Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
September-2022 Volume 24 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2022 Volume 24 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Hedgehog signaling regulates the development and treatment of glioblastoma (Review)

  • Authors:
    • Hongping Wang
    • Qun Lai
    • Dayong Wang
    • Jian Pei
    • Baogang Tian
    • Yunhe Gao
    • Zhaoguo Gao
    • Xiang Xu
  • View Affiliations / Copyright

    Affiliations: Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China, Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 294
    |
    Published online on: July 5, 2022
       https://doi.org/10.3892/ol.2022.13414
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Glioblastoma (GBM) is the most common and fatal malignant tumor type of the central nervous system. GBM affects public health and it is important to identify biomarkers to improve diagnosis, reduce drug resistance and improve prognosis (e.g., personalized targeted therapies). Hedgehog (HH) signaling has an important role in embryonic development, tissue regeneration and stem cell renewal. A large amount of evidence indicates that both normative and non‑normative HH signals have an important role in GBM. The present study reviewed the role of the HH signaling pathway in the occurrence and progression of GBM. Furthermore, the effectiveness of drugs that target different components of the HH pathway was also examined. The HH pathway has an important role in reversing drug resistance after GBM conventional treatment. The present review highlighted the relevance of HH signaling in GBM and outlined that this pathway has a key role in the occurrence, development and treatment of GBM.
View Figures

Figure 1

Figure 2

View References

1 

Ostrom QT, Gittleman H, de Blank PM, Finlay JL, Gurney JG, McKean-Cowdin R, Stearns DS, Wolff JE, Liu M, Wolinsky Y, et al: American brain tumor association adolescent and young adult primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro Oncol. 18 (Suppl 1):i1–i50. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2011-2015. Neuro Oncol. 20 (Supp l4):iv1–iv86. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Vadgaonkar R, Epari S, Chinnaswamy G, Krishnatry R, Tonse R, Gupta T and Jalali R: Distinct demographic profile and molecular markers of primary CNS tumor in 1873 adolescent and young adult patient population. Childs Nerv Syst. 34:1489–1495. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Husson O, Zebrack B, Block R, Embry L, Aguilar C, Hayes-Lattin B and Cole S: Personality traits and health-related quality of life among adolescent and young adult cancer patients: The role of psychological distress. J Adolesc Young Adult Oncol. 6:358–362. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Chandra V, Das T, Gulati P, Biswas NK, Rote S, Chatterjee U, Ghosh SN, Deb S, Saha SK, Chowdhury AK, et al: Hedgehog signaling pathway is active in GBM with GLI1 mRNA expression showing a single continuous distribution rather than discrete high/low clusters. PLoS One. 10:e01163902015. View Article : Google Scholar : PubMed/NCBI

6 

Azzi S, Treps L, Leclair HM, Ngo HM, Harford-Wright E and Gavard J: Desert Hedgehog/Patch2 axis contributes to vascular permeability and angiogenesis in glioblastoma. Front Pharmacol. 6:2812015. View Article : Google Scholar : PubMed/NCBI

7 

Takezaki T, Hide T, Takanaga H, Nakamura H, Kuratsu J and Kondo T: Essential role of the Hedgehog signaling pathway in human glioma-initiating cells. Cancer Sci. 102:1306–1312. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Chang J, Guo C, Li J, Liang Z, Wang Y, Yu A, Liu R, Guo Y, Chen J and Huang S: EN1 regulates cell growth and proliferation in human glioma cells via Hedgehog signaling. Int J Mol Sci. 23:11232022. View Article : Google Scholar : PubMed/NCBI

9 

Chang L, Zhang P, Zhao D, Liu H, Wang Q, Li C, Du W, Liu X, Zhang H, Zhang Z and Jiang C: The Hedgehog antagonist HHIP as a favorable prognosticator in glioblastoma. Tumour Biol. 37:3979–3986. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Infante P, Mori M, Alfonsi R, Ghirga F, Aiello F, Toscano S, Ingallina C, Siler M, Cucchi D, Po A, et al: Gli1/DNA interaction is a druggable target for Hedgehog-dependent tumors. EMBO J. 34:200–217. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P and Ellison DW: The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Cancer Genome Atlas Research Network, . Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 455:1061–1068. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, et al: An integrated genomic analysis of human glioblastoma multiforme. Science. 321:1807–1812. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, Morozova O, Newton Y, Radenbaugh A, Pagnotta SM, et al: Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell. 164:550–563. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, deCarvalho AC, Lyu S, Li P, Li Y, et al: Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 32:42–56.e6. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Sturm D, Bender S, Jones DT, Lichter P, Grill J, Becher O, Hawkins C, Majewski J, Jones C, Costello JF, et al: Paediatric and adult glioblastoma: Multiform (epi)genomic culprits emerge. Nat Rev Cancer. 14:92–107. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, Koelsche C, Sahm F, Chavez L, Reuss DE, et al: DNA methylation-based classification of central nervous system tumours. Nature. 555:469–474. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Torrisi F, Alberghina C, D'Aprile S, Pavone AM, Longhitano L, Giallongo S, Tibullo D, Di Rosa M, Zappalà A, Cammarata FP, et al: The hallmarks of glioblastoma: Heterogeneity, intercellular crosstalk and molecular signature of invasiveness and progression. Biomedicines. 10:8062022. View Article : Google Scholar : PubMed/NCBI

19 

Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016. Neuro Oncol 21 (Suppl 5):v1-v100; 2019, View Article : Google Scholar

20 

Roa W, Brasher PM, Bauman G, Anthes M, Bruera E, Chan A, Fisher B, Fulton D, Gulavita S, Hao C, et al: Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: A prospective randomized clinical trial. J Clin Oncol. 22:1583–1588. 2004. View Article : Google Scholar : PubMed/NCBI

21 

Suchorska B, Weller M, Tabatabai G, Senft C, Hau P, Sabel MC, Herrlinger U, Ketter R, Schlegel U, Marosi C, et al: Complete resection of contrast-enhancing tumor volume is associated with improved survival in recurrent glioblastoma-results from the DIRECTOR trial. Neuro Oncol. 18:549–556. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Stupp R, Wong ET, Kanner AA, Steinberg D, Engelhard H, Heidecke V, Kirson ED, Taillibert S, Liebermann F, Dbalý V, et al: NovoTTF-100A versus physician's choice chemotherapy in recurrent glioblastoma: A randomised phase III trial of a novel treatment modality. Eur J Cancer. 48:2192–2202. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Höing S, Yeh TY, Baumann M, Martinez NE, Habenberger P, Kremer L, Drexler HCA, Küchler P, Reinhardt P, Choidas A, et al: Dynarrestin, a novel inhibitor of cytoplasmic dynein. Cell Chem Biol. 25:357–369.e6. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Rocha CRR, Reily Rocha A, Molina Silva M, Rodrigues Gomes L, Teatin Latancia M, Andrade Tomaz M, de Souza I, Karolynne Seregni Monteiro L and Menck CFM: Revealing temozolomide resistance mechanisms via genome-wide CRISPR libraries. Cells. 9:25732020. View Article : Google Scholar : PubMed/NCBI

