You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Cao M, Li H, Sun D and Chen W: Cancer burden of major cancers in China: A need for sustainable actions. Cancer Commun (Lond). 40:205–210. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Camidge DR, Doebele RC and Kerr KM: Comparing and contrasting predictive biomarkers for immunotherapy and targeted therapy of NSCLC. Nat Rev Clin Oncol. 16:341–355. 2019. View Article : Google Scholar | |
|
Lee CK, Davies L, Wu YL, Mitsudomi T, Inoue A, Rosell R, Zhou C, Nakagawa K, Thongprasert S, Fukuoka M, et al: Gefitinib or erlotinib vs chemotherapy for EGFR mutation-positive lung cancer: Individual patient data meta-analysis of overall survival. J Natl Cancer Inst. 109:2017. View Article : Google Scholar | |
|
Rotow J and Bivona TG: Understanding and targeting resistance mechanisms in NSCLC. Nat Rev Cancer. 17:637–658. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kobayashi Y and Mitsudomi T: Not all epidermal growth factor receptor mutations in lung cancer are created equal: Perspectives for individualized treatment strategy. Cancer Sci. 107:1179–1186. 2016. View Article : Google Scholar | |
|
Shi Y, Au JS, Thongprasert S, Srinivasan S, Tsai CM, Khoa MT, Heeroma K, Itoh Y, Cornelio G and Yang PC: A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol. 9:154–162. 2014. View Article : Google Scholar | |
|
Shi Y, Li J, Zhang S, Wang M, Yang S, Li N, Wu G, Liu W, Liao G, Cai K, et al: Molecular Epidemiology of EGFR mutations in asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology-Mainland China Subset analysis of the PIONEER study. PLoS One. 10:e01435152015. View Article : Google Scholar : PubMed/NCBI | |
|
Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, Sunpaweravong P, Han B, Margono B, Ichinose Y, et al: Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 361:947–957. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Wu YL, Zhou C, Liam CK, Wu G, Liu X, Zhong Z, Lu S, Cheng Y, Han B, Chen L, et al: First-line erlotinib versus gemcitabine/cisplatin in patients with advanced EGFR mutation-positive non-small-cell lung cancer: Analyses from the phase III, randomized, open-label, ENSURE study. Ann Oncol. 26:1883–1889. 2015. View Article : Google Scholar | |
|
Schuler M, Paz-Ares L, Sequist LV, Hirsh V, Lee KH, Wu YL, Lu S, Zhou C, Feng J, Ellis SH, et al: First-line afatinib for advanced EGFRm+ NSCLC: Analysis of long-term responders in the LUX-Lung 3, 6, and 7 trials. Lung Cancer. 133:10–19. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wu YL, Cheng Y, Zhou X, Lee KH, Nakagawa K, Niho S, Tsuji F, Linke R, Rosell R, Corral J, et al: Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): A randomised, open-label, phase 3 trial. Lancet Oncol. 18:1454–1466. 2017. View Article : Google Scholar | |
|
Ramalingam SS, Vansteenkiste J, Planchard D, Cho BC, Gray JE, Ohe Y, Zhou C, Reungwetwattana T, Cheng Y, Chewaskulyong B, et al: Overall survival with osimertinib in untreated, EGFR-Mutated advanced NSCLC. N Engl J Med. 382. pp. 41–50. 2020, View Article : Google Scholar : PubMed/NCBI | |
|
Shi YK, Wang L, Han BH, Li W, Yu P, Liu YP, Ding CM, Song X, Ma ZY, Ren XL, et al: First-line icotinib versus cisplatin/pemetrexed plus pemetrexed maintenance therapy for patients with advanced EGFR mutation-positive lung adenocarcinoma (CONVINCE): A phase 3, open-label, randomized study. Ann Oncol. 28:2443–2450. 2017. View Article : Google Scholar | |
|
Rebuzzi SE, Alfieri R, La Monica S, Minari R, Petronini PG and Tiseo M: Combination of EGFR-TKIs and chemotherapy in advanced EGFR mutated NSCLC: Review of the literature and future perspectives. Crit Rev Oncol Hematol. 146:1028202020. View Article : Google Scholar | |
|
