
Hedgehog signaling regulates the development and treatment of glioblastoma (Review)
- Authors:
- Hongping Wang
- Qun Lai
- Dayong Wang
- Jian Pei
- Baogang Tian
- Yunhe Gao
- Zhaoguo Gao
- Xiang Xu
-
Affiliations: Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China, Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China - Published online on: July 5, 2022 https://doi.org/10.3892/ol.2022.13414
- Article Number: 294
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Ostrom QT, Gittleman H, de Blank PM, Finlay JL, Gurney JG, McKean-Cowdin R, Stearns DS, Wolff JE, Liu M, Wolinsky Y, et al: American brain tumor association adolescent and young adult primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro Oncol. 18 (Suppl 1):i1–i50. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2011-2015. Neuro Oncol. 20 (Supp l4):iv1–iv86. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vadgaonkar R, Epari S, Chinnaswamy G, Krishnatry R, Tonse R, Gupta T and Jalali R: Distinct demographic profile and molecular markers of primary CNS tumor in 1873 adolescent and young adult patient population. Childs Nerv Syst. 34:1489–1495. 2018. View Article : Google Scholar : PubMed/NCBI | |
Husson O, Zebrack B, Block R, Embry L, Aguilar C, Hayes-Lattin B and Cole S: Personality traits and health-related quality of life among adolescent and young adult cancer patients: The role of psychological distress. J Adolesc Young Adult Oncol. 6:358–362. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chandra V, Das T, Gulati P, Biswas NK, Rote S, Chatterjee U, Ghosh SN, Deb S, Saha SK, Chowdhury AK, et al: Hedgehog signaling pathway is active in GBM with GLI1 mRNA expression showing a single continuous distribution rather than discrete high/low clusters. PLoS One. 10:e01163902015. View Article : Google Scholar : PubMed/NCBI | |
Azzi S, Treps L, Leclair HM, Ngo HM, Harford-Wright E and Gavard J: Desert Hedgehog/Patch2 axis contributes to vascular permeability and angiogenesis in glioblastoma. Front Pharmacol. 6:2812015. View Article : Google Scholar : PubMed/NCBI | |
Takezaki T, Hide T, Takanaga H, Nakamura H, Kuratsu J and Kondo T: Essential role of the Hedgehog signaling pathway in human glioma-initiating cells. Cancer Sci. 102:1306–1312. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chang J, Guo C, Li J, Liang Z, Wang Y, Yu A, Liu R, Guo Y, Chen J and Huang S: EN1 regulates cell growth and proliferation in human glioma cells via Hedgehog signaling. Int J Mol Sci. 23:11232022. View Article : Google Scholar : PubMed/NCBI | |
Chang L, Zhang P, Zhao D, Liu H, Wang Q, Li C, Du W, Liu X, Zhang H, Zhang Z and Jiang C: The Hedgehog antagonist HHIP as a favorable prognosticator in glioblastoma. Tumour Biol. 37:3979–3986. 2016. View Article : Google Scholar : PubMed/NCBI | |
Infante P, Mori M, Alfonsi R, Ghirga F, Aiello F, Toscano S, Ingallina C, Siler M, Cucchi D, Po A, et al: Gli1/DNA interaction is a druggable target for Hedgehog-dependent tumors. EMBO J. 34:200–217. 2015. View Article : Google Scholar : PubMed/NCBI | |
Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P and Ellison DW: The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network, . Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 455:1061–1068. 2008. View Article : Google Scholar : PubMed/NCBI | |
Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, et al: An integrated genomic analysis of human glioblastoma multiforme. Science. 321:1807–1812. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, Morozova O, Newton Y, Radenbaugh A, Pagnotta SM, et al: Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell. 164:550–563. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, deCarvalho AC, Lyu S, Li P, Li Y, et al: Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 32:42–56.e6. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sturm D, Bender S, Jones DT, Lichter P, Grill J, Becher O, Hawkins C, Majewski J, Jones C, Costello JF, et al: Paediatric and adult glioblastoma: Multiform (epi)genomic culprits emerge. Nat Rev Cancer. 14:92–107. 2014. View Article : Google Scholar : PubMed/NCBI | |
Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, Koelsche C, Sahm F, Chavez L, Reuss DE, et al: DNA methylation-based classification of central nervous system tumours. Nature. 555:469–474. 2018. View Article : Google Scholar : PubMed/NCBI | |
Torrisi F, Alberghina C, D'Aprile S, Pavone AM, Longhitano L, Giallongo S, Tibullo D, Di Rosa M, Zappalà A, Cammarata FP, et al: The hallmarks of glioblastoma: Heterogeneity, intercellular crosstalk and molecular signature of invasiveness and progression. Biomedicines. 10:8062022. View Article : Google Scholar : PubMed/NCBI | |
Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016. Neuro Oncol 21 (Suppl 5):v1-v100; 2019, View Article : Google Scholar | |
Roa W, Brasher PM, Bauman G, Anthes M, Bruera E, Chan A, Fisher B, Fulton D, Gulavita S, Hao C, et al: Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: A prospective randomized clinical trial. J Clin Oncol. 22:1583–1588. 2004. View Article : Google Scholar : PubMed/NCBI | |
Suchorska B, Weller M, Tabatabai G, Senft C, Hau P, Sabel MC, Herrlinger U, Ketter R, Schlegel U, Marosi C, et al: Complete resection of contrast-enhancing tumor volume is associated with improved survival in recurrent glioblastoma-results from the DIRECTOR trial. Neuro Oncol. 18:549–556. 2016. View Article : Google Scholar : PubMed/NCBI | |
