507. 1507e1–13. 2013. View Article : Google Scholar : PubMed/NCBI

99 

Hiramitsu S, Ishikawa T, Lee WR, Khan T, Crumbley C, Khwaja N, Zamanian F, Asghari A, Sen M, Zhang Y, et al: Estrogen receptor beta-mediated modulation of lung cancer cell proliferation by 27-hydroxycholesterol. Front Endocrinol (Lausanne). 9:4702018. View Article : Google Scholar : PubMed/NCBI

100 

Zhang L, Liu M, Liu J, Li X, Yang M, Su B and Lin Y: 27-Hydroxycholesterol enhanced osteoclastogenesis in lung adenocarcinoma microenvironment. J Cell Physiol. 234:12692–12700. 2019. View Article : Google Scholar

101 

Chen Q, Pan Z, Zhao M, Wang Q, Qiao C, Miao L and Ding X: High cholesterol in lipid rafts reduces the sensitivity to EGFR-TKI therapy in non-small cell lung cancer. J Cell Physiol. 233:6722–6732. 2018. View Article : Google Scholar

102 

Li J, Yan H, Zhao L, Jia W, Yang H, Liu L, Zhou X, Miao P, Sun X, Song S, et al: Inhibition of SREBP increases gefitinib sensitivity in non-small cell lung cancer cells. Oncotarget. 7:52392–52403. 2016. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li X, Liu M, Liu H and Chen J: Tumor metabolic reprogramming in lung cancer progression (Review). Oncol Lett 24: 287, 2022.
APA
Li, X., Liu, M., Liu, H., & Chen, J. (2022). Tumor metabolic reprogramming in lung cancer progression (Review). Oncology Letters, 24, 287. https://doi.org/10.3892/ol.2022.13407
MLA
Li, X., Liu, M., Liu, H., Chen, J."Tumor metabolic reprogramming in lung cancer progression (Review)". Oncology Letters 24.2 (2022): 287.
Chicago
Li, X., Liu, M., Liu, H., Chen, J."Tumor metabolic reprogramming in lung cancer progression (Review)". Oncology Letters 24, no. 2 (2022): 287. https://doi.org/10.3892/ol.2022.13407
Copy and paste a formatted citation
x
Spandidos Publications style
Li X, Liu M, Liu H and Chen J: Tumor metabolic reprogramming in lung cancer progression (Review). Oncol Lett 24: 287, 2022.
APA
Li, X., Liu, M., Liu, H., & Chen, J. (2022). Tumor metabolic reprogramming in lung cancer progression (Review). Oncology Letters, 24, 287. https://doi.org/10.3892/ol.2022.13407
MLA
Li, X., Liu, M., Liu, H., Chen, J."Tumor metabolic reprogramming in lung cancer progression (Review)". Oncology Letters 24.2 (2022): 287.
Chicago
Li, X., Liu, M., Liu, H., Chen, J."Tumor metabolic reprogramming in lung cancer progression (Review)". Oncology Letters 24, no. 2 (2022): 287. https://doi.org/10.3892/ol.2022.13407
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team