Huang L and Fu L: Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm Sin B. 5:390–401. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Mok TS, Wu YL, Ahn MJ, Garassino MC, Kim HR, Ramalingam SS, Shepherd FA, He Y, Akamatsu H, Theelen WS, et al: Osimertinib or platinum-pemetrexed in EGFR T790M-Positive lung cancer. N Engl J Med. 376:629–640. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Thress KS, Paweletz CP, Felip E, Cho BC, Stetson D, Dougherty B, Lai Z, Markovets A, Vivancos A, Kuang Y, et al: Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med. 21:560–562. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Tsui ST, Liu C, Song Y and Liu D: EGFR C797S mutation mediates resistance to third-generation inhibitors in T790M-positive non-small cell lung cancer. J Hematol Oncol. 9:592016. View Article : Google Scholar | |
|
Lim SM, Syn NL, Cho BC and Soo RA: Acquired resistance to EGFR targeted therapy in non-small cell lung cancer: Mechanisms and therapeutic strategies. Cancer Treat Rev. 65:1–10. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Nagano T, Tachihara M and Nishimura Y: Mechanism of resistance to epidermal growth factor receptor-tyrosine kinase inhibitors and a potential treatment strategy. Cells. 7:2122018. View Article : Google Scholar | |
|
Park K, Tan EH, O'Byrne K, Zhang L, Boyer M, Mok T, Hirsh V, Yang JC, Lee KH, Lu S, et al: Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): A phase 2B, open-label, randomised controlled trial. Lancet Oncol. 17:577–589. 2016. View Article : Google Scholar | |
|
Jänne PA, Ou SI, Kim DW, Oxnard GR, Martins R, Kris MG, Dunphy F, Nishio M, O'Connell J, Paweletz C, et al: Dacomitinib as first-line treatment in patients with clinically or molecularly selected advanced non-small-cell lung cancer: A multicentre, open-label, phase 2 trial. Lancet Oncol. 15:1433–1441. 2014. View Article : Google Scholar | |
|
Wu SG, Liu YN, Tsai MF, Chang YL, Yu CJ, Yang PC, Yang JC, Wen YF and Shih JY: The mechanism of acquired resistance to irreversible EGFR tyrosine kinase inhibitor-afatinib in lung adenocarcinoma patients. Oncotarget. 7:12404–12413. 2016. View Article : Google Scholar | |
|
Cabanero M, Sangha R, Sheffield BS, Sukhai M, Pakkal M, Kamel-Reid S, Karsan A, Ionescu D, Juergens RA, Butts C and Tsao MS: Management of EGFR-mutated non-small-cell lung cancer: Practical implications from a clinical and pathology perspective. Curr Oncol. 24:111–119. 2017. View Article : Google Scholar | |
|
Mok TS, Cheng Y, Zhou X, Lee KH, Nakagawa K, Niho S, Chawla A, Rosell R, Corral J, Migliorino MR, et al: Updated overall survival in a randomized study comparing dacomitinib with gefitinib as first-line treatment in patients with advanced non-small-cell lung cancer and EGFR-Activating mutations. Drugs. 81:257–266. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, Dechaphunkul A, Imamura F, Nogami N, Kurata T, et al: Osimertinib in untreated EGFR-Mutated advanced non-small-cell lung cancer. N Engl J Med. 378:113–125. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wu YL, Ahn MJ, Garassino MC, Han JY, Katakami N, Kim HR, Hodge R, Kaur P, Brown AP, Ghiorghiu D, et al: CNS efficacy of osimertinib in patients with T790M-Positive advanced non-small-cell lung cancer: Data from a Randomized phase III Trial (AURA3). J Clin Oncol. 36:2702–2709. 2018. View Article : Google Scholar | |
|
Reungwetwattana T, Nakagawa K, Cho BC, Cobo M, Cho EK, Bertolini A, Bohnet S, Zhou C, Lee KH, Nogami N, et al: CNS response to osimertinib versus standard epidermal growth factor receptor tyrosine kinase inhibitors in patients with untreated EGFR-Mutated advanced non-small-cell lung cancer. J Clin Oncol. Aug 28–2018.(Epub ahead of print). View Article : Google Scholar | |
|
Lu S, Wang Q, Zhang G, Dong X, Yang CT, Song Y, Chang GC, Lu Y, Pan H, Chiu CH, et al: Efficacy of aumolertinib (HS-10296) in patients with advanced EGFR T790M+ NSCLC: Updated post-national medical products administration approval results from the APOLLO registrational trial. J Thorac Oncol. 17:411–422. 2022. View Article : Google Scholar | |