Stupp R, Wong ET, Kanner AA, Steinberg D, Engelhard H, Heidecke V, Kirson ED, Taillibert S, Liebermann F, Dbalý V, et al: NovoTTF-100A versus physician's choice chemotherapy in recurrent glioblastoma: A randomised phase III trial of a novel treatment modality. Eur J Cancer. 48:2192–2202. 2012. View Article : Google Scholar : PubMed/NCBI | |
Höing S, Yeh TY, Baumann M, Martinez NE, Habenberger P, Kremer L, Drexler HCA, Küchler P, Reinhardt P, Choidas A, et al: Dynarrestin, a novel inhibitor of cytoplasmic dynein. Cell Chem Biol. 25:357–369.e6. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rocha CRR, Reily Rocha A, Molina Silva M, Rodrigues Gomes L, Teatin Latancia M, Andrade Tomaz M, de Souza I, Karolynne Seregni Monteiro L and Menck CFM: Revealing temozolomide resistance mechanisms via genome-wide CRISPR libraries. Cells. 9:25732020. View Article : Google Scholar : PubMed/NCBI | |
Ebrahimi A, Larijani L, Moradi A and Ebrahimi MR: Hedgehog signalling pathway: Carcinogenesis and targeted therapy. Iran J Cancer Prev. 6:36–43. 2013.PubMed/NCBI | |
Jin X, Jeon HM, Jin X, Kim EJ, Yin J, Jeon HY, Sohn YW, Oh SY, Kim JK, Kim SH, et al: The ID1-CULLIN3 axis regulates intracellular SHH and WNT signaling in glioblastoma stem cells. Cell Rep. 16:1629–1641. 2016. View Article : Google Scholar : PubMed/NCBI | |
Huynh DL, Koh H, Chandimali N, Zhang JJ, Kim N, Kang TY, Ghosh M, Gera M, Park YH, Kwon T and Jeong DK: BRM270 inhibits the proliferation of CD44 positive pancreatic ductal adenocarcinoma cells via downregulation of sonic Hedgehog signaling. Evid Based Complement Alternat Med. 2019:86204692019. View Article : Google Scholar : PubMed/NCBI | |
Marigo V and Tabin CJ: Regulation of patched by sonic Hedgehog in the developing neural tube. Proc Natl Acad Sci USA. 93:9346–9351. 1996. View Article : Google Scholar : PubMed/NCBI | |
Plotnikova OV, Golemis EA and Pugacheva EN: Cell cycle-dependent ciliogenesis and cancer. Cancer Res. 68:2058–2061. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mastronardi FG, Dimitroulakos J, Kamel-Reid S and Manoukian AS: Co-localization of patched and activated sonic Hedgehog to lysosomes in neurons. Neuroreport. 11:581–585. 2000. View Article : Google Scholar : PubMed/NCBI | |
Rubin LL and de Sauvage FJ: Targeting the Hedgehog pathway in cancer. Nat Rev Drug Discov. 5:1026–1033. 2006. View Article : Google Scholar : PubMed/NCBI | |
Alexandre C, Jacinto A and Ingham PW: Transcriptional activation of Hedgehog target genes in Drosophila is mediated directly by the cubitus interruptus protein, a member of the GLI family of zinc finger DNA-binding proteins. Genes Dev. 10:2003–2013. 1996. View Article : Google Scholar : PubMed/NCBI | |
Pan Y, Bai CB, Joyner AL and Wang B: Sonic Hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol Cell Biol. 26:3365–3377. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Fallon JF and Beachy PA: Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell. 100:423–434. 2000. View Article : Google Scholar : PubMed/NCBI | |
Niewiadomski P, Kong JH, Ahrends R, Ma Y, Humke EW, Khan S, Teruel MN, Novitch BG and Rohatgi R: Gli protein activity is controlled by multisite phosphorylation in vertebrate Hedgehog signaling. Cell Rep. 6:168–181. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gonnissen A, Isebaert S and Haustermans K: Targeting the Hedgehog signaling pathway in cancer: Beyond smoothened. Oncotarget. 6:13899–13913. 2015. View Article : Google Scholar : PubMed/NCBI | |
Skoda AM, Simovic D, Karin V, Kardum V, Vranic S and Serman L: The role of the Hedgehog signaling pathway in cancer: A comprehensive review. Bosn J Basic Med Sci. 18:8–20. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sabol M, Trnski D, Musani V, Ozretić P and Levanat S: Role of GLI transcription factors in pathogenesis and their potential as new therapeutic targets. Int J Mol Sci. 19:25622018. View Article : Google Scholar : PubMed/NCBI | |
Endoh-Yamagami S, Evangelista M, Wilson D, Wen X, Theunissen JW, Phamluong K, Davis M, Scales SJ, Solloway MJ, de Sauvage FJ and Peterson AS: The mammalian Cos2 homolog Kif7 plays an essential role in modulating Hh signal transduction during development. Curr Biol. 19:1320–1326. 2009. View Article : Google Scholar : PubMed/NCBI | |
Denef N, Neubüser D, Perez L and Cohen SM: Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell. 102:521–531. 2000. View Article : Google Scholar : PubMed/NCBI | |
Tschaikner P, Enzler F, Torres-Quesada O, Aanstad P and Stefan E: Hedgehog and Gpr161: Regulating cAMP signaling in the primary cilium. Cells. 9:1182020. View Article : Google Scholar : PubMed/NCBI | |
Price MA and Kalderon D: Proteolysis of the Hedgehog signaling effector cubitus interruptus requires phosphorylation by glycogen synthase kinase 3 and casein kinase 1. Cell. 108:823–835. 2002. View Article : Google Scholar : PubMed/NCBI | |
Méthot N and Basler K: Suppressor of fused opposes Hedgehog signal transduction by impeding nuclear accumulation of the activator form of cubitus interruptus. Development. 127:4001–4010. 2000. View Article : Google Scholar : PubMed/NCBI | |
