|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Suster D and Mino-Kenudson M: Molecular
pathology of primary non-small cell lung cancer. Arch Med Res.
51:784–798. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Woodard G, Jones K and Jablons D: Lung
cancer staging and prognosis. Cancer Treat Res. 170:47–75. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Zhao S, Li S, Liu W, Wang Y, Li X, Zhu S,
Lei X and Xu S: Circular RNA signature in lung adenocarcinoma: A
MiOncoCirc database-based study and literature review. Front Oncol.
10:5233422020. View Article : Google Scholar
|
|
5
|
Jeck WR, Sorrentino JA, Wang K, Slevin MK,
Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are
abundant, conserved, and associated with ALU repeats. RNA.
19:141–157. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Sanger HL, Klotz G, Riesner D, Gross HJ
and Kleinschmidt AK: Viroids are single-stranded covalently closed
circular RNA molecules existing as highly base-paired rod-like
structures. Proc Natl Acad Sci USA. 73:3852–3856. 1976. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Qu S, Yang X, Li X, Wang J, Gao Y, Shang
R, Sun W, Dou K and Li H: Circular RNA: A new star of noncoding
RNAs. Cancer Lett. 365:141–148. 2015. View Article : Google Scholar
|
|
8
|
Wilusz JE: A 360° view of circular RNAs:
From biogenesis to functions. Wiley Interdiscip Rev RNA.
9:e14782018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Peng Z, Hu Q, Fang S, Zhang X, Hong X, Tao
L, Pan J, Jiang M, Bai H, Wu Y, et al: Circulating circTOLLIP
serves as a diagnostic biomarker for liquid biopsy in non-small
cell lung cancer. Clin Chim Acta. 523:415–422. 2021. View Article : Google Scholar
|
|
10
|
Passiglia F, Bertaglia V, Reale ML,
Delcuratolo MD, Tabbò F, Olmetto E, Capelletto E, Bironzo P and
Novello S: Major breakthroughs in lung cancer adjuvant treatment:
Looking beyond the horizon. Cancer Treat Rev. 101:1023082021.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Wan J, Ling XA, Wang J, Ding GG and Wang
X: Inhibitory effect of Ubenimex combined with fluorouracil on
multiple drug resistance and P-glycoprotein expression level in
non-small lung cancer. J Cell Mol Med. 24:12840–12847. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Gao Y, Wang J and Zhao F: CIRI: An
efficient and unbiased algorithm for de novo circular RNA
identification. Genome Biol. 16:42015. View Article : Google Scholar
|
|
13
|
Liang ZZ, Guo C, Zou MM, Meng P and Zhang
TT: circRNA-miRNA-mRNA regulatory network in human lung cancer: An
update. Cancer Cell Int. 20:1732020. View Article : Google Scholar
|
|
14
|
Conn SJ, Pillman KA, Toubia J, Conn VM,
Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA and
Goodall GJ: The RNA binding protein quaking regulates formation of
circRNAs. Cell. 160:1125–1134. 2015.
|
|
15
|
Petkovic S and Müller S: RNA
circularization strategies in vivo and in vitro. Nucleic Acids Res.
43:2454–2465. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Chen LL: The biogenesis and emerging roles
of circular RNAs. Nat Rev Mol Cell Biol. 17:205–211. 2016.
View Article : Google Scholar
|
|
17
|
Zheng Q, Bao C, Guo W, Li S, Chen J, Chen
B, Luo Y, Lyu D, Li Y, Shi G, et al: Circular RNA profiling reveals
an abundant circHIPK3 that regulates cell growth by sponging
multiple miRNAs. Nat Commun. 7:112152016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Chen B and Huang S: Circular RNA: An
emerging non-coding RNA as a regulator and biomarker in cancer.
Cancer Lett. 418:41–50. 2018. View Article : Google Scholar
|
|
19
|
Westholm JO, Miura P, Olson S, Shenker S,
Joseph B, Sanfilippo P, Celniker SE, Graveley BR and Lai EC:
Genome-wide analysis of drosophila circular RNAs reveals their
structural and sequence properties and age-dependent neural
accumulation. Cell Rep. 9:1966–1980. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Han B, Chao J and Yao H: Circular RNA and
its mechanisms in disease: From the bench to the clinic. Pharmacol
Ther. 187:31–44. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Salzman J, Chen RE, Olsen MN, Wang PL and
Brown PO: Cell-type specific features of circular RNA expression.