|
Lu S, Wang Q, Zhang G, Dong X, Yang C, Song Y, Chang GC, LU Y, Pan H, Chiu CH, et al: 1208P Final results of APOLLO study: Overall survival (OS) of aumolertinib in patients with pretreated EGFR T790M-positive locally advanced or metastatic non-small cell lung cancer (NSCLC). Ann Oncol. 32:S9622021. View Article : Google Scholar | |
|
Shi Y, Hu X, Zhang S, Lv D, Wu L, Yu Q, Zhang Y, Liu L, Wang X, Cheng Y, et al: Efficacy, safety, and genetic analysis of furmonertinib (AST2818) in patients with EGFR T790M mutated non-small-cell lung cancer: A phase 2b, multicentre, single-arm, open-label study. Lancet Respir Med. 9:829–839. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Deeks ED: Furmonertinib: First approval. Drugs. 81:1775–1780. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ahn MJ, Han JY, Kim SW, Ki Hyeong Lee5, Kim DW, Lee YG, Cho EK, Lee GW, Lee JS, Kim JH, et al: Lazertinib, a 3rd generation EGFR-TKI, in patients with EGFR-TKI resistant NSCLC: Updated results of phase I/II Study. Abstract #9037. May 31-June 4. 2019. | |
|
Kim SW, Ahn MJ, Han JY, Lee KH, Cho EK, Lee YG, Kim DW, Kim JH, Lee JS, Lee GW, et al: Intracranial anti-tumor activity of lazertinib in patients with advanced NSCLC who progressed after prior EGFR TKI therapy: Data from a phase I/II study. Am Soc Clin Oncol. 38:95712020. View Article : Google Scholar | |
|
Dhillon S: Lazertinib: First approval. Drugs. 81:1107–1113. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kim ES: Olmutinib: First global approval. Drugs. 76:1153–1157. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kim DW, Lee DH, Han JY, Lee J, Cho BC, Kang JH, Lee KH, Cho EK, Kim JS, Min YJ, et al: Safety, tolerability, and anti-tumor activity of olmutinib in non-small cell lung cancer with T790M mutation: A single arm, open label, phase 1/2 trial. Lung Cancer. 135:66–72. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Park K, Jӓnne PA, Kim DW, Han JY, Wu MF, Lee JS, Kang JH, Lee DH, Cho BC, Yu CJ, et al: Olmutinib in T790M-positive non-small cell lung cancer after failure of first-line epidermal growth factor receptor-tyrosine kinase inhibitor therapy: A global, phase 2 study. Cancer. 127:1407–1416. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Tan DS, Leighl NB, Riely GJ, Yang JC, Sequist LV, Wolf J, Seto T, Felip E, Aix SP, Jonnaert M, et al: Safety and efficacy of nazartinib (EGF816) in adults with EGFR-mutant non-small-cell lung carcinoma: A multicentre, open-label, phase 1 study. Lancet Respir Med. 8:561–572. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Costa DB, Schumer ST, Tenen DG and Kobayashi S: Differential responses to erlotinib in epidermal growth factor receptor (EGFR)-mutated lung cancers with acquired resistance to gefitinib carrying the L747S or T790M secondary mutations. J Clin Oncol. 26:1182–1184; author reply 1184–1186. 2008. View Article : Google Scholar | |
|
Balak MN, Gong Y, Riely GJ, Somwar R, Li AR, Zakowski MF, Chiang A, Yang G, Ouerfelli O, Kris MG, et al: Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin Cancer Res. 12:6494–6501. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Bean J, Riely GJ, Balak M, Marks JL, Ladanyi M, Miller VA and Pao W: Acquired resistance to epidermal growth factor receptor kinase inhibitors associated with a novel T854A mutation in a patient with EGFR-mutant lung adenocarcinoma. Clin Cancer Res. 14:7519–7525. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Grolleau E, Haddad V, Boissière L, Falchero L and Arpin D: Clinical efficacy of osimertinib in a patient presenting a double EGFR L747S and G719C mutation. J Thorac Oncol. 14:e151–e153. 2019. View Article : Google Scholar | |
|