Brennan D, Chen X, Cheng L, Mahoney M and Riobo NA: Noncanonical Hedgehog signaling. Vitam Horm. 88:55–72. 2012. View Article : Google Scholar : PubMed/NCBI | |
Robbins DJ, Fei DL and Riobo NA: The Hedgehog signal transduction network. Sci Signal. 5:re62012. View Article : Google Scholar : PubMed/NCBI | |
Awasthi A, Woolley AG, Lecomte FJ, Hung N, Baguley BC, Wilbanks SM, Jeffs AR and Tyndall JD: Variable expression of GLIPR1 correlates with invasive potential in melanoma cells. Front Oncol. 3:2252013. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Pan L, Che X, Cui D and Li C: Sonic Hedgehog/GLI1 signaling pathway inhibition restricts cell migration and invasion in human gliomas. Neurol Res. 32:975–980. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lo HW, Zhu H, Cao X, Aldrich A and Ali-Osman F: A novel splice variant of GLI1 that promotes glioblastoma cell migration and invasion. Cancer Res. 69:6790–6798. 2009. View Article : Google Scholar : PubMed/NCBI | |
Reifenberger J, Wolter M, Weber RG, Megahed M, Ruzicka T, Lichter P and Reifenberger G: Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res. 58:1798–1803. 1998.PubMed/NCBI | |
Lee Y, Miller HL, Jensen P, Hernan R, Connelly M, Wetmore C, Zindy F, Roussel MF, Curran T, Gilbertson RJ and McKinnon PJ: A molecular fingerprint for medulloblastoma. Cancer Res. 63:5428–5437. 2003.PubMed/NCBI | |
Lim CB, Prêle CM, Cheah HM, Cheng YY, Klebe S, Reid G, Watkins DN, Baltic S, Thompson PJ and Mutsaers SE: Mutational analysis of Hedgehog signaling pathway genes in human malignant mesothelioma. PLoS One. 8:e666852013. View Article : Google Scholar : PubMed/NCBI | |
Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K, Parker AR, Shimada Y, Eshleman JR, Watkins DN and Beachy PA: Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature. 425:846–851. 2003. View Article : Google Scholar : PubMed/NCBI | |
Noman AS, Uddin M, Rahman MZ, Nayeem MJ, Alam SS, Khatun Z, Wahiduzzaman M, Sultana A, Rahman ML, Ali MY, et al: Overexpression of sonic Hedgehog in the triple negative breast cancer: Clinicopathological characteristics of high burden breast cancer patients from Bangladesh. Sci Rep. 6:188302016. View Article : Google Scholar : PubMed/NCBI | |
Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA and Baylin SB: Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature. 422:313–317. 2013. View Article : Google Scholar : PubMed/NCBI | |
Riobo-Del Galdo NA, Lara Montero Á and Wertheimer EV: Role of Hedgehog signaling in breast cancer: Pathogenesis and therapeutics. Cells. 8:3752019. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Coussens LM: Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell. 21:309–322. 2012. View Article : Google Scholar : PubMed/NCBI | |
Petersen OW, Rønnov-Jessen L, Howlett AR and Bissell MJ: Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci USA. 89:9064–9068. 1992. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Outschoorn U, Sotgia F and Lisanti MP: Tumor microenvironment and metabolic synergy in breast cancers: Critical importance of mitochondrial fuels and function. Semin Oncol. 41:195–216. 2014. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Outschoorn UE, Lin Z, Ko YH, Goldberg AF, Flomenberg N, Wang C, Pavlides S, Pestell RG, Howell A, Sotgia F and Lisanti MP: Understanding the metabolic basis of drug resistance: Therapeutic induction of the Warburg effect kills cancer cells. Cell Cycle. 10:2521–2528. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chang L, Zhao D, Liu HB, Wang QS, Zhang P, Li CL, Du WZ, Wang HJ, Liu X, Zhang ZR and Jiang CL: Activation of sonic Hedgehog signaling enhances cell migration and invasion by induction of matrix metalloproteinase-2 and −9 via the phosphoinositide-3 kinase/AKT signaling pathway in glioblastoma. Mol Med Rep. 12:6702–6710. 2015. View Article : Google Scholar : PubMed/NCBI | |
Torrisi F, Alberghina C, Lo Furno D, Zappalà A, Valable S, Li Volti G, Tibullo D, Vicario N and Parenti R: Connexin 43 and Sonic Hedgehog pathway interplay in glioblastoma cell proliferation and migration. Biology (Basel). 10:7672021.PubMed/NCBI | |
Cherepanov SA, Cherepanova KI, Grinenko NF, Antonova OM and Chekhonin VP: Effect of Hedgehog signaling pathway activation on proliferation of high-grade gliomas. Bull Exp Biol Med. 161:674–678. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rowitch DH, S-Jacques B, Lee SM, Flax JD, Snyder EY and McMahon AP: Sonic Hedgehog regulates proliferation and inhibits differentiation of CNS precursor cells. J Neurosci. 19:8954–8965. 1999. View Article : Google Scholar : PubMed/NCBI | |
Jiang K, Wang YP, Wang XD, Hui XB, Ding LS, Liu J and Liu D: Fms related tyrosine kinase 1 (Flt1) functions as an oncogene and regulates glioblastoma cell metastasis by regulating sonic Hedgehog signaling. Am J Cancer Res. 7:1164–1176. 2017.PubMed/NCBI | |
Hamerlik P, Lathia JD, Rasmussen R, Wu Q, Bartkova J, Lee M, Moudry P, Bartek J Jr, Fischer W, Lukas J, et al: Autocrine VEGF-VEGFR2-neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med. 209:507–520. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kloepper J, Riedemann L, Amoozgar Z, Seano G, Susek K, Yu V, Dalvie N, Amelung RL, Datta M, Song JW, et al: Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc Natl Acad Sci USA. 113:4476–4481. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Wang L, Qin J and Wei DS: CtBP2 interacts with ZBTB18 to promote malignancy of glioblastoma. Life Sci. 262:1184772020. View Article : Google Scholar : PubMed/NCBI | |