25 

Ebrahimi A, Larijani L, Moradi A and Ebrahimi MR: Hedgehog signalling pathway: Carcinogenesis and targeted therapy. Iran J Cancer Prev. 6:36–43. 2013.PubMed/NCBI

26 

Jin X, Jeon HM, Jin X, Kim EJ, Yin J, Jeon HY, Sohn YW, Oh SY, Kim JK, Kim SH, et al: The ID1-CULLIN3 axis regulates intracellular SHH and WNT signaling in glioblastoma stem cells. Cell Rep. 16:1629–1641. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Huynh DL, Koh H, Chandimali N, Zhang JJ, Kim N, Kang TY, Ghosh M, Gera M, Park YH, Kwon T and Jeong DK: BRM270 inhibits the proliferation of CD44 positive pancreatic ductal adenocarcinoma cells via downregulation of sonic Hedgehog signaling. Evid Based Complement Alternat Med. 2019:86204692019. View Article : Google Scholar : PubMed/NCBI

28 

Marigo V and Tabin CJ: Regulation of patched by sonic Hedgehog in the developing neural tube. Proc Natl Acad Sci USA. 93:9346–9351. 1996. View Article : Google Scholar : PubMed/NCBI

29 

Plotnikova OV, Golemis EA and Pugacheva EN: Cell cycle-dependent ciliogenesis and cancer. Cancer Res. 68:2058–2061. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Mastronardi FG, Dimitroulakos J, Kamel-Reid S and Manoukian AS: Co-localization of patched and activated sonic Hedgehog to lysosomes in neurons. Neuroreport. 11:581–585. 2000. View Article : Google Scholar : PubMed/NCBI

31 

Rubin LL and de Sauvage FJ: Targeting the Hedgehog pathway in cancer. Nat Rev Drug Discov. 5:1026–1033. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Alexandre C, Jacinto A and Ingham PW: Transcriptional activation of Hedgehog target genes in Drosophila is mediated directly by the cubitus interruptus protein, a member of the GLI family of zinc finger DNA-binding proteins. Genes Dev. 10:2003–2013. 1996. View Article : Google Scholar : PubMed/NCBI

33 

Pan Y, Bai CB, Joyner AL and Wang B: Sonic Hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol Cell Biol. 26:3365–3377. 2006. View Article : Google Scholar : PubMed/NCBI

34 

Wang B, Fallon JF and Beachy PA: Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell. 100:423–434. 2000. View Article : Google Scholar : PubMed/NCBI

35 

Niewiadomski P, Kong JH, Ahrends R, Ma Y, Humke EW, Khan S, Teruel MN, Novitch BG and Rohatgi R: Gli protein activity is controlled by multisite phosphorylation in vertebrate Hedgehog signaling. Cell Rep. 6:168–181. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Gonnissen A, Isebaert S and Haustermans K: Targeting the Hedgehog signaling pathway in cancer: Beyond smoothened. Oncotarget. 6:13899–13913. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Skoda AM, Simovic D, Karin V, Kardum V, Vranic S and Serman L: The role of the Hedgehog signaling pathway in cancer: A comprehensive review. Bosn J Basic Med Sci. 18:8–20. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Sabol M, Trnski D, Musani V, Ozretić P and Levanat S: Role of GLI transcription factors in pathogenesis and their potential as new therapeutic targets. Int J Mol Sci. 19:25622018. View Article : Google Scholar : PubMed/NCBI

39 

Endoh-Yamagami S, Evangelista M, Wilson D, Wen X, Theunissen JW, Phamluong K, Davis M, Scales SJ, Solloway MJ, de Sauvage FJ and Peterson AS: The mammalian Cos2 homolog Kif7 plays an essential role in modulating Hh signal transduction during development. Curr Biol. 19:1320–1326. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Denef N, Neubüser D, Perez L and Cohen SM: Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell. 102:521–531. 2000. View Article : Google Scholar : PubMed/NCBI

41 

Tschaikner P, Enzler F, Torres-Quesada O, Aanstad P and Stefan E: Hedgehog and Gpr161: Regulating cAMP signaling in the primary cilium. Cells. 9:1182020. View Article : Google Scholar : PubMed/NCBI

42 

Price MA and Kalderon D: Proteolysis of the Hedgehog signaling effector cubitus interruptus requires phosphorylation by glycogen synthase kinase 3 and casein kinase 1. Cell. 108:823–835. 2002. View Article : Google Scholar : PubMed/NCBI

43 

Méthot N and Basler K: Suppressor of fused opposes Hedgehog signal transduction by impeding nuclear accumulation of the activator form of cubitus interruptus. Development. 127:4001–4010. 2000. View Article : Google Scholar : PubMed/NCBI

44 

Brennan D, Chen X, Cheng L, Mahoney M and Riobo NA: Noncanonical Hedgehog signaling. Vitam Horm. 88:55–72. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Robbins DJ, Fei DL and Riobo NA: The Hedgehog signal transduction network. Sci Signal. 5:re62012. View Article : Google Scholar : PubMed/NCBI

46 

Awasthi A, Woolley AG, Lecomte FJ, Hung N, Baguley BC, Wilbanks SM, Jeffs AR and Tyndall JD: Variable expression of GLIPR1 correlates with invasive potential in melanoma cells. Front Oncol. 3:2252013. View Article : Google Scholar : PubMed/NCBI

47 

Wang K, Pan L, Che X, Cui D and Li C: Sonic Hedgehog/GLI1 signaling pathway inhibition restricts cell migration and invasion in human gliomas. Neurol Res. 32:975–980. 2010. View Article : Google Scholar : PubMed/NCBI

48 

Lo HW, Zhu H, Cao X, Aldrich A and Ali-Osman F: A novel splice variant of GLI1 that promotes glioblastoma cell migration and invasion. Cancer Res. 69:6790–6798. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Reifenberger J, Wolter M, Weber RG, Megahed M, Ruzicka T, Lichter P and Reifenberger G: Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res. 58:1798–1803. 1998.PubMed/NCBI