PLoS Genet. 9:e10037772013. View Article : Google Scholar
|
|
22
|
Bachmayr-Heyda A, Reiner AT, Auer K,
Sukhbaatar N, Aust S, Bachleitner-Hofmann T, Mesteri I, Grunt TW,
Zeillinger R and Pils D: Correlation of circular RNA abundance with
proliferation-exemplified with colorectal and ovarian cancer,
idiopathic lung fibrosis, and normal human tissues. Sci Rep.
5:80572015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Bing ZX, Zhang JQ, Wang GG, Wang YQ, Wang
TG and Li DQ: Silencing of circ_0000517 suppresses proliferation,
glycolysis, and glutamine decomposition of non-small cell lung
cancer by modulating miR-330-5p/YY1 signal pathway. Kaohsiung J Med
Sci. 37:1027–1037. 2021. View Article : Google Scholar
|
|
24
|
Li Z, Huang C, Bao C, Chen L, Lin M, Wang
X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs
regulate transcription in the nucleus. Nat Struct Mol Biol.
22:256–264. 2015. View Article : Google Scholar
|
|
25
|
Yin H, Shen X, Zhao J, Cao X, He H, Han S,
Chen Y, Cui C, Wei Y, Wang Y, et al: Circular RNA CircFAM188B
encodes a protein that regulates proliferation and differentiation
of chicken skeletal muscle satellite cells. Front Cell Dev Biol.
8:5225882020. View Article : Google Scholar
|
|
26
|
Abdelmohsen K, Kuwano Y, Kim HH and
Gorospe M: Posttranscriptional gene regulation by RNA-binding
proteins during oxidative stress: Implications for cellular
senescence. Biol Chem. 389:243–255. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Mi Z, Zhongqiang C, Caiyun J, Yanan L,
Jianhua W and Liang L: Circular RNA detection methods: A
minireview. Talanta. 238((Pt 2)): 1230662022. View Article : Google Scholar
|
|
28
|
Kalanjeri S, Holladay RC and Gildea TR:
State-of-the-Art modalities for peripheral lung nodule biopsy. Clin
Chest Med. 39:125–138. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Yang Q, Chen L, Yang L and Huang Y:
Diagnostic and prognostic values of circular RNAs for lung cancer:
A meta-analysis. Postgrad Med J. 97:286–293. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Lin Y, Su W and Lan G: Value of circular
RNA 0007385 in disease monitoring and prognosis estimation in
non-small-cell lung cancer patients. J Clin Lab Anal.
34:e233382020.
|
|
31
|
Fu Y, Huang L, Tang H and Huang R:
hsa_circRNA_012515 is highly expressed in NSCLC patients and
affects its prognosis. Cancer Manag Res. 12:1877–1886. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Geng QQ, Wu QF, Zhang Y, Zhang GJ, Fu JK
and Chen NZ: Clinical significance of circ-MTHFD2 in diagnosis,
pathological staging and prognosis of NSCLC. Eur Rev Med Pharmacol
Sci. 24:9473–9479. 2020.
|
|
33
|
Li S, Sun X, Miao S, Lu T, Wang Y, Liu J
and Jiao W: hsa_circ_0000729, a potential prognostic biomarker in
lung adenocarcinoma. Thorac Cancer. 9:924–930. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhu X, Wang X, Wei S, Chen Y, Chen Y, Fan
X, Han S and Wu G: hsa_circ_0013958: A circular RNA and potential
novel biomarker for lung adenocarcinoma. FEBS J. 284:2170–2182.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Li W, Liu JB, Hou LK, Yu F, Zhang J, Wu W,
Tang XM, Sun F, Lu HM, Deng J, et al: Liquid biopsy in lung cancer:
Significance in diagnostics, prediction, and treatment monitoring.
Mol Cancer. 21:252022. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhou R, Chen KK, Zhang J, Xiao B, Huang Z,
Ju C, Sun J, Zhang F, Lv XB and Huang G: The decade of exosomal
long RNA species: An emerging cancer antagonist. Mol Cancer.
17:752018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang Y, Zhang H, Wang J, Li B and Wang X:
Circular RNA expression profile of lung squamous cell carcinoma:
Identification of potential biomarkers and therapeutic targets.