Bensalma S, Turpault S, Balandre AC, De Boisvilliers M, Gaillard A, Chadéneau C and Muller JM: PKA at a cross-road of signaling pathways involved in the regulation of glioblastoma migration and invasion by the neuropeptides VIP and PACAP. Cancers (Basel). 11:1232019. View Article : Google Scholar : PubMed/NCBI | |
Henao-Restrepo J, Caro-Urrego YA, Barrera-Arenas LM, Arango-Viana JC and Bermudez-Munoz M: Expression of activator proteins of SHH/GLI and PI3K/Akt/mTORC1 signaling pathways in human gliomas is associated with high grade tumors. Exp Mol Pathol. 122:1046732021. View Article : Google Scholar : PubMed/NCBI | |
Kinzler KW, Bigner SH, Bigner DD, Trent JM, Law ML, O'Brien SJ, Wong J and Vogelstein B: Identification of an amplified, highly expressed gene in a human glioma. Science. 236:70–73. 1987. View Article : Google Scholar : PubMed/NCBI | |
Bigner SH, Wong AJ, Mark J, Muhlbaier LH, Kinzler KW, Vogelstein B and Bigner DD: Relationship between gene amplification and chromosomal deviations in malignant human gliomas. Cancer Genet Cytogenet. 29:165–170. 1987. View Article : Google Scholar : PubMed/NCBI | |
ten Haaf A, Bektas N, von Serenyi S, Losen I, Arweiler EC, Hartmann A, Knuchel R and Dahl E: Expression of the glioma-associated oncogene homolog (GLI) 1 in human breast cancer is associated with unfavourable overall survival. BMC Cancer. 9:2982009. View Article : Google Scholar : PubMed/NCBI | |
Zhou A, Lin K, Zhang S, Ma L, Xue J, Morris SA, Aldape KD and Huang S: Gli1-induced deubiquitinase USP48 aids glioblastoma tumorigenesis by stabilizing Gli1. EMBO Rep. 18:1318–1330. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim Y, Do IG, Hong M and Suh YL: Negative prognostic effect of low nuclear GLI1 expression in glioblastomas. J Neurooncol. 133:69–76. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xue J, Zhou A, Tan C, Wu Y, Lee HT, Li W, Xie K and Huang S: Forkhead box M1 is essential for nuclear localization of glioma-associated oncogene homolog 1 in glioblastoma multiforme cells by promoting importin-7 expression. J Biol Chem. 290:18662–18670. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Carpenter RL, Han W and Lo HW: The GLI1 splice variant TGLI1 promotes glioblastoma angiogenesis and growth. Cancer Lett. 343:51–61. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Zheng X, Luan Y and Liu Y, Li X, Liu C, Lu H, Chen X and Liu Y: Activity of metabotropic glutamate receptor 4 suppresses proliferation and promotes apoptosis with inhibition of Gli-1 in human glioblastoma cells. Front Neurosci. 12:3202018. View Article : Google Scholar : PubMed/NCBI | |
Sargazi ML, Juybari KB, Tarzi ME, Amirkhosravi A, Nematollahi MH, Mirzamohammdi S, Mehrbani M and Mehrabani M and Mehrabani M: Naringenin attenuates cell viability and migration of C6 glioblastoma cell line: A possible role of Hedgehog signaling pathway. Mol Biol Rep. 48:6413–6421. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chantaravisoot N, Wongkongkathep P, Loo AJ, Mischel SP and Tamanoi F: Significance of filamin A in mTORC2 function in glioblastoma. Mol Cancer. 14:e1272015. View Article : Google Scholar : PubMed/NCBI | |
Maiti S, Mondal S, Satyavarapu EM and Mandal C: mTORC2 regulates Hedgehog pathway activity by promoting stability to Gli2 protein and its nuclear translocation. Cell Death Dis. 8:e29262017. View Article : Google Scholar : PubMed/NCBI | |
Tanigawa S, Fujita M, Moyama C, Ando S, Ii H, Kojima Y, Fujishita T, Aoki M, Takeuchi H, Yamanaka T, et al: Inhibition of Gli2 suppresses tumorigenicity in glioblastoma stem cells derived from a de novo murine brain cancer model. Cancer Gene Ther. 28:1339–1352. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zaphiropoulos PG, Undén AB, Rahnama F, Hollingsworth RE and Toftgård R: PTCH2, a novel human patched gene, undergoing alternative splicing and up-regulated in basal cell carcinomas. Cancer Res. 59:787–792. 1999.PubMed/NCBI | |
Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, Barsh GS and Clayton DA: Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet. 18:231–236. 1998. View Article : Google Scholar : PubMed/NCBI | |
Rudin CM, Hann CL, Laterra J, Yauch RL, Callahan CA, Fu L, Holcomb T, Stinson J, Gould SE, Coleman B, et al: Treatment of medulloblastoma with Hedgehog pathway inhibitor GDC-0449. N Engl J Med. 361:1173–1178. 2009. View Article : Google Scholar : PubMed/NCBI | |
Scales SJ and de Sauvage FJ: Mechanisms of Hedgehog pathway activation in cancer and implications for therapy. Trends Pharmacol Sci. 30:303–312. 2009. View Article : Google Scholar : PubMed/NCBI | |
Marjanovic Vicentic J, Drakulic D, Garcia I, Vukovic V, Aldaz P, Puskas N, Nikolic I, Tasic G, Raicevic S, Garros-Regulez L, et al: SOX3 can promote the malignant behavior of glioblastoma cells. Cell Oncol (Dordr). 42:41–54. 2019. View Article : Google Scholar : PubMed/NCBI | |
Saito A, Kanemoto S, Zhang Y, Asada R, Hino K and Imaizumi K: Chondrocyte proliferation regulated by secreted luminal domain of ER stress transducer BBF2H7/CREB3L2. Mol Cell. 53:127–139. 2014. View Article : Google Scholar : PubMed/NCBI | |