50 

Lee Y, Miller HL, Jensen P, Hernan R, Connelly M, Wetmore C, Zindy F, Roussel MF, Curran T, Gilbertson RJ and McKinnon PJ: A molecular fingerprint for medulloblastoma. Cancer Res. 63:5428–5437. 2003.PubMed/NCBI

51 

Lim CB, Prêle CM, Cheah HM, Cheng YY, Klebe S, Reid G, Watkins DN, Baltic S, Thompson PJ and Mutsaers SE: Mutational analysis of Hedgehog signaling pathway genes in human malignant mesothelioma. PLoS One. 8:e666852013. View Article : Google Scholar : PubMed/NCBI

52 

Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K, Parker AR, Shimada Y, Eshleman JR, Watkins DN and Beachy PA: Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature. 425:846–851. 2003. View Article : Google Scholar : PubMed/NCBI

53 

Noman AS, Uddin M, Rahman MZ, Nayeem MJ, Alam SS, Khatun Z, Wahiduzzaman M, Sultana A, Rahman ML, Ali MY, et al: Overexpression of sonic Hedgehog in the triple negative breast cancer: Clinicopathological characteristics of high burden breast cancer patients from Bangladesh. Sci Rep. 6:188302016. View Article : Google Scholar : PubMed/NCBI

54 

Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA and Baylin SB: Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature. 422:313–317. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Riobo-Del Galdo NA, Lara Montero Á and Wertheimer EV: Role of Hedgehog signaling in breast cancer: Pathogenesis and therapeutics. Cells. 8:3752019. View Article : Google Scholar : PubMed/NCBI

56 

Hanahan D and Coussens LM: Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell. 21:309–322. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Petersen OW, Rønnov-Jessen L, Howlett AR and Bissell MJ: Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci USA. 89:9064–9068. 1992. View Article : Google Scholar : PubMed/NCBI

58 

Martinez-Outschoorn U, Sotgia F and Lisanti MP: Tumor microenvironment and metabolic synergy in breast cancers: Critical importance of mitochondrial fuels and function. Semin Oncol. 41:195–216. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Martinez-Outschoorn UE, Lin Z, Ko YH, Goldberg AF, Flomenberg N, Wang C, Pavlides S, Pestell RG, Howell A, Sotgia F and Lisanti MP: Understanding the metabolic basis of drug resistance: Therapeutic induction of the Warburg effect kills cancer cells. Cell Cycle. 10:2521–2528. 2011. View Article : Google Scholar : PubMed/NCBI

60 

Chang L, Zhao D, Liu HB, Wang QS, Zhang P, Li CL, Du WZ, Wang HJ, Liu X, Zhang ZR and Jiang CL: Activation of sonic Hedgehog signaling enhances cell migration and invasion by induction of matrix metalloproteinase-2 and −9 via the phosphoinositide-3 kinase/AKT signaling pathway in glioblastoma. Mol Med Rep. 12:6702–6710. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Torrisi F, Alberghina C, Lo Furno D, Zappalà A, Valable S, Li Volti G, Tibullo D, Vicario N and Parenti R: Connexin 43 and Sonic Hedgehog pathway interplay in glioblastoma cell proliferation and migration. Biology (Basel). 10:7672021.PubMed/NCBI

62 

Cherepanov SA, Cherepanova KI, Grinenko NF, Antonova OM and Chekhonin VP: Effect of Hedgehog signaling pathway activation on proliferation of high-grade gliomas. Bull Exp Biol Med. 161:674–678. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Rowitch DH, S-Jacques B, Lee SM, Flax JD, Snyder EY and McMahon AP: Sonic Hedgehog regulates proliferation and inhibits differentiation of CNS precursor cells. J Neurosci. 19:8954–8965. 1999. View Article : Google Scholar : PubMed/NCBI

64 

Jiang K, Wang YP, Wang XD, Hui XB, Ding LS, Liu J and Liu D: Fms related tyrosine kinase 1 (Flt1) functions as an oncogene and regulates glioblastoma cell metastasis by regulating sonic Hedgehog signaling. Am J Cancer Res. 7:1164–1176. 2017.PubMed/NCBI

65 

Hamerlik P, Lathia JD, Rasmussen R, Wu Q, Bartkova J, Lee M, Moudry P, Bartek J Jr, Fischer W, Lukas J, et al: Autocrine VEGF-VEGFR2-neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med. 209:507–520. 2012. View Article : Google Scholar : PubMed/NCBI

66 

Kloepper J, Riedemann L, Amoozgar Z, Seano G, Susek K, Yu V, Dalvie N, Amelung RL, Datta M, Song JW, et al: Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc Natl Acad Sci USA. 113:4476–4481. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Chen L, Wang L, Qin J and Wei DS: CtBP2 interacts with ZBTB18 to promote malignancy of glioblastoma. Life Sci. 262:1184772020. View Article : Google Scholar : PubMed/NCBI

68 

Bensalma S, Turpault S, Balandre AC, De Boisvilliers M, Gaillard A, Chadéneau C and Muller JM: PKA at a cross-road of signaling pathways involved in the regulation of glioblastoma migration and invasion by the neuropeptides VIP and PACAP. Cancers (Basel). 11:1232019. View Article : Google Scholar : PubMed/NCBI

69 

Henao-Restrepo J, Caro-Urrego YA, Barrera-Arenas LM, Arango-Viana JC and Bermudez-Munoz M: Expression of activator proteins of SHH/GLI and PI3K/Akt/mTORC1 signaling pathways in human gliomas is associated with high grade tumors. Exp Mol Pathol. 122:1046732021. View Article : Google Scholar : PubMed/NCBI

70 

Kinzler KW, Bigner SH, Bigner DD, Trent JM, Law ML, O'Brien SJ, Wong J and Vogelstein B: Identification of an amplified, highly expressed gene in a human glioma. Science. 236:70–73. 1987. View Article : Google Scholar : PubMed/NCBI

71 

Bigner SH, Wong AJ, Mark J, Muhlbaier LH, Kinzler KW, Vogelstein B and Bigner DD: Relationship between gene amplification and chromosomal deviations in malignant human gliomas. Cancer Genet Cytogenet. 29:165–170. 1987. View Article : Google Scholar : PubMed/NCBI

72 

ten Haaf A, Bektas N, von Serenyi S, Losen I, Arweiler EC, Hartmann A, Knuchel R and Dahl E: Expression of the glioma-associated oncogene homolog (GLI) 1 in human breast cancer is associated with unfavourable overall survival. BMC Cancer. 9:2982009. View Article : Google Scholar : PubMed/NCBI