Biosci Rep. Apr 30–2020.(Epub ahead of print).
|
|
38
|
Wang J, Zhao X, Wang Y, Ren F, Sun D, Yan
Y, Kong X, Bu J, Liu M and Xu S: circRNA-002178 act as a ceRNA to
promote PDL1/PD1 expression in lung adenocarcinoma. Cell Death Dis.
11:322020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ding C, Xi G, Wang G, Cui D, Zhang B, Wang
H, Jiang G, Song J, Xu G and Wang J: Exosomal Circ-MEMO1 promotes
the progression and aerobic glycolysis of non-small cell lung
cancer through targeting MiR-101-3p/KRAS axis. Front Genet.
11:9622020. View Article : Google Scholar
|
|
40
|
Zhang N, Nan A, Chen L, Li X, Jia Y, Qiu
M, Dai X, Zhou H, Zhu J, Zhang H and Jiang Y: Circular RNA
circSATB2 promotes progression of non-small cell lung cancer cells.
Mol Cancer. 19:1012020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Song Y, Cao P and Li J: Plasma circular
RNA hsa_circ_0001821 acts as a novel diagnostic biomarker for
malignant tumors. J Clin Lab Anal. 35:e240092021.
|
|
42
|
Zhou X, Liu HY, Wang WY, Zhao H and Wang
T: Hsa_circ_0102533 serves as a blood-based biomarker for
non-small-cell lung cancer diagnosis and regulates apoptosis in
vitro. Int J Clin Exp Pathol. 1:4395–4404. 2018.
|
|
43
|
Liu Y, Li C, Liu H and Wang J:
Circ_0001821 knockdown suppresses growth, metastasis, and TAX
resistance of non-small-cell lung cancer cells by regulating the
miR-526b-5p/GRK5 axis. Pharmacol Res Perspect. 9:e008122021.
|
|
44
|
Guo C, Wang H, Jiang H, Qiao L and Wang X:
Circ_0011292 enhances paclitaxel resistance in non-small cell lung
cancer by regulating miR-379-5p/TRIM65 axis. Cancer Biother
Radiopharm. 37:84–95. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhao Y, Zheng R, Chen J and Ning D:
CircRNA CDR1as/miR-641/HOXA9 pathway regulated stemness contributes
to cisplatin resistance in non-small cell lung cancer (NSCLC).
Cancer Cell Int. 20:2892020. View Article : Google Scholar
|
|
46
|
Zheng F and Xu R: CircPVT1 contributes to
chemotherapy resistance of lung adenocarcinoma through
miR-145-5p/ABCC1 axis. Biomed Pharmacother. 124:1098282020.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Dong Y, Xu T, Zhong S, Wang B, Zhang H,
Wang X, Wang P, Li G and Yang S: Circ_0076305 regulates cisplatin
resistance of non-small cell lung cancer via positively modulating
STAT3 by sponging miR-296-5p. Life Sci. 239:1169842019. View Article : Google Scholar
|
|
48
|
Ma J, Qi G and Li L: A novel serum
exosomes-based biomarker hsa_circ_0002130 facilitates
osimertinib-resistance in non-small cell lung cancer by sponging
miR-498. Onco Targets Ther. 13:5293–5307. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Shao N, Song L and Sun X: Exosomal
circ_PIP5K1A regulates the progression of non-small cell lung
cancer and cisplatin sensitivity by miR-101/ABCC1 axis. Mol Cell
Biochem. 476:2253–2267. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhou Y, Zheng X, Xu B, Chen L, Wang Q,
Deng H and Jiang J: Circular RNA hsa_circ_0004015 regulates the
proliferation, invasion, and TKI drug resistance of non-small cell
lung cancer by miR-1183/PDPK1 signaling pathway. Biochem Biophys
Res Commun. 508:527–535. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Huang Y, Dai Y, Wen C, He S, Shi J, Zhao
D, Wu L and Zhou H: circSETD3 contributes to acquired resistance to
gefitinib in non-small-cell lung cancer by targeting the
miR-520h/ABCG2 pathway. Mol Ther Nucleic Acids. 21:885–899. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Joseph NA, Chiou SH, Lung Z, Yang CL, Lin
TY, Chang HW, Sun HS, Gupta SK, Yen L, Wang SD and Chow KC: The
role of HGF-MET pathway and CCDC66 cirRNA expression in EGFR
resistance and epithelial-to-mesenchymal transition of lung
adenocarcinoma cells. J Hematol Oncol. 11:742018. View Article : Google Scholar
|
|
53
|
Liu Y, Zhai R, Hu S and Liu J: Circular