Chiba M, Togashi Y, Bannno E, Kobayashi Y, Nakamura Y, Hayashi H, Terashima M, De Velasco MA, Sakai K, Fujita Y, et al: Efficacy of irreversible EGFR-TKIs for the uncommon secondary resistant EGFR mutations L747S, D761Y, and T854A. BMC Cancer. 17:2812017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Y, Tang J, Li X, Qin T and Wei Y: Durable response to osimertinib in a Chinese patient with metastatic lung adenocarcinoma harboring a rare EGFR L858R/D761Y compound mutation. Onco Targets Ther. 13:10447–10451. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Yang X, Ming Z, Shi J, Lv X, Li W, Yuan B, Chen Y, Liu B, Qin K, et al: Molecular characteristics of the uncommon EGFR Exon 21 T854A Mutation and response to osimertinib in patients with non-small cell lung cancer. Clin Lung Cancer. 23:311–319. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Patil T, Mushtaq R, Marsh S, Azelby C, Pujara M, Davies KD, Aisner DL, Purcell WT, Schenk EL, Pacheco JM, et al: Clinicopathologic characteristics, treatment outcomes, and acquired resistance patterns of atypical EGFR mutations and HER2 alterations in stage IV non-small-cell lung cancer. Clin Lung Cancer. 21:e191–e204. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Riudavets M, Sullivan I, Abdayem P and Planchard D: Targeting HER2 in non-small-cell lung cancer (NSCLC): A glimpse of hope? An updated review on therapeutic strategies in NSCLC harbouring HER2 alterations. ESMO Open. 6:1002602021. View Article : Google Scholar : PubMed/NCBI | |
|
Takezawa K, Pirazzoli V, Arcila ME, Nebhan CA, Song X, de Stanchina E, Ohashi K, Janjigian YY, Spitzler PJ, Melnick MA, et al: HER2 amplification: A potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation. Cancer Discov. 2:922–933. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Elamin YY, Robichaux JP, Carter BW, Altan M, Gibbons DL, Fossella FV, Lam VK, Patel AB, Negrao MV, Le X, et al: Poziotinib for patients With HER2 Exon 20 mutant non-small-cell lung cancer: Results from a phase II Trial. J Clin Oncol. 40:702–709. 2022. View Article : Google Scholar | |
|
Song Z, Lv D, Chen SQ, Huang J, Li Y, Ying S, Wu X, Hua F, Wang W, Xu C, et al: Pyrotinib in patients with HER2-Amplified advanced non-small cell lung cancer: A prospective, multicenter, single-arm trial. Clin Cancer Res. 28:461–467. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou C, Li X, Wang Q, Gao G, Zhang Y, Chen J, Shu Y, Hu Y, Fan Y, Fang J, et al: Pyrotinib in HER2-Mutant advanced lung adenocarcinoma after platinum-based chemotherapy: A multicenter, open-label, single-arm, phase II Study. J Clin Oncol. 38:2753–2761. 2020. View Article : Google Scholar | |
|
Li BT, Shen R, Buonocore D, Olah ZT, Ni A, Ginsberg MS, Ulaner GA, Offin M, Feldman D, Hembrough T, et al: Ado-Trastuzumab emtansine for patients with HER2-Mutant lung cancers: Results from a phase II basket trial. J Clin Oncol. 36:2532–2537. 2018. View Article : Google Scholar | |
|
Li BT, Smit EF, Goto Y, Nakagawa K, Udagawa H, Mazières J, Nagasaka M, Bazhenova L, Saltos AN, Felip E, et al: Trastuzumab deruxtecan in HER2-Mutant non-small-cell lung cancer. N Engl J Med. 386:241–251. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Koch JP, Aebersold DM, Zimmer Y and Medová M: MET targeting: Time for a rematch. Oncogene. 39:2845–2862. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Pasquini G and Giaccone G: C-MET inhibitors for advanced non-small cell lung cancer. Expert Opin Investig Drugs. 27:363–375. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, et al: MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 316:1039–1043. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L, Chitale D, Motoi N, Szoke J, Broderick S, et al: MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci USA. 104:20932–20937. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, Bergethon K, Shaw AT, Gettinger S, Cosper AK, et al: Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 3:75ra262011. View Article : Google Scholar : PubMed/NCBI | |