73 

Zhou A, Lin K, Zhang S, Ma L, Xue J, Morris SA, Aldape KD and Huang S: Gli1-induced deubiquitinase USP48 aids glioblastoma tumorigenesis by stabilizing Gli1. EMBO Rep. 18:1318–1330. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Kim Y, Do IG, Hong M and Suh YL: Negative prognostic effect of low nuclear GLI1 expression in glioblastomas. J Neurooncol. 133:69–76. 2017. View Article : Google Scholar : PubMed/NCBI

75 

Xue J, Zhou A, Tan C, Wu Y, Lee HT, Li W, Xie K and Huang S: Forkhead box M1 is essential for nuclear localization of glioma-associated oncogene homolog 1 in glioblastoma multiforme cells by promoting importin-7 expression. J Biol Chem. 290:18662–18670. 2015. View Article : Google Scholar : PubMed/NCBI

76 

Zhu H, Carpenter RL, Han W and Lo HW: The GLI1 splice variant TGLI1 promotes glioblastoma angiogenesis and growth. Cancer Lett. 343:51–61. 2014. View Article : Google Scholar : PubMed/NCBI

77 

Zhang Z, Zheng X, Luan Y and Liu Y, Li X, Liu C, Lu H, Chen X and Liu Y: Activity of metabotropic glutamate receptor 4 suppresses proliferation and promotes apoptosis with inhibition of Gli-1 in human glioblastoma cells. Front Neurosci. 12:3202018. View Article : Google Scholar : PubMed/NCBI

78 

Sargazi ML, Juybari KB, Tarzi ME, Amirkhosravi A, Nematollahi MH, Mirzamohammdi S, Mehrbani M and Mehrabani M and Mehrabani M: Naringenin attenuates cell viability and migration of C6 glioblastoma cell line: A possible role of Hedgehog signaling pathway. Mol Biol Rep. 48:6413–6421. 2021. View Article : Google Scholar : PubMed/NCBI

79 

Chantaravisoot N, Wongkongkathep P, Loo AJ, Mischel SP and Tamanoi F: Significance of filamin A in mTORC2 function in glioblastoma. Mol Cancer. 14:e1272015. View Article : Google Scholar : PubMed/NCBI

80 

Maiti S, Mondal S, Satyavarapu EM and Mandal C: mTORC2 regulates Hedgehog pathway activity by promoting stability to Gli2 protein and its nuclear translocation. Cell Death Dis. 8:e29262017. View Article : Google Scholar : PubMed/NCBI

81 

Tanigawa S, Fujita M, Moyama C, Ando S, Ii H, Kojima Y, Fujishita T, Aoki M, Takeuchi H, Yamanaka T, et al: Inhibition of Gli2 suppresses tumorigenicity in glioblastoma stem cells derived from a de novo murine brain cancer model. Cancer Gene Ther. 28:1339–1352. 2021. View Article : Google Scholar : PubMed/NCBI

82 

Zaphiropoulos PG, Undén AB, Rahnama F, Hollingsworth RE and Toftgård R: PTCH2, a novel human patched gene, undergoing alternative splicing and up-regulated in basal cell carcinomas. Cancer Res. 59:787–792. 1999.PubMed/NCBI

83 

Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, Barsh GS and Clayton DA: Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet. 18:231–236. 1998. View Article : Google Scholar : PubMed/NCBI

84 

Rudin CM, Hann CL, Laterra J, Yauch RL, Callahan CA, Fu L, Holcomb T, Stinson J, Gould SE, Coleman B, et al: Treatment of medulloblastoma with Hedgehog pathway inhibitor GDC-0449. N Engl J Med. 361:1173–1178. 2009. View Article : Google Scholar : PubMed/NCBI

85 

Scales SJ and de Sauvage FJ: Mechanisms of Hedgehog pathway activation in cancer and implications for therapy. Trends Pharmacol Sci. 30:303–312. 2009. View Article : Google Scholar : PubMed/NCBI

86 

Marjanovic Vicentic J, Drakulic D, Garcia I, Vukovic V, Aldaz P, Puskas N, Nikolic I, Tasic G, Raicevic S, Garros-Regulez L, et al: SOX3 can promote the malignant behavior of glioblastoma cells. Cell Oncol (Dordr). 42:41–54. 2019. View Article : Google Scholar : PubMed/NCBI

87 

Saito A, Kanemoto S, Zhang Y, Asada R, Hino K and Imaizumi K: Chondrocyte proliferation regulated by secreted luminal domain of ER stress transducer BBF2H7/CREB3L2. Mol Cell. 53:127–139. 2014. View Article : Google Scholar : PubMed/NCBI

88 

Iwamoto H, Matsuhisa K, Saito A, Kanemoto S, Asada R, Hino K, Takai T, Cui M, Cui X, Kaneko M, et al: Promotion of cancer cell proliferation by cleaved and secreted luminal domains of ER stress transducer BBF2H7. PLoS One. 10:e01259822015. View Article : Google Scholar : PubMed/NCBI

89 

Guen VJ, Chavarria TE, Kröger C, Ye X, Weinberg RA and Lees JA: EMT programs promote basal mammary stem cell and tumor-initiating cell stemness by inducing primary ciliogenesis and Hedgehog signaling. Proc Natl Acad Sci USA. 114:E10532–E10539. 2017. View Article : Google Scholar : PubMed/NCBI

90 

Brandner S: Nanog, Gli, and p53: A new network of stemness in development and cancer. EMBO J. 29:2475–2476. 2010. View Article : Google Scholar : PubMed/NCBI

91 

Rich JN and Eyler CE: Cancer stem cells in brain tumor biology. Cold Spring Harb Symp Quant Biol. 73:411–420. 2008. View Article : Google Scholar : PubMed/NCBI

92 

de Groot JF, Fuller G, Kumar AJ, Piao Y, Eterovic K, Ji Y and Conrad CA: Tumor invasion after treatment of glioblastoma with bevacizumab: Radiographic and pathologic correlation in humans and mice. Neuro Oncol. 12:233–242. 2010. View Article : Google Scholar : PubMed/NCBI

93 

Han B, Wang R, Chen Y, Meng X, Wu P, Li Z, Duan C, Li Q, Li Y, Zhao S, et al: QKI deficiency maintains glioma stem cell stemness by activating the SHH/GLI1 signaling pathway. Cell Oncol (Dordr). 42:801–813. 2019. View Article : Google Scholar : PubMed/NCBI

94 

Yuan Y, Zhang M, Yan G, Ma Q, Yan Z, Wang L, Yang K and Guo D: Nanog promotes stem-like traits of glioblastoma cells. Front Biosci (Landmark Ed). 26:552–565. 2021. View Article : Google Scholar : PubMed/NCBI