RNA circ-RNF121 contributes to cisplatin (DDP) resistance of
non-small-cell lung cancer cells by regulating the miR-646/SOX4
axis. Anticancer drugs. 33:e186–e197. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Li J, Fan R and Xiao H: Circ_ZFR
contributes to the paclitaxel resistance and progression of
non-small cell lung cancer by upregulating KPNA4 through sponging
miR-195-5p. Cancer Cell Int. 21:152021. View Article : Google Scholar
|
|
55
|
Zhu X, Han J, Lan H, Lin Q, Wang Y and Sun
X: A novel circular RNA hsa_circRNA_103809/miR-377-3p/GOT1 pathway
regulates cisplatin-resistance in non-small cell lung cancer
(NSCLC). BMC Cancer. 20:11902020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ye Y, Zhao L, Li Q, Xi C, Li Y and Li Z:
circ_0007385 served as competing endogenous RNA for miR-519d-3p to
suppress malignant behaviors and cisplatin resistance of non-small
cell lung cancer cells. Thorac Cancer. 11:2196–2208. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Chen SW, Zhu SQ, Pei X, Qiu BQ, Xiong D,
Long X, Lin K, Lu F, Xu JJ and Wu YB: Cancer cell-derived exosomal
circUSP7 induces CD8+ T cell dysfunction and anti-PD1
resistance by regulating the miR-934/SHP2 axis in NSCLC. Mol
Cancer. 20:1442021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ge W, Chi H, Tang H, Xu J, Wang J, Cai W
and Ma H: Circular RNA CELF1 drives immunosuppression and anti-PD1
therapy resistance in non-small cell lung cancer via the
miR-491-5p/EGFR axis. Aging (Albany NY). 13:24560–24579. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Liu Z, Wang T, She Y, Wu K, Gu S, Li L,
Dong C, Chen C and Zhou Y: N6-methyladenosine-modified
circIGF2BP3 inhibits CD8+ T-cell responses to facilitate
tumor immune evasion by promoting the deubiquitination of PD-L1 in
non-small cell lung cancer. Mol Cancer. 20:1052021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yang J, Jia Y, Wang B, Yang S, Du K, Luo
Y, Li Y and Zhu B: Circular RNA CHST15 Sponges miR-155-5p and
miR-194-5p to promote the immune escape of lung cancer cells
mediated by PD-L1. Front Oncol. 11:5956092021. View Article : Google Scholar
|
|
61
|
Li X, Yang B, Ren H, Xiao T, Zhang L, Li
L, Li M, Wang X, Zhou Ha and Zhang W: Hsa_circ_0002483 inhibited
the progression and enhanced the Taxol sensitivity of non-small
cell lung cancer by targeting miR-182-5p. Cell Death Dis.
10:9532019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Tong S: Circular RNA SMARCA5 may serve as
a tumor suppressor in non-small cell lung cancer. J Clin Lab Anal.
34:e231952020.
|
|
63
|
Huang W, Yang Y, Wu J, Niu Y, Yao Y, Zhang
J, Huang X, Liang S, Chen R, Chen S and Guo L: Circular RNA cESRP1
sensitises small cell lung cancer cells to chemotherapy by sponging
miR-93-5p to inhibit TGF-β signalling. Cell Death Differ.
27:1709–1727. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zhang W, Song C and Ren X: Circ_0003998
regulates the progression and docetaxel sensitivity of
DTX-resistant non-small cell lung cancer cells by the
miR-136-5p/CORO1C axis. Technol Cancer Res Treat. Jan 29–2021.(Epub
ahead of print).
|
|
65
|
Wang Y, Li L, Zhang W and Zhang G:
Circular RNA circLDB2 functions as a competing endogenous RNA to
suppress development and promote cisplatin sensitivity in
non-squamous non-small cell lung cancer. Thorac Cancer.
12:1959–1972. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Li S, Liu Y, Qiu G, Luo Y, Li X, Meng F,
Li N, Xu T, Wang Y, Qin B and Xia S: Emerging roles of circular
RNAs in non-small cell lung cancer (Review). Oncol Rep. 45:172021.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Yu HA, Arcila ME, Rekhtman N, Sima CS,
Zakowski MF, Pao W, Kris MG, Miller VA, Ladanyi M and Riely GJ:
Analysis of tumor specimens at the time of acquired resistance to
EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers.