|
Yu HA, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, Kris MG, Miller VA, Ladanyi M and Riely GJ: Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 19:2240–2247. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lai GG, Lim TH, Lim J, Liew PJ, Kwang XL, Nahar R, Aung ZW, Takano A, Lee YY, Lau DP, et al: Clonal MET amplification as a determinant of tyrosine kinase inhibitor resistance in epidermal growth factor receptor-mutant non-small-cell lung cancer. J Clin Oncol. 37:876–884. 2019. View Article : Google Scholar | |
|
Dulak AM, Gubish CT, Stabile LP, Henry C and Siegfried JM: HGF-independent potentiation of EGFR action by c-Met. Oncogene. 30:3625–3635. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Dong Y, Xu J, Sun B, Wang J and Wang Z: MET-Targeted therapies and clinical outcomes: A systematic literature review. Mol Diagn Ther. 26:203–227. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wu YL, Zhang L, Kim DW, Liu X, Lee DH, Yang JC, Ahn MJ, Vansteenkiste JF, Su WC, Felip E, et al: Phase Ib/II study of capmatinib (INC280) plus gefitinib after failure of epidermal growth factor receptor (EGFR) inhibitor therapy in patients with EGFR-Mutated, MET factor-dysregulated non-small-cell lung cancer. J Clin Oncol. 36:3101–3109. 2018. View Article : Google Scholar | |
|
Wu YL, Cheng Y, Zhou J, Lu S, Zhang Y, Zhao J, Kim DW, Soo RA, Kim SW, Pan H, et al: Tepotinib plus gefitinib in patients with EGFR-mutant non-small-cell lung cancer with MET overexpression or MET amplification and acquired resistance to previous EGFR inhibitor (INSIGHT study): An open-label, phase 1b/2, multicentre, randomised trial. Lancet Respir Med. 8:1132–1143. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Sequist LV, Han JY, Ahn MJ, Cho BC, Yu H, Kim SW, Yang JC, Lee JS, Su WC, Kowalski D, et al: Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: Interim results from a multicentre, open-label, phase 1b study. Lancet Oncol. 21:373–386. 2020. View Article : Google Scholar | |
|
Camidge D, Barlesi F, Goldman J, Morgensztern D, Heist R, Vokes E, Spira A, Angevin E, Su W, Hong D, Strickler J, Motwani M, Sun Z, et al: MA14. 03 EGFR M+ Subgroup of Phase 1b study of telisotuzumab vedotin (Teliso-V) plus erlotinib in c-Met+ non-small cell lung cancer. J Thor Oncol. 14:S305–S306. 2019. View Article : Google Scholar | |
|
McCoach CE, Yu A, Gandara DR, Riess JW, Vang DP, Li T, Lara PN, Gubens M, Lara F, Mack PC, et al: Phase I/II study of capmatinib plus erlotinib in patients with MET-positive non-small-cell lung cancer. JCO Precis Oncol. 1:PO.20.00279. 2021. | |
|
Camidge DR, Moran T, Demedts I, Grosch H, Mileham K, Molina J, Juan-Vidal O, Bepler G, Goldman JW, Park K, et al: A Randomized, open-label phase II study evaluating emibetuzumab plus erlotinib and emibetuzumab monotherapy in MET immunohistochemistry positive NSCLC patients with acquired resistance to erlotinib. Clin Lung Cancer. 23:300–310. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Alqahtani A, Ayesh HSK and Halawani H: PIK3CA gene mutations in solid malignancies: Association with clinicopathological parameters and prognosis. Cancers (Basel). 12:932019. View Article : Google Scholar | |
|
Wang Y, Wang Y, Li J, Li J and Che G: Clinical significance of PIK3CA gene in non-small-cell lung cancer: A systematic review and meta-analysis. Biomed Res Int. 2020:36082412020. | |
|
Qiu X, Wang Y, Liu F, Peng L, Fang C, Qian X, Zhang X, Wang Q, Xiao Z, Chen R, et al: Survival and prognosis analyses of concurrent PIK3CA mutations in EGFR mutant non-small cell lung cancer treated with EGFR tyrosine kinase inhibitors. Am J Cancer Res. 11:3189–3200. 2021.PubMed/NCBI | |
|