Iwamoto H, Matsuhisa K, Saito A, Kanemoto S, Asada R, Hino K, Takai T, Cui M, Cui X, Kaneko M, et al: Promotion of cancer cell proliferation by cleaved and secreted luminal domains of ER stress transducer BBF2H7. PLoS One. 10:e01259822015. View Article : Google Scholar : PubMed/NCBI | |
Guen VJ, Chavarria TE, Kröger C, Ye X, Weinberg RA and Lees JA: EMT programs promote basal mammary stem cell and tumor-initiating cell stemness by inducing primary ciliogenesis and Hedgehog signaling. Proc Natl Acad Sci USA. 114:E10532–E10539. 2017. View Article : Google Scholar : PubMed/NCBI | |
Brandner S: Nanog, Gli, and p53: A new network of stemness in development and cancer. EMBO J. 29:2475–2476. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rich JN and Eyler CE: Cancer stem cells in brain tumor biology. Cold Spring Harb Symp Quant Biol. 73:411–420. 2008. View Article : Google Scholar : PubMed/NCBI | |
de Groot JF, Fuller G, Kumar AJ, Piao Y, Eterovic K, Ji Y and Conrad CA: Tumor invasion after treatment of glioblastoma with bevacizumab: Radiographic and pathologic correlation in humans and mice. Neuro Oncol. 12:233–242. 2010. View Article : Google Scholar : PubMed/NCBI | |
Han B, Wang R, Chen Y, Meng X, Wu P, Li Z, Duan C, Li Q, Li Y, Zhao S, et al: QKI deficiency maintains glioma stem cell stemness by activating the SHH/GLI1 signaling pathway. Cell Oncol (Dordr). 42:801–813. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yuan Y, Zhang M, Yan G, Ma Q, Yan Z, Wang L, Yang K and Guo D: Nanog promotes stem-like traits of glioblastoma cells. Front Biosci (Landmark Ed). 26:552–565. 2021. View Article : Google Scholar : PubMed/NCBI | |
Silvestri I, Testa F, Zappasodi R, Cairo CW, Zhang Y, Lupo B, Galli R, Di Nicola M, Venerando B and Tringali C: Sialidase NEU4 is involved in glioblastoma stem cell survival. Cell Death Dis. 5:e13812014. View Article : Google Scholar : PubMed/NCBI | |
Kundu S, Nandhu MS, Longo SL, Longo JA, Rai S, Chin LS, Richardson TE and Viapiano MS: The scaffolding protein DLG5 promotes glioblastoma growth by controlling sonic Hedgehog signaling in tumor stem cells. Neuro Oncol: noac001. 2022.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Park MG, Seo S, Ham SW, Choi SH and Kim H: Dihydropyrimidinase-related protein 5 controls glioblastoma stem cell characteristics as a biomarker of proneural-subtype glioblastoma stem cells. Oncol Lett. 20:1153–1162. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mondal S, Bhattacharya K and Mandal C: Nutritional stress reprograms dedifferention in glioblastoma multiforme driven by PTEN/Wnt/Hedgehog axis: A stochastic model of cancer stem cells. Cell Death Discov. 4:1102018. View Article : Google Scholar : PubMed/NCBI | |
Yan GN, Yang L, Lv YF, Shi Y, Shen LL, Yao XH, Guo QN, Zhang P, Cui YH, Zhang X, et al: Endothelial cells promote stem-like phenotype of glioma cells through activating the Hedgehog pathway. J Pathol. 234:11–22. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sekulic A, Migden MR, Oro AE, Dirix L, Lewis KD, Hainsworth JD, Solomon JA, Yoo S, Arron ST, Friedlander PA, et al: Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med. 366:2171–2179. 2012. View Article : Google Scholar : PubMed/NCBI | |
Robinson GW, Orr BA, Wu G, Gururangan S, Lin T, Qaddoumi I, Packer RJ, Goldman S, Prados MD, Desjardins A, et al: Vismodegib exerts targeted efficacy against recurrent sonic Hedgehog-subgroup medulloblastoma: Results from phase II pediatric brain tumor consortium studies PBTC-025B and PBTC-032. J Clin Oncol. 33:2646–2654. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wong R, Turlova E, Feng ZP, Rutka JT and Sun HS: Activation of TRPM7 by naltriben enhances migration and invasion of glioblastoma cells. Oncotarget. 8:11239–11248. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shojaei F, Lee JH, Simmons BH, Wong A, Esparza CO, Plumlee PA, Feng J, Stewart AE, Hu-Lowe DD and Christensen JG: HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Res. 70:10090–10100. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lu KV, Chang JP, Parachoniak CA, Pandika MM, Aghi MK, Meyronet D, Isachenko N, Fouse SD, Phillips JJ, Cheresh DA, et al: VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell. 22:21–35. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li L and Li W: Epithelial-mesenchymal transition in human cancer: Comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacol Ther. 150:33–46. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chaffer CL, San Juan BP, Lim E and Weinberg RA: EMT, cell plasticity and metastasis. Cancer Metastasis Rev. 35:645–654. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tang H, Massi D, Hemmings BA, Mandalà M, Hu Z, Wicki A and Xue G: AKT-ions with a TWIST between EMT and MET. Oncotarget. 7:62767–62777. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yeung KT and Yang J: Epithelial-mesenchymal transition in tumor metastasis. Mol Oncol. 11:28–39. 2017. View Article : Google Scholar : PubMed/NCBI | |
Urdiciain A, Erausquin E, Meléndez B, Rey JA, Idoate MA and Castresana JS: Tubastatin A, an inhibitor of HDAC6, enhances temozolomide-induced apoptosis and reverses the malignant phenotype of glioblastoma cells. Int J Oncol. 54:1797–1808. 2019.PubMed/NCBI | |