Clin Cancer Res. 19:2240–2247. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wang Y, Wang Y, Qin Z, Cai S, Yu L, Hu H
and Zeng S: The role of non-coding RNAs in ABC transporters
regulation and their clinical implications of multidrug resistance
in cancer. Expert Opin Drug Metab Toxicol. 17:291–306. 2021.
View Article : Google Scholar
|
|
69
|
Wen C, Xu G, He S, Huang Y, Shi J, Wu L
and Zhou H: Screening circular RNAs related to acquired gefitinib
resistance in non-small cell lung cancer cell lines. J Cancer.
11:3816–3826. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kalluri R and LeBleu VS: The biology,
function, and biomedical applications of exosomes. Science.
367:eaau69772020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Yang B, Teng F, Chang L, Wang J, Liu DL,
Cui YS and Li GH: Tumor-derived exosomal circRNA_102481 contributes
to EGFR-TKIs resistance via the miR-30a-5p/ROR1 axis in non-small
cell lung cancer. Aging (Albany NY). 13:13264–13286. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Dongre A and Weinberg RA: New insights
into the mechanisms of epithelial-mesenchymal transition and
implications for cancer. Nat Rev Mol Cell Biol. 20:69–84. 2019.
View Article : Google Scholar
|
|
73
|
Luo YH, Yang YP, Chien CS, Yarmishyn AA,
Ishola AA, Chien Y, Chen YM, Huang TW, Lee KY, Huang WC, et al:
Plasma level of circular RNA hsa_circ_0000190 correlates with tumor
progression and poor treatment response in advanced lung cancers.
Cancers (Basel). 12:17402020. View Article : Google Scholar
|
|
74
|
Reck M, Rodríguez-Abreu D, Robinson AG,
Hui R, Csőszi T, Fülöp A, Gottfried M, Peled N, Tafreshi A, Cuffe
S, et al: Pembrolizumab versus Chemotherapy for PD-L1-positive
non-small-cell lung cancer. N Engl J Med. 375:1823–1833. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhang R, Guo Y, Yan Y, Liu Y, Zhu Y, Kang
J, Li F, Sun X, Xing L and Xu Y: A propensity-matched analysis of
survival of clinically diagnosed early-stage lung cancer and
biopsy-proven early-stage non-small cell lung cancer following
stereotactic ablative radiotherapy. Front Oncol. 11:7208472021.
View Article : Google Scholar
|
|
76
|
Huang Q: Predictive relevance of ncRNAs in
non-small-cell lung cancer patients with radiotherapy: A review of
the published data. Biomark Med. 12:1149–1159. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zhang H, Si J, Yue J and Ma S: The
mechanisms and reversal strategies of tumor radioresistance in
esophageal squamous cell carcinoma. J Cancer Res Clin Oncol.
147:1275–1286. 2021. View Article : Google Scholar
|
|
78
|
Jin X, Yuan L, Liu B, Kuang Y, Li H, Li L,
Zhao X, Li F, Bing Z, Chen W, et al: Integrated analysis of
circRNA-miRNA-mRNA network reveals potential prognostic biomarkers
for radiotherapies with X-rays and carbon ions in non-small cell
lung cancer. Ann Transl Med. 8:13732020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Huang M, Li T, Wang Q, et al: Silencing
circPVT1 enhances radiosensitivity in non-small cell lung cancer by
sponging microRNA-1208. Cancer Biomark. 31:263–279. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhang C, Li Y, Feng X and Li D: Circular
RNA circ_0001287 inhibits the proliferation, metastasis, and
radiosensitivity of non-small cell lung cancer cells by sponging
microRNA miR-21 and up-regulating phosphatase and tensin homolog
expression. Bioengineered. 12:414–425. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Jin X, Yuan L, Liu B, et al: Integrated
analysis of circRNA-miRNA-mRNA network reveals potential prognostic
biomarkers for radiotherapies with X-rays and carbon ions in
non-small cell lung cancer. Ann Transl Med. 8:13732020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Giaj-Levra N, Ricchetti F and Alongi F:
What is changing in radiotherapy for the treatment of locally
advanced nonsmall cell lung cancer patients? A review. Cancer
Invest. 34:80–93. 2016. View Article : Google Scholar
|
|
83
|
Dou Y, Tian W, Wang H and Lv S:
Circ_0001944 contributes to glycolysis and tumor growth by
upregulating NFAT5 through acting as a decoy for miR-142-5p in
non-small cell lung cancer. Cancer Manag Res. 13:3775–3787. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Shi J, Lv X, Zeng L, et al: CircPVT1
promotes proliferation of lung squamous cell carcinoma by binding
to miR-30d/e. J Exp Clin Cancer Res: CR. 40:1932021. View Article : Google Scholar
|
|
85
|
Wang Y, Li Y, He H and Wang F: Circular
RNA circ-PRMT5 facilitates non-small cell lung cancer proliferation
through upregulating EZH2 via sponging miR-377/382/498. Gene.