Song Z, Yu X and Zhang Y: Mutation and prognostic analyses of PIK3CA in patients with completely resected lung adenocarcinoma. Cancer Med. 5:2694–2700. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Engelman JA: Targeting PI3K signalling in cancer: Opportunities, challenges and limitations. Nat Rev Cancer. 9:550–562. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Westover D, Zugazagoitia J, Cho BC, Lovly CM and Paz-Ares L: Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann Oncol. 29 (Suppl 1):i10–i19. 2018. View Article : Google Scholar | |
|
Qu GP, Shi M, Wang D, Wu JH, Wang P, Gong ML and Zhang ZJ: Dual targeting of MEK and PI3K effectively controls the proliferation of human EGFR-TKI resistant non-small cell lung carcinoma cell lines with different genetic backgrounds. BMC Pulm Med. 21:2082021. View Article : Google Scholar : PubMed/NCBI | |
|
Markham AJD: Alpelisib: First global approval. Drugs. 79:1249–1253. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Skoulidis F, Li BT, Dy GK, Price TJ, Falchook GS, Wolf J, Italiano A, Schuler M, Borghaei H, Barlesi F, et al: Sotorasib for lung cancers with KRAS p.G12C Mutation. N Engl J Med. 384:2371–2381. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Tanaka N, Lin JJ, Li C, Ryan MB, Zhang J, Kiedrowski LA, Michel AG, Syed MU, Fella KA, Sakhi M, et al: Clinical acquired resistance to KRASG12C inhibition through a Novel KRAS Switch-II pocket mutation and polyclonal alterations converging on RAS-MAPK Reactivation. Cancer Discov. 11:1913–1922. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang SS; Nagasaka MJLCT and Therapy, : Spotlight on Sotorasib (AMG 510) for KRASG12C positive non-small cell lung cancer. Lung Cancer (Auckl). 12:115–122. 2021.PubMed/NCBI | |
|
Pratilas CA, Hanrahan AJ, Halilovic E, Persaud Y, Soh J, Chitale D, Shigematsu H, Yamamoto H, Sawai A, Janakiraman M, et al: Genetic predictors of MEK dependence in non-small cell lung cancer. Cancer Res. 68:9375–9383. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Ai X, Li Y, Chen R, Gu D and Mao Y: P59. 07 mutation profile of BRAF in Chinese non-small cell lung cancer patients. J Thorac Oncol. 16:S11492021. View Article : Google Scholar | |
|
Ohashi K, Sequist LV, Arcila ME, Moran T, Chmielecki J, Lin YL, Pan Y, Wang L, de Stanchina E, Shien K, et al: Lung cancers with acquired resistance to EGFR inhibitors occasionally harbor BRAF gene mutations but lack mutations in KRAS, NRAS, or MEK1. Proc Natl Acad Sci USA. 109:E2127–E2133. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Odogwu L, Mathieu L, Blumenthal G, Larkins E, Goldberg KB, Griffin N, Bijwaard K, Lee EY, Philip R, Jiang X, et al: FDA approval summary: Dabrafenib and trametinib for the treatment of metastatic non-small cell lung cancers harboring BRAF V600E mutations. Oncologist. 23:740–745. 2018. View Article : Google Scholar | |
|
Zhu C, Wei Y and Wei X: AXL receptor tyrosine kinase as a promising anti-cancer approach: Functions, molecular mechanisms and clinical applications. Mol Cancer. 18:1532019. View Article : Google Scholar : PubMed/NCBI | |
|
Goyette MA and Côté JF: AXL receptor tyrosine kinase as a promising therapeutic target directing multiple aspects of cancer progression and metastasis. Cancers (Basel). 14:4662022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Z, Lee JC, Lin L, Olivas V, Au V, LaFramboise T, Abdel-Rahman M, Wang X, Levine AD, Rho JK, et al: Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet. 44:852–860. 2012. View Article : Google Scholar | |
|
Sang YB, Kim JH, Kim CG, Hong MH, Kim HR, Cho BC and Lim SM: The Development of AXL inhibitors in lung cancer: Recent progress and challenges. Front Oncol. 12:8112472022. View Article : Google Scholar | |
|
Nishio M, Okamoto I, Murakami H, Horinouchi H, Toyozawa R, Takeda M, Uno M, Crawford N, Jimbo T, Ishigami M, et al: 570P A first-in-human phase I study of the AXL inhibitor DS-1205c in combination with gefitinib in subjects with EGFR-mutant NSCLC. Ann Oncol. 31:S4882020. View Article : Google Scholar | |