Feng X, Yao J, Gao X, Jing Y, Kang T, Jiang D, Jiang T, Feng J, Zhu Q, Jiang X and Chen J: Multi-targeting peptide-functionalized nanoparticles recognized vasculogenic mimicry, tumor neovasculature, and glioma cells for enhanced anti-glioma therapy. ACS Appl Mater Interfaces. 7:27885–27899. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kast RE, Skuli N, Karpel-Massler G, Frosina G, Ryken T and Halatsch ME: Blocking epithelial-to-mesenchymal transition in glioblastoma with a sextet of repurposed drugs: The EIS regimen. Oncotarget. 8:60727–60749. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li M, Zhang J, Zhou H and Xiang R: Primary cilia-related pathways moderate the development and therapy resistance of glioblastoma. Front Oncol. 11:7189952021. View Article : Google Scholar : PubMed/NCBI | |
Jenks AD, Vyse S, Wong JP, Kostaras E, Keller D, Burgoyne T, Shoemark A, Tsalikis A, de la Roche M, Michaelis M, et al: Primary cilia mediate diverse kinase inhibitor resistance mechanisms in cancer. Cell Rep. 23:3042–3055. 2018. View Article : Google Scholar : PubMed/NCBI | |
Carpenter RL and Lo HW: Hedgehog pathway and GLI1 isoforms in human cancer. Discov Med. 13:105–113. 2012.PubMed/NCBI | |
Honorato JR, Hauser-Davis RA, Saggioro EM, Correia FV, Sales-Junior SF, Soares LOS, Lima LDR, Moura-Neto V, Lopes GPF and Spohr TCLS: Role of sonic Hedgehog signaling in cell cycle, oxidative stress, and autophagy of temozolomide resistant glioblastoma. J Cell Physiol. 235:3798–3814. 2020. View Article : Google Scholar : PubMed/NCBI | |
Melamed JR, Morgan JT, Ioele SA, Gleghorn JP, Sims-Mourtada J and Day ES: Investigating the role of Hedgehog/GLI1 signaling in glioblastoma cell response to temozolomide. Oncotarget. 9:27000–27015. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lai IC, Shih PH, Yao CJ, Yeh CT, Wang-Peng J, Lui TN, Chuang SE, Hu TS, Lai TY and Lai GM: Elimination of cancer stem-like cells and potentiation of temozolomide sensitivity by honokiol in glioblastoma multiforme cells. PLoS One. 10:e01148302015. View Article : Google Scholar : PubMed/NCBI | |
Sarkaria JN, Kitange GJ, James CD, Plummer R, Calvert H, Weller M and Wick W: Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin Cancer Res. 14:2900–2908. 2008. View Article : Google Scholar : PubMed/NCBI | |
Munoz JL, Rodriguez-Cruz V, Walker ND, Greco SJ and Rameshwar P: Temozolomide resistance and tumor recurrence: Halting the Hedgehog. Cancer Cell Microenviron. 2:e7472015.PubMed/NCBI | |
Hung HC, Liu CC, Chuang JY, Su CL and Gean PW: Inhibition of sonic Hedgehog signaling suppresses glioma stem-like cells likely through inducing autophagic cell death. Front Oncol. 10:12332020. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Fu X, Wan Y, Wang Z, Jiang D and Shi L: miR-125b inhibitor enhance the chemosensitivity of glioblastoma stem cells to temozolomide by targeting Bak1. Tumour Biol. 35:6293–6302. 2014. View Article : Google Scholar : PubMed/NCBI | |
Melamed JR, Ioele SA, Hannum AJ, Ullman VM and Day ES: Polyethylenimine-spherical nucleic acid nanoparticles against Gli1 reduce the chemoresistance and stemness of glioblastoma cells. Mol Pharm. 15:5135–5145. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ding D, Lim KS and Eberhart CG: Arsenic trioxide inhibits Hedgehog, notch and stem cell properties in glioblastoma neurospheres. Acta Neuropathol Commun. 2:312014. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Huang S, Tian R, Chen J, Gao H, Xie C, Shan Y, Zhang Z, Gu S and Xu M: The protective autophagy activated by GANT-61 in MYCN amplified neuroblastoma cells is mediated by PERK. Oncotarget. 9:14413–14427. 2018. View Article : Google Scholar : PubMed/NCBI | |
Carballo GB, Ribeiro JH, Lopes GPF, Ferrer VP, Dezonne RS, Pereira CM and Spohr TCLSE: GANT-61 induces autophagy and apoptosis in glioblastoma cells despite their heterogeneity. Cell Mol Neurobiol. 41:1227–1244. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yin S, Du W, Wang F, Han B, Cui Y, Yang D, Chen H, Liu D, Liu X, Zhai X and Jiang C: MicroRNA-326 sensitizes human glioblastoma cells to curcumin via the SHH/GLI1 signaling pathway. Cancer Biol Ther. 19:260–270. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ji M, Zhang Z, Lin S, Wang C, Jin J, Xue N, Xu H and Chen X: The PI3K inhibitor XH30 enhances response to temozolomide in drug-resistant glioblastoma via the noncanonical Hedgehog signaling pathway. Front Pharmacol. 12:7492422021. View Article : Google Scholar : PubMed/NCBI | |
Han L, Tang L, Jiang Z and Jiang Y: Enhanced radiosensitization of human glioblastoma multiforme cells with phosphorylated peptides derived from Gli2. Neuropeptides. 70:87–92. 2018. View Article : Google Scholar : PubMed/NCBI | |
Urdiciain A, Erausquin E, Zelaya MV, Zazpe I, Lanciego JL, Meléndez B, Rey JA, Idoate MA, Riobo-Del Galdo NA and Castresana JS: Silencing of histone deacetylase 6 decreases cellular malignancy and contributes to primary cilium restoration, epithelial-to-mesenchymal transition reversion, and autophagy inhibition in glioblastoma cell lines. Biology (Basel). 10:4672021.PubMed/NCBI | |
Yang W, Liu Y, Gao R, Yu H and Sun T: HDAC6 inhibition induces glioma stem cells differentiation and enhances cellular radiation sensitivity through the SHH/Gli1 signaling pathway. Cancer Lett. 415:164–176. 2018. View Article : Google Scholar : PubMed/NCBI | |