720:1440992019. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zou Q, Wang T, Li B, Li G, Zhang L, Wang B
and Sun S: Overexpression of circ-0067934 is associated with
increased cellular proliferation and the prognosis of non-small
cell lung cancer. Oncol Lett. 16:5551–5556. 2018.
|
|
87
|
Zhu Z, Wu Q, Zhang M, Tong J, Zhong B and
Yuan K: Hsa_circ_0016760 exacerbates the malignant development of
non-small cell lung cancer by sponging miR-145-5p/FGF5. Oncol Rep.
45:501–512. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Ding L, Yao W, Lu J, Gong J and Zhang X:
Upregulation of circ_001569 predicts poor prognosis and promotes
cellproliferation in non-small cell lung cancer by regulating the
Wnt/β-catenin pathway. Oncol Lett. 16:453–458. 2018.
|
|
89
|
Wang Y, Wo Y, Lu T, Sun X, Liu A, Dong Y,
Du W, Su W, Huang Z and Jiao W: Circ-AASDH functions as the
progression of early stage lung adenocarcinoma by targeting
miR-140-3p to activate E2F7 expression. Transl Lung Cancer Res.
10:57–70. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Liu T, Song Z and Gai Y: Circular RNA
circ_0001649 acts as a prognostic biomarker and inhibits NSCLC
progression via sponging miR-331-3p and miR-338-5p. Biochemical and
biophysical research communications. 503:1503–1509. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Chen C, Min Z, Yan Z, et al: Circ_0000079
decoys the RNA-binding protein FXR1 to interrupt formation of the
FXR1/PRCKI complex and decline their mediated cell invasion and
drug resistance in NSCLC. Cell transplantation.
29:9636897209610702020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Chi Y, Zheng W, Bao G, et al: Circular RNA
circ_103820 suppresses lung cancer tumorigenesis by sponging
miR-200b-3p to release LATS2 and SOCS6. Cell Death Dis. 12:1852021.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Zhang M, Wen F and Zhao K: Circular
RNA_0001946 is insufficiently expressed in tumor tissues, while its
higher expression correlates with less lymph node metastasis, lower
TNM stage, and improved prognosis in NSCLC patients. J Clin Lab
Anal. 35:e236252021. View Article : Google Scholar
|
|
94
|
Zhang K, Hu H, Xu J, Qiu L, Chen H, Jiang
X and Jiang Y: Circ_0001421 facilitates glycolysis and lung cancer
development by regulating miR-4677-3p/CDCA3. Diagn Pathol.
15:1332020. View Article : Google Scholar
|
|
95
|
An J, Shi H, Zhang N and Song S: Elevation
of circular RNA circ_0003645 forecasts unfavorable prognosis and
facilitates cell progression via miR-1179/TMEM14A pathway in
non-small cell lung cancer. Biochem Biophys Res Commun.
511:921–925. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Li XY, Liu YR, Zhou JH, Li W, Guo HH and
Ma HP: Enhanced expression of circular RNA hsa_circ_000984 promotes
cells proliferation and metastasis in non-small cell lung cancer by
modulating Wnt/β-catenin pathway. Eur Rev Med Pharmacol Sci.
23:3366–3374. 2019.
|
|
97
|
Liu T, Song Z and Gai Y: Circular RNA
circ_0001649 acts as a prognostic biomarker and inhibits NSCLC
progression via sponging miR-331-3p and miR-338-5p. Biochem Biophys
Res Commun. 503:1503–1509. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wan J, Hao L, Zheng X and Li Z: Circular
RNA circ_0020123 promotes non-small cell lung cancer progression by
acting as a ceRNA for miR-488-3p to regulate ADAM9 expression.