95 

Silvestri I, Testa F, Zappasodi R, Cairo CW, Zhang Y, Lupo B, Galli R, Di Nicola M, Venerando B and Tringali C: Sialidase NEU4 is involved in glioblastoma stem cell survival. Cell Death Dis. 5:e13812014. View Article : Google Scholar : PubMed/NCBI

96 

Kundu S, Nandhu MS, Longo SL, Longo JA, Rai S, Chin LS, Richardson TE and Viapiano MS: The scaffolding protein DLG5 promotes glioblastoma growth by controlling sonic Hedgehog signaling in tumor stem cells. Neuro Oncol: noac001. 2022.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

97 

Park MG, Seo S, Ham SW, Choi SH and Kim H: Dihydropyrimidinase-related protein 5 controls glioblastoma stem cell characteristics as a biomarker of proneural-subtype glioblastoma stem cells. Oncol Lett. 20:1153–1162. 2020. View Article : Google Scholar : PubMed/NCBI

98 

Mondal S, Bhattacharya K and Mandal C: Nutritional stress reprograms dedifferention in glioblastoma multiforme driven by PTEN/Wnt/Hedgehog axis: A stochastic model of cancer stem cells. Cell Death Discov. 4:1102018. View Article : Google Scholar : PubMed/NCBI

99 

Yan GN, Yang L, Lv YF, Shi Y, Shen LL, Yao XH, Guo QN, Zhang P, Cui YH, Zhang X, et al: Endothelial cells promote stem-like phenotype of glioma cells through activating the Hedgehog pathway. J Pathol. 234:11–22. 2014. View Article : Google Scholar : PubMed/NCBI

100 

Sekulic A, Migden MR, Oro AE, Dirix L, Lewis KD, Hainsworth JD, Solomon JA, Yoo S, Arron ST, Friedlander PA, et al: Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med. 366:2171–2179. 2012. View Article : Google Scholar : PubMed/NCBI

101 

Robinson GW, Orr BA, Wu G, Gururangan S, Lin T, Qaddoumi I, Packer RJ, Goldman S, Prados MD, Desjardins A, et al: Vismodegib exerts targeted efficacy against recurrent sonic Hedgehog-subgroup medulloblastoma: Results from phase II pediatric brain tumor consortium studies PBTC-025B and PBTC-032. J Clin Oncol. 33:2646–2654. 2015. View Article : Google Scholar : PubMed/NCBI

102 

Wong R, Turlova E, Feng ZP, Rutka JT and Sun HS: Activation of TRPM7 by naltriben enhances migration and invasion of glioblastoma cells. Oncotarget. 8:11239–11248. 2017. View Article : Google Scholar : PubMed/NCBI

103 

Shojaei F, Lee JH, Simmons BH, Wong A, Esparza CO, Plumlee PA, Feng J, Stewart AE, Hu-Lowe DD and Christensen JG: HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Res. 70:10090–10100. 2010. View Article : Google Scholar : PubMed/NCBI

104 

Lu KV, Chang JP, Parachoniak CA, Pandika MM, Aghi MK, Meyronet D, Isachenko N, Fouse SD, Phillips JJ, Cheresh DA, et al: VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell. 22:21–35. 2012. View Article : Google Scholar : PubMed/NCBI

105 

Li L and Li W: Epithelial-mesenchymal transition in human cancer: Comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacol Ther. 150:33–46. 2015. View Article : Google Scholar : PubMed/NCBI

106 

Chaffer CL, San Juan BP, Lim E and Weinberg RA: EMT, cell plasticity and metastasis. Cancer Metastasis Rev. 35:645–654. 2016. View Article : Google Scholar : PubMed/NCBI

107 

Tang H, Massi D, Hemmings BA, Mandalà M, Hu Z, Wicki A and Xue G: AKT-ions with a TWIST between EMT and MET. Oncotarget. 7:62767–62777. 2016. View Article : Google Scholar : PubMed/NCBI

108 

Yeung KT and Yang J: Epithelial-mesenchymal transition in tumor metastasis. Mol Oncol. 11:28–39. 2017. View Article : Google Scholar : PubMed/NCBI

109 

Urdiciain A, Erausquin E, Meléndez B, Rey JA, Idoate MA and Castresana JS: Tubastatin A, an inhibitor of HDAC6, enhances temozolomide-induced apoptosis and reverses the malignant phenotype of glioblastoma cells. Int J Oncol. 54:1797–1808. 2019.PubMed/NCBI

110 

Feng X, Yao J, Gao X, Jing Y, Kang T, Jiang D, Jiang T, Feng J, Zhu Q, Jiang X and Chen J: Multi-targeting peptide-functionalized nanoparticles recognized vasculogenic mimicry, tumor neovasculature, and glioma cells for enhanced anti-glioma therapy. ACS Appl Mater Interfaces. 7:27885–27899. 2015. View Article : Google Scholar : PubMed/NCBI

111 

Kast RE, Skuli N, Karpel-Massler G, Frosina G, Ryken T and Halatsch ME: Blocking epithelial-to-mesenchymal transition in glioblastoma with a sextet of repurposed drugs: The EIS regimen. Oncotarget. 8:60727–60749. 2017. View Article : Google Scholar : PubMed/NCBI

112 

Li M, Zhang J, Zhou H and Xiang R: Primary cilia-related pathways moderate the development and therapy resistance of glioblastoma. Front Oncol. 11:7189952021. View Article : Google Scholar : PubMed/NCBI

113 

Jenks AD, Vyse S, Wong JP, Kostaras E, Keller D, Burgoyne T, Shoemark A, Tsalikis A, de la Roche M, Michaelis M, et al: Primary cilia mediate diverse kinase inhibitor resistance mechanisms in cancer. Cell Rep. 23:3042–3055. 2018. View Article : Google Scholar : PubMed/NCBI

114 

Carpenter RL and Lo HW: Hedgehog pathway and GLI1 isoforms in human cancer. Discov Med. 13:105–113. 2012.PubMed/NCBI

115 

Honorato JR, Hauser-Davis RA, Saggioro EM, Correia FV, Sales-Junior SF, Soares LOS, Lima LDR, Moura-Neto V, Lopes GPF and Spohr TCLS: Role of sonic Hedgehog signaling in cell cycle, oxidative stress, and autophagy of temozolomide resistant glioblastoma. J Cell Physiol. 235:3798–3814. 2020. View Article : Google Scholar : PubMed/NCBI

116 

Melamed JR, Morgan JT, Ioele SA, Gleghorn JP, Sims-Mourtada J and Day ES: Investigating the role of Hedgehog/GLI1 signaling in glioblastoma cell response to temozolomide. Oncotarget. 9:27000–27015. 2018. View Article : Google Scholar : PubMed/NCBI