Clement V, Sanchez P, de Tribolet N, Radovanovic I and Ruiz i Altaba A: Hedgehog-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol. 17:165–172. 2007. View Article : Google Scholar : PubMed/NCBI | |
Balbous A, Renoux B, Cortes U, Milin S, Guilloteau K, Legigan T, Rivet P, Boissonnade O, Martin S, Tripiana C, et al: Selective release of a cyclopamine glucuronide prodrug toward stem-like cancer cell inhibition in glioblastoma. Mol Cancer Ther. 13:2159–2169. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bensalma S, Chadeneau C, Legigan T, Renoux B, Gaillard A, de Boisvilliers M, Pinet-Charvet C, Papot S and Muller JM: Evaluation of cytotoxic properties of a cyclopamine glucuronide prodrug in rat glioblastoma cells and tumors. J Mol Neurosci. 55:51–61. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Chen D, Qian Z, Cui D, Gao L and Lou M: Hedgehog/Gli1 signaling pathway regulates MGMT expression and chemoresistance to temozolomide in human glioblastoma. Cancer Cell Int. 17:1172017. View Article : Google Scholar : PubMed/NCBI | |
Carballo GB, Matias D, Ribeiro JH, Pessoa LS, Arrais-Neto AM and Spohr TCLSE: Cyclopamine sensitizes glioblastoma cells to temozolomide treatment through sonic Hedgehog pathway. Life Sci. 257:1180272020. View Article : Google Scholar : PubMed/NCBI | |
Liu YJ, Ma YC, Zhang WJ, Yang ZZ, Liang DS, Wu ZF and Qi XR: Combination therapy with micellarized cyclopamine and temozolomide attenuate glioblastoma growth through Gli1 down-regulation. Oncotarget. 8:42495–42509. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Lv H, Hu J, Ji M, Xue N, Li C, Ma S, Zhou Q, Lin B, Li Y, et al: CAT3, a novel agent for medulloblastoma and glioblastoma treatment, inhibits tumor growth by disrupting the Hedgehog signaling pathway. Cancer Lett. 381:391–403. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ji M, Wang L, Chen J, Xue N, Wang C, Lai F, Wang R, Yu S, Jin J and Chen X: CAT3, a prodrug of 13a(S)-3-hydroxyl-6,7-dimethoxyphenanthro[9,10-b]-indolizidine, circumvents temozolomide-resistant glioblastoma via the Hedgehog signaling pathway, independently of O6-methylguanine DNA methyltransferase expression. Onco Targets Ther. 11:3671–3684. 2018. View Article : Google Scholar : PubMed/NCBI | |
Horrigan SK; Reproducibility Project, : Cancer Biology: Replication study: The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Elife. 6:e181732017. View Article : Google Scholar : PubMed/NCBI | |
von Roemeling CA, Wang Y, Qie Y, Yuan H, Zhao H, Liu X, Yang Z, Yang M, Deng W, Bruno KA, et al: Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nat Commun. 11:15082020. View Article : Google Scholar : PubMed/NCBI | |
Chakrabarti J, Holokai L, Syu L, Steele NG, Chang J, Wang J, Ahmed S, Dlugosz A and Zavros Y: Hedgehog signaling induces PD-L1 expression and tumor cell proliferation in gastric cancer. Oncotarget. 9. 37439-37457; 2018, View Article : Google Scholar | |
Grund-Gröschke S, Stockmaier G and Aberger F: Hedgehog/GLI signaling in tumor immunity-new therapeutic opportunities and clinical implications. Cell Commun Signal. 17:1722019. View Article : Google Scholar : PubMed/NCBI | |
SurveillanceEpidemiology, End Results Program, . Cancer stat facts: Brain and other nervous system cancer. 2019.https://seer.cancer.gov/statfacts/html/brain.htmlJuly 12–2019 | |
Braun S, Oppermann H, Mueller A, Renner C, Hovhannisyan A, Baran-Schmidt R, Gebhardt R, Hipkiss A, Thiery J, Meixensberger J and Gaunitz F: Hedgehog signaling in glioblastoma multiforme. Cancer Biol Ther. 13:487–495. 2012. View Article : Google Scholar : PubMed/NCBI | |
Filbin MG, Dabral SK, Pazyra-Murphy MF, Ramkissoon S, Kung AL, Pak E, Chung J, Theisen MA, Sun Y, Franchetti Y, et al: Coordinate activation of Shh and PI3K signaling in PTEN-deficient glioblastoma: New therapeutic opportunities. Nat Med. 19:1518–1523. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lan X, Jörg DJ, Cavalli FMG, Richards LM, Nguyen LV, Vanner RJ, Guilhamon P, Lee L, Kushida MM, Pellacani D, et al: Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy. Nature. 549:227–232. 2017. View Article : Google Scholar : PubMed/NCBI | |
Han S, Zhang C, Li Q, Dong J, Liu Y, Huang Y, Jiang T and Wu A: Tumour-infiltrating CD4(+) and CD8(+) lymphocytes as predictors of clinical outcome in glioma. Br J Cancer. 110:2560–2568. 2014. View Article : Google Scholar : PubMed/NCBI | |
Heimberger AB, Abou-Ghazal M, Reina-Ortiz C, Yang DS, Sun W, Qiao W, Hiraoka N and Fuller GN: Incidence and prognostic impact of FoxP3+ regulatory T cells in human gliomas. Clin Cancer Res. 14:5166–5172. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wainwright DA, Chang AL, Dey M, Balyasnikova IV, Kim CK, Tobias A, Cheng Y, Kim JW, Qiao J, Zhang L, et al: Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin Cancer Res. 20:5290–5301. 2014. View Article : Google Scholar : PubMed/NCBI | |
Heimberger AB, Sun W, Hussain SF, Dey M, Crutcher L, Aldape K, Gilbert M, Hassenbusch SJ, Sawaya R, Schmittling B, et al: Immunological responses in a patient with glioblastoma multiforme treated with sequential courses of temozolomide and immunotherapy: Case study. Neuro Oncol. 10:98–103. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jackson CM, Choi J and Lim M: Mechanisms of immunotherapy resistance: Lessons from glioblastoma. Nat Immunol. 20:1100–1109. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sampson JH, Gunn MD, Fecci PE and Ashley DM: Brain immunology and immunotherapy in brain tumours. Nat Rev Cancer. 20:12–25. 2020. View Article : Google Scholar : PubMed/NCBI | |