Biochem Biophys Res Commun. 515:303–309. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Gao P, Wang Z, Hu Z, Jiao X and Yao Y:
Circular RNA circ_0074027 indicates a poor prognosis for NSCLC
patients and modulates cell proliferation, apoptosis, and invasion
via miR-185-3p mediated BRD4/MADD activation. J Cell Biochem.
121:2632–2642. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhang SJ, Ma J, Wu JC, Hao ZZ, Zhang YA
and Zhang YJ: Circular RNA circCRIM1 suppresses lung adenocarcinoma
cell migration, invasion, EMT, and glycolysis through regulating
miR-125b-5p/BTG2 axis. Eur Rev Med Pharmacol Sci. 25:33992021.
|
|
101
|
Qi Y, Zhang B, Wang J and Yao M:
Upregulation of circular RNA hsa_circ_0007534 predicts unfavorable
prognosis for NSCLC and exerts oncogenic properties in vitro and in
vivo. Gene. 676:79–85. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Li Y, Hu J, Li L, Cai S, Zhang H, Zhu X,
Guan G and Dong X: Upregulated circular RNA circ_0016760 indicates
unfavorable prognosis in NSCLC and promotes cell progression
through miR-1287/GAGE1 axis. Biochem Biophys Res Commun.
503:2089–2094. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Shi J, Lv X, Zeng L, Li W, Zhong Y, Yuan
J, Deng S, Liu B, Yuan B, Chen Y, et al: CircPVT1 promotes
proliferation of lung squamous cell carcinoma by binding to
miR-30d/e. J Exp Clin Cancer Res. 40:1932021. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zhang Y, Yao H, Li Y, Yang L, Zhang L,
Chen J, Wang Y and Li X: Circular RNA TADA2A promotes proliferation
and migration via modulating of miR-638/KIAA0101 signal in
non-small cell lung cancer. Oncol Rep. 46:2012021. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Song HM, Meng D, Wang JP and Zhang XY:
circRNA hsa_circ_0005909 predicts poor prognosis and promotes the
growth, metastasis, and drug resistance of non-small-cell lung
cancer via the miRNA-338-3p/SOX4 pathway. Dis Markers.
2021:83885122021. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Li C, Zhang J, Yang X, Hu C, Chu T, Zhong
R, Shen Y, Hu F, Pan F, Xu J, et al: hsa_circ_0003222 accelerates
stemness and progression of non-small cell lung cancer by sponging
miR-527. Cell Death Dis. 12:8072021. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Liu Y, Ao Y, Yu W, Zhang Y and Wang J:
Biogenesis, functions, and clinical implications of circular RNAs
in non-small cell lung cancer. Mol Ther Nucleic Acid. 27:50–72.
2022. View Article : Google Scholar
|
|
108
|
Jian F, Yangyang R, Wei X, Jiadan X, Na L,
Peng Y, Maohong B, Guoping N and Zhaoji P: The prognostic and
predictive significance of circRNA CDR1as in tumor progression.
Front Oncol. 10:5499822021. View Article : Google Scholar
|
|
109
|
Wang J, Chu Y, Li J and Zeng F, Wu M, Wang
T, Sun L, Chen Q, Wang P, Zhang X and Zeng F: Development of a
prediction model with serum tumor markers to assess tumor
metastasis in lung cancer. Cancer Med. 9:5436–5445. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Wei J, Yan Y, Chen X, Qian L, Zeng S, Li
Z, Dai S, Gong Z and Xu Z: The roles of plant-derived triptolide on
non-small cell lung cancer. Oncol Res. 27:849–858. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Yan Y, Xu Z, Hu X, Qian L, Li Z, Zhou Y,
Dai S, Zeng S and Gong Z: SNCA is a functionally low-expressed gene
in lung adenocarcinoma. Genes (Basel). 9:162018. View Article : Google Scholar
|
|
112
|
Wei J, Xu Z, Chen X, Wang X, Zeng S, Qian
L, Yang X, Ou C, Lin W, Gong Z and Yan Y: Overexpression of GSDMC
is a prognostic factor for predicting a poor outcome in lung
adenocarcinoma. Mol Med Rep. 21:360–370. 2020.PubMed/NCBI
|