117 

Lai IC, Shih PH, Yao CJ, Yeh CT, Wang-Peng J, Lui TN, Chuang SE, Hu TS, Lai TY and Lai GM: Elimination of cancer stem-like cells and potentiation of temozolomide sensitivity by honokiol in glioblastoma multiforme cells. PLoS One. 10:e01148302015. View Article : Google Scholar : PubMed/NCBI

118 

Sarkaria JN, Kitange GJ, James CD, Plummer R, Calvert H, Weller M and Wick W: Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin Cancer Res. 14:2900–2908. 2008. View Article : Google Scholar : PubMed/NCBI

119 

Munoz JL, Rodriguez-Cruz V, Walker ND, Greco SJ and Rameshwar P: Temozolomide resistance and tumor recurrence: Halting the Hedgehog. Cancer Cell Microenviron. 2:e7472015.PubMed/NCBI

120 

Hung HC, Liu CC, Chuang JY, Su CL and Gean PW: Inhibition of sonic Hedgehog signaling suppresses glioma stem-like cells likely through inducing autophagic cell death. Front Oncol. 10:12332020. View Article : Google Scholar : PubMed/NCBI

121 

Chen J, Fu X, Wan Y, Wang Z, Jiang D and Shi L: miR-125b inhibitor enhance the chemosensitivity of glioblastoma stem cells to temozolomide by targeting Bak1. Tumour Biol. 35:6293–6302. 2014. View Article : Google Scholar : PubMed/NCBI

122 

Melamed JR, Ioele SA, Hannum AJ, Ullman VM and Day ES: Polyethylenimine-spherical nucleic acid nanoparticles against Gli1 reduce the chemoresistance and stemness of glioblastoma cells. Mol Pharm. 15:5135–5145. 2018. View Article : Google Scholar : PubMed/NCBI

123 

Ding D, Lim KS and Eberhart CG: Arsenic trioxide inhibits Hedgehog, notch and stem cell properties in glioblastoma neurospheres. Acta Neuropathol Commun. 2:312014. View Article : Google Scholar : PubMed/NCBI

124 

Wang J, Huang S, Tian R, Chen J, Gao H, Xie C, Shan Y, Zhang Z, Gu S and Xu M: The protective autophagy activated by GANT-61 in MYCN amplified neuroblastoma cells is mediated by PERK. Oncotarget. 9:14413–14427. 2018. View Article : Google Scholar : PubMed/NCBI

125 

Carballo GB, Ribeiro JH, Lopes GPF, Ferrer VP, Dezonne RS, Pereira CM and Spohr TCLSE: GANT-61 induces autophagy and apoptosis in glioblastoma cells despite their heterogeneity. Cell Mol Neurobiol. 41:1227–1244. 2021. View Article : Google Scholar : PubMed/NCBI

126 

Yin S, Du W, Wang F, Han B, Cui Y, Yang D, Chen H, Liu D, Liu X, Zhai X and Jiang C: MicroRNA-326 sensitizes human glioblastoma cells to curcumin via the SHH/GLI1 signaling pathway. Cancer Biol Ther. 19:260–270. 2018. View Article : Google Scholar : PubMed/NCBI

127 

Ji M, Zhang Z, Lin S, Wang C, Jin J, Xue N, Xu H and Chen X: The PI3K inhibitor XH30 enhances response to temozolomide in drug-resistant glioblastoma via the noncanonical Hedgehog signaling pathway. Front Pharmacol. 12:7492422021. View Article : Google Scholar : PubMed/NCBI

128 

Han L, Tang L, Jiang Z and Jiang Y: Enhanced radiosensitization of human glioblastoma multiforme cells with phosphorylated peptides derived from Gli2. Neuropeptides. 70:87–92. 2018. View Article : Google Scholar : PubMed/NCBI

129 

Urdiciain A, Erausquin E, Zelaya MV, Zazpe I, Lanciego JL, Meléndez B, Rey JA, Idoate MA, Riobo-Del Galdo NA and Castresana JS: Silencing of histone deacetylase 6 decreases cellular malignancy and contributes to primary cilium restoration, epithelial-to-mesenchymal transition reversion, and autophagy inhibition in glioblastoma cell lines. Biology (Basel). 10:4672021.PubMed/NCBI

130 

Yang W, Liu Y, Gao R, Yu H and Sun T: HDAC6 inhibition induces glioma stem cells differentiation and enhances cellular radiation sensitivity through the SHH/Gli1 signaling pathway. Cancer Lett. 415:164–176. 2018. View Article : Google Scholar : PubMed/NCBI

131 

Clement V, Sanchez P, de Tribolet N, Radovanovic I and Ruiz i Altaba A: Hedgehog-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol. 17:165–172. 2007. View Article : Google Scholar : PubMed/NCBI

132 

Balbous A, Renoux B, Cortes U, Milin S, Guilloteau K, Legigan T, Rivet P, Boissonnade O, Martin S, Tripiana C, et al: Selective release of a cyclopamine glucuronide prodrug toward stem-like cancer cell inhibition in glioblastoma. Mol Cancer Ther. 13:2159–2169. 2014. View Article : Google Scholar : PubMed/NCBI

133 

Bensalma S, Chadeneau C, Legigan T, Renoux B, Gaillard A, de Boisvilliers M, Pinet-Charvet C, Papot S and Muller JM: Evaluation of cytotoxic properties of a cyclopamine glucuronide prodrug in rat glioblastoma cells and tumors. J Mol Neurosci. 55:51–61. 2015. View Article : Google Scholar : PubMed/NCBI

134 

Wang K, Chen D, Qian Z, Cui D, Gao L and Lou M: Hedgehog/Gli1 signaling pathway regulates MGMT expression and chemoresistance to temozolomide in human glioblastoma. Cancer Cell Int. 17:1172017. View Article : Google Scholar : PubMed/NCBI

135 

Carballo GB, Matias D, Ribeiro JH, Pessoa LS, Arrais-Neto AM and Spohr TCLSE: Cyclopamine sensitizes glioblastoma cells to temozolomide treatment through sonic Hedgehog pathway. Life Sci. 257:1180272020. View Article : Google Scholar : PubMed/NCBI

136 

Liu YJ, Ma YC, Zhang WJ, Yang ZZ, Liang DS, Wu ZF and Qi XR: Combination therapy with micellarized cyclopamine and temozolomide attenuate glioblastoma growth through Gli1 down-regulation. Oncotarget. 8:42495–42509. 2017. View Article : Google Scholar : PubMed/NCBI