Reardon DA, Brandes AA, Omuro A, Mulholland P, Lim M, Wick A, Baehring J, Ahluwalia MS, Roth P, Bähr O, et al: Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: The CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol. 6:1003–1010. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chiocca EA, Nassiri F, Wang J, Peruzzi P and Zadeh G: Viral and other therapies for recurrent glioblastoma: Is a 24-month durable response unusual? Neuro Oncol. 21:14–25. 2019. View Article : Google Scholar : PubMed/NCBI | |
Iorgulescu JB, Reardon DA, Chiocca EA and Wu CJ: Immunotherapy for glioblastoma: Going viral. Nat Med. 24:1094–1096. 2018. View Article : Google Scholar : PubMed/NCBI | |
Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, Ostberg JR, Blanchard MS, Kilpatrick J, Simpson J, et al: Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 375:2561–2569. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lassman A, Pugh S, Wang T, Aldape K, Gan H, Preusser M, Vogelbaum M, Sulman E, Won M, Zhang P, et al: ACTR-21. A randomized, double-blind, placebo-controlled phase 3 trial of depatuxizumab mafodotin (ABT-414) in epidermal growth factor receptor (EGFR) amplified (AMP) newly diagnosed glioblastoma (nGBM). Neuro Oncol. 21 (Suppl 6):vi172019. View Article : Google Scholar : PubMed/NCBI | |
Ma DJ, Galanis E, Anderson SK, Schiff D, Kaufmann TJ, Peller PJ, Giannini C, Brown PD, Uhm JH, McGraw S, et al: A phase II trial of everolimus, temozolomide, and radiotherapy in patients with newly diagnosed glioblastoma: NCCTG N057K. Neuro Oncol. 17:1261–1269. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wick W, Gorlia T, Bady P, Platten M, van den Bent MJ, Taphoorn MJ, Steuve J, Brandes AA, Hamou MF, Wick A, et al: Phase II study of radiotherapy and temsirolimus versus radiochemotherapy with temozolomide in patients with newly diagnosed glioblastoma without MGMT promoter hypermethylation (EORTC 26082). Clin Cancer Res. 22:4797–4806. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lombardi G, De Salvo GL, Brandes AA, Eoli M, Rudà R, Faedi M, Lolli I, Pace A, Daniele B, Pasqualetti F, et al: Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): A multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol. 20:110–119. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kim EJ, Sahai V, Abel EV, Griffith KA, Greenson JK, Takebe N, Khan GN, Blau JL, Craig R, Balis UG, et al: Pilot clinical trial of Hedgehog pathway inhibitor GDC-0449 (vismodegib) in combination with gemcitabine in patients with metastatic pancreatic adenocarcinoma. Clin Cancer Res. 20:5937–5945. 2014. View Article : Google Scholar : PubMed/NCBI | |
Berlin J, Bendell JC, Hart LL, Firdaus I, Gore I, Hermann RC, Mulcahy MF, Zalupski MM, Mackey HM, Yauch RL, et al: A randomized phase II trial of vismodegib versus placebo with FOLFOX or FOLFIRI and bevacizumab in patients with previously untreated metastatic colorectal cancer. Clin Cancer Res. 19:258–267. 2013. View Article : Google Scholar : PubMed/NCBI | |
Belani CP, Dahlberg SE, Rudin CM, Fleisher M, Chen HX, Takebe N, Velasco MR Jr, Tester WJ, Sturtz K, Hann CL, et al: Vismodegib or cixutumumab in combination with standard chemotherapy for patients with extensive-stage small cell lung cancer: A trial of the ECOG-ACRIN cancer research group (E1508). Cancer. 122:2371–2378. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zubčić V, Rinčić N, Kurtović M, Trnski D, Musani V, Ozretić P, Levanat S, Leović D and Sabol M: GANT61 and lithium chloride inhibit the growth of head and neck cancer cell lines through the regulation of GLI3 processing by GSK3β. Int J Mol Sci. 21:64102020. View Article : Google Scholar : PubMed/NCBI | |
Miyazaki Y, Matsubara S, Ding Q, Tsukasa K, Yoshimitsu M, Kosai K and Takao S: Efficient elimination of pancreatic cancer stem cells by Hedgehog/GLI inhibitor GANT61 in combination with mTOR inhibition. Mol Cancer. 15:492016. View Article : Google Scholar : PubMed/NCBI | |
Pietrobono S, Gagliardi S and Stecca B: Non-canonical Hedgehog signaling pathway in cancer: Activation of GLI transcription factors beyond smoothened. Front Genet. 10:5562019. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Lee JJ, Kim J, Gardner D and Beachy PA: Arsenic antagonizes the Hedgehog pathway by preventing ciliary accumulation and reducing stability of the Gli2 transcriptional effector. Proc Natl Acad Sci USA. 107:13432–13437. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yanai K, Nakamura M, Akiyoshi T, Nagai S, Wada J, Koga K, Noshiro H, Nagai E, Tsuneyoshi M, Tanaka M and Katano M: Crosstalk of Hedgehog and Wnt pathways in gastric cancer. Cancer Lett. 263:145–156. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nanta R, Shrivastava A, Sharma J, Shankar S and Srivastava RK: Inhibition of sonic Hedgehog and PI3K/Akt/mTOR pathways cooperate in suppressing survival, self-renewal and tumorigenic potential of glioblastoma-initiating cells. Mol Cell Biochem. 454:11–23. 2019. View Article : Google Scholar : PubMed/NCBI |