137 

Chen J, Lv H, Hu J, Ji M, Xue N, Li C, Ma S, Zhou Q, Lin B, Li Y, et al: CAT3, a novel agent for medulloblastoma and glioblastoma treatment, inhibits tumor growth by disrupting the Hedgehog signaling pathway. Cancer Lett. 381:391–403. 2016. View Article : Google Scholar : PubMed/NCBI

138 

Ji M, Wang L, Chen J, Xue N, Wang C, Lai F, Wang R, Yu S, Jin J and Chen X: CAT3, a prodrug of 13a(S)-3-hydroxyl-6,7-dimethoxyphenanthro[9,10-b]-indolizidine, circumvents temozolomide-resistant glioblastoma via the Hedgehog signaling pathway, independently of O6-methylguanine DNA methyltransferase expression. Onco Targets Ther. 11:3671–3684. 2018. View Article : Google Scholar : PubMed/NCBI

139 

Horrigan SK; Reproducibility Project, : Cancer Biology: Replication study: The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Elife. 6:e181732017. View Article : Google Scholar : PubMed/NCBI

140 

von Roemeling CA, Wang Y, Qie Y, Yuan H, Zhao H, Liu X, Yang Z, Yang M, Deng W, Bruno KA, et al: Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nat Commun. 11:15082020. View Article : Google Scholar : PubMed/NCBI

141 

Chakrabarti J, Holokai L, Syu L, Steele NG, Chang J, Wang J, Ahmed S, Dlugosz A and Zavros Y: Hedgehog signaling induces PD-L1 expression and tumor cell proliferation in gastric cancer. Oncotarget. 9. 37439-37457; 2018, View Article : Google Scholar

142 

Grund-Gröschke S, Stockmaier G and Aberger F: Hedgehog/GLI signaling in tumor immunity-new therapeutic opportunities and clinical implications. Cell Commun Signal. 17:1722019. View Article : Google Scholar : PubMed/NCBI

143 

SurveillanceEpidemiology, End Results Program, . Cancer stat facts: Brain and other nervous system cancer. 2019.https://seer.cancer.gov/statfacts/html/brain.htmlJuly 12–2019

144 

Braun S, Oppermann H, Mueller A, Renner C, Hovhannisyan A, Baran-Schmidt R, Gebhardt R, Hipkiss A, Thiery J, Meixensberger J and Gaunitz F: Hedgehog signaling in glioblastoma multiforme. Cancer Biol Ther. 13:487–495. 2012. View Article : Google Scholar : PubMed/NCBI

145 

Filbin MG, Dabral SK, Pazyra-Murphy MF, Ramkissoon S, Kung AL, Pak E, Chung J, Theisen MA, Sun Y, Franchetti Y, et al: Coordinate activation of Shh and PI3K signaling in PTEN-deficient glioblastoma: New therapeutic opportunities. Nat Med. 19:1518–1523. 2013. View Article : Google Scholar : PubMed/NCBI

146 

Lan X, Jörg DJ, Cavalli FMG, Richards LM, Nguyen LV, Vanner RJ, Guilhamon P, Lee L, Kushida MM, Pellacani D, et al: Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy. Nature. 549:227–232. 2017. View Article : Google Scholar : PubMed/NCBI

147 

Han S, Zhang C, Li Q, Dong J, Liu Y, Huang Y, Jiang T and Wu A: Tumour-infiltrating CD4(+) and CD8(+) lymphocytes as predictors of clinical outcome in glioma. Br J Cancer. 110:2560–2568. 2014. View Article : Google Scholar : PubMed/NCBI

148 

Heimberger AB, Abou-Ghazal M, Reina-Ortiz C, Yang DS, Sun W, Qiao W, Hiraoka N and Fuller GN: Incidence and prognostic impact of FoxP3+ regulatory T cells in human gliomas. Clin Cancer Res. 14:5166–5172. 2008. View Article : Google Scholar : PubMed/NCBI

149 

Wainwright DA, Chang AL, Dey M, Balyasnikova IV, Kim CK, Tobias A, Cheng Y, Kim JW, Qiao J, Zhang L, et al: Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin Cancer Res. 20:5290–5301. 2014. View Article : Google Scholar : PubMed/NCBI

150 

Heimberger AB, Sun W, Hussain SF, Dey M, Crutcher L, Aldape K, Gilbert M, Hassenbusch SJ, Sawaya R, Schmittling B, et al: Immunological responses in a patient with glioblastoma multiforme treated with sequential courses of temozolomide and immunotherapy: Case study. Neuro Oncol. 10:98–103. 2008. View Article : Google Scholar : PubMed/NCBI

151 

Jackson CM, Choi J and Lim M: Mechanisms of immunotherapy resistance: Lessons from glioblastoma. Nat Immunol. 20:1100–1109. 2019. View Article : Google Scholar : PubMed/NCBI

152 

Sampson JH, Gunn MD, Fecci PE and Ashley DM: Brain immunology and immunotherapy in brain tumours. Nat Rev Cancer. 20:12–25. 2020. View Article : Google Scholar : PubMed/NCBI

153 

Reardon DA, Brandes AA, Omuro A, Mulholland P, Lim M, Wick A, Baehring J, Ahluwalia MS, Roth P, Bähr O, et al: Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: The CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol. 6:1003–1010. 2020. View Article : Google Scholar : PubMed/NCBI

154 

Chiocca EA, Nassiri F, Wang J, Peruzzi P and Zadeh G: Viral and other therapies for recurrent glioblastoma: Is a 24-month durable response unusual? Neuro Oncol. 21:14–25. 2019. View Article : Google Scholar : PubMed/NCBI

155 

Iorgulescu JB, Reardon DA, Chiocca EA and Wu CJ: Immunotherapy for glioblastoma: Going viral. Nat Med. 24:1094–1096. 2018. View Article : Google Scholar : PubMed/NCBI

156 

Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, Ostberg JR, Blanchard MS, Kilpatrick J, Simpson J, et al: Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 375:2561–2569. 2016. View Article : Google Scholar : PubMed/NCBI

157 

Lassman A, Pugh S, Wang T, Aldape K, Gan H, Preusser M, Vogelbaum M, Sulman E, Won M, Zhang P, et al: ACTR-21. A randomized, double-blind, placebo-controlled phase 3 trial of depatuxizumab mafodotin (ABT-414) in epidermal growth factor receptor (EGFR) amplified (AMP) newly diagnosed glioblastoma (nGBM). Neuro Oncol. 21 (Suppl 6):vi172019. View Article : Google Scholar : PubMed/NCBI

158 

Ma DJ, Galanis E, Anderson SK, Schiff D, Kaufmann TJ, Peller PJ, Giannini C, Brown PD, Uhm JH, McGraw S, et al: A phase II trial of everolimus, temozolomide, and radiotherapy in patients with newly diagnosed glioblastoma: NCCTG N057K. Neuro Oncol. 17:1261–1269. 2015. View Article : Google Scholar : PubMed/NCBI

159 

Wick W, Gorlia T, Bady P, Platten M, van den Bent MJ, Taphoorn MJ, Steuve J, Brandes AA, Hamou MF, Wick A, et al: Phase II study of radiotherapy and temsirolimus versus radiochemotherapy with temozolomide in patients with newly diagnosed glioblastoma without MGMT promoter hypermethylation (EORTC 26082). Clin Cancer Res. 22:4797–4806. 2016. View Article : Google Scholar : PubMed/NCBI

160 

Lombardi G, De Salvo GL, Brandes AA, Eoli M, Rudà R, Faedi M, Lolli I, Pace A, Daniele B, Pasqualetti F, et al: Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): A multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol. 20:110–119. 2019. View Article : Google Scholar : PubMed/NCBI

161 

Kim EJ, Sahai V, Abel EV, Griffith KA, Greenson JK, Takebe N, Khan GN, Blau JL, Craig R, Balis UG, et al: Pilot clinical trial of Hedgehog pathway inhibitor GDC-0449 (vismodegib) in combination with gemcitabine in patients with metastatic pancreatic adenocarcinoma. Clin Cancer Res. 20:5937–5945. 2014. View Article : Google Scholar : PubMed/NCBI

162 

Berlin J, Bendell JC, Hart LL, Firdaus I, Gore I, Hermann RC, Mulcahy MF, Zalupski MM, Mackey HM, Yauch RL, et al: A randomized phase II trial of vismodegib versus placebo with FOLFOX or FOLFIRI and bevacizumab in patients with previously untreated metastatic colorectal cancer. Clin Cancer Res. 19:258–267. 2013. View Article : Google Scholar : PubMed/NCBI

163 

Belani CP, Dahlberg SE, Rudin CM, Fleisher M, Chen HX, Takebe N, Velasco MR Jr, Tester WJ, Sturtz K, Hann CL, et al: Vismodegib or cixutumumab in combination with standard chemotherapy for patients with extensive-stage small cell lung cancer: A trial of the ECOG-ACRIN cancer research group (E1508). Cancer. 122:2371–2378. 2016. View Article : Google Scholar : PubMed/NCBI

164 

Zubčić V, Rinčić N, Kurtović M, Trnski D, Musani V, Ozretić P, Levanat S, Leović D and Sabol M: GANT61 and lithium chloride inhibit the growth of head and neck cancer cell lines through the regulation of GLI3 processing by GSK3β. Int J Mol Sci. 21:64102020. View Article : Google Scholar : PubMed/NCBI

165 

Miyazaki Y, Matsubara S, Ding Q, Tsukasa K, Yoshimitsu M, Kosai K and Takao S: Efficient elimination of pancreatic cancer stem cells by Hedgehog/GLI inhibitor GANT61 in combination with mTOR inhibition. Mol Cancer. 15:492016. View Article : Google Scholar : PubMed/NCBI

166 

Pietrobono S, Gagliardi S and Stecca B: Non-canonical Hedgehog signaling pathway in cancer: Activation of GLI transcription factors beyond smoothened. Front Genet. 10:5562019. View Article : Google Scholar : PubMed/NCBI

167 

Kim J, Lee JJ, Kim J, Gardner D and Beachy PA: Arsenic antagonizes the Hedgehog pathway by preventing ciliary accumulation and reducing stability of the Gli2 transcriptional effector. Proc Natl Acad Sci USA. 107:13432–13437. 2010. View Article : Google Scholar : PubMed/NCBI

168 

Yanai K, Nakamura M, Akiyoshi T, Nagai S, Wada J, Koga K, Noshiro H, Nagai E, Tsuneyoshi M, Tanaka M and Katano M: Crosstalk of Hedgehog and Wnt pathways in gastric cancer. Cancer Lett. 263:145–156. 2008. View Article : Google Scholar : PubMed/NCBI

169 

Nanta R, Shrivastava A, Sharma J, Shankar S and Srivastava RK: Inhibition of sonic Hedgehog and PI3K/Akt/mTOR pathways cooperate in suppressing survival, self-renewal and tumorigenic potential of glioblastoma-initiating cells. Mol Cell Biochem. 454:11–23. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang H, Lai Q, Wang D, Pei J, Tian B, Gao Y, Gao Z and Xu X: Hedgehog signaling regulates the development and treatment of glioblastoma (Review). Oncol Lett 24: 294, 2022.
APA
Wang, H., Lai, Q., Wang, D., Pei, J., Tian, B., Gao, Y. ... Xu, X. (2022). Hedgehog signaling regulates the development and treatment of glioblastoma (Review). Oncology Letters, 24, 294. https://doi.org/10.3892/ol.2022.13414
MLA
Wang, H., Lai, Q., Wang, D., Pei, J., Tian, B., Gao, Y., Gao, Z., Xu, X."Hedgehog signaling regulates the development and treatment of glioblastoma (Review)". Oncology Letters 24.3 (2022): 294.
Chicago
Wang, H., Lai, Q., Wang, D., Pei, J., Tian, B., Gao, Y., Gao, Z., Xu, X."Hedgehog signaling regulates the development and treatment of glioblastoma (Review)". Oncology Letters 24, no. 3 (2022): 294. https://doi.org/10.3892/ol.2022.13414
Copy and paste a formatted citation
x
Spandidos Publications style
Wang H, Lai Q, Wang D, Pei J, Tian B, Gao Y, Gao Z and Xu X: Hedgehog signaling regulates the development and treatment of glioblastoma (Review). Oncol Lett 24: 294, 2022.
APA
Wang, H., Lai, Q., Wang, D., Pei, J., Tian, B., Gao, Y. ... Xu, X. (2022). Hedgehog signaling regulates the development and treatment of glioblastoma (Review). Oncology Letters, 24, 294. https://doi.org/10.3892/ol.2022.13414
MLA
Wang, H., Lai, Q., Wang, D., Pei, J., Tian, B., Gao, Y., Gao, Z., Xu, X."Hedgehog signaling regulates the development and treatment of glioblastoma (Review)". Oncology Letters 24.3 (2022): 294.
Chicago
Wang, H., Lai, Q., Wang, D., Pei, J., Tian, B., Gao, Y., Gao, Z., Xu, X."Hedgehog signaling regulates the development and treatment of glioblastoma (Review)". Oncology Letters 24, no. 3 (2022): 294. https://doi.org/10.3892/ol.2022.13414
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team