|
Byers LA, Gold KA and Peguero JA: Ph I/II study of oral selective AXL inhibitor bemcentinib (BGB324) in combination with erlotinib in patients with advanced EGFRm NSCLC: End of trial update. Wolters Kluwer Health; 2021, View Article : Google Scholar | |
|
Xun G, Hu W and Li B: PTEN loss promotes oncogenic function of STMN1 via PI3K/AKT pathway in lung cancer. Sci Rep. 11:143182021. View Article : Google Scholar : PubMed/NCBI | |
|
Ferrara MG, Martini M, D'Argento E, Forcella C, Vita E, Di Noia V, Sperduti I, Bilotta M, Ribelli M, Damiano P, et al: PTEN loss as a predictor of tumor heterogeneity and poor prognosis in patients with EGFR-mutant advanced non-small-cell lung cancer receiving tyrosine kinase inhibitors. Clin Lung Cancer. 22:351–360. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Redig AJ, Capelletti M, Dahlberg SE, Sholl LM, Mach S, Fontes C, Shi Y, Chalasani P and Jänne PA: Clinical and molecular characteristics of NF1-mutant lung cancer. Clin Cancer Res. 22:3148–3156. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Cheung HW, Du J, Boehm JS, He F, Weir BA, Wang X, Butaney M, Sequist LV, Luo B, Engelman JA, et al: Amplification of CRKL induces transformation and epidermal growth factor receptor inhibitor resistance in human non-small cell lung cancers. Cancer Discov. 1:608–625. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Cortot AB, Repellin CE, Shimamura T, Capelletti M, Zejnullahu K, Ercan D, Christensen JG, Wong KK, Gray NS and Jänne PA: Resistance to irreversible EGF receptor tyrosine kinase inhibitors through a multistep mechanism involving the IGF1R pathway. Cancer Res. 73:834–843. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ware KE, Hinz TK, Kleczko E, Singleton KR, Marek LA, Helfrich BA, Cummings CT, Graham DK, Astling D, Tan AC and Heasley LE: A mechanism of resistance to gefitinib mediated by cellular reprogramming and the acquisition of an FGF2-FGFR1 autocrine growth loop. Oncogenesis. 2:e392013. View Article : Google Scholar : PubMed/NCBI | |
|
Attili I, Passaro A, Pisapia P, Malapelle U and de Marinis F: Uncommon EGFR compound mutations in non-small cell lung cancer (NSCLC): A systematic review of available evidence. Curr Oncol. 29:255–266. 2022. View Article : Google Scholar | |
|
Hayashi T, Kohsaka S, Takamochi K, Hara K, Kishikawa S, Sano K, Takahashi F, Suehara Y, Saito T, Takahashi K, et al: Clinicopathological characteristics of lung adenocarcinoma with compound EGFR mutations. Hum Pathol. 103:42–51. 2020. View Article : Google Scholar | |
|
Rossi S, Damiano P, Toschi L, Finocchiaro G, Giordano L, Marinello A, Bria E, D'Argento E and Santoro A: Uncommon single and compound EGFR mutations: Clinical outcomes of a heterogeneous subgroup of NSCLC. Curr Probl Cancer. 46:1007872022. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang D, Fu Y, Zhou X, Li Y, Cui Y, Hong L, Jin H, Shi K, Huang F, Zhang X, et al: The prognosis of EGFR complex mutation or co-mutation with tyrosine kinase inhibitor treatment in non-small cell lung cancer. Am Soc Clin Oncol. 40:e210862022. View Article : Google Scholar | |
|
Wang R, Pan S and Song X: Research Advances of EGFR-TP53 Co-mutation in advanced non-small cell lung cancer. Zhongguo Fei Ai Za Zhi. 25:174–182. 2022.(In Chinese). | |
|
Wang F, Zhao N, Gao G, Deng HB, Wang ZH, Deng LL, Yang Y and Lu C: Prognostic value of TP53 co-mutation status combined with EGFR mutation in patients with lung adenocarcinoma. J Cancer Res Clin Oncol. 146:2851–2859. 2020. View Article : Google Scholar | |
|
Cheng Y, Ma L, Liu Y, Zhu J, Xin Y, Liu X, Wang Y, Zhang T, Yang C, Wang S, et al: Comprehensive characterization and clinical impact of concomitant genomic alterations in EGFR-mutant NSCLCs treated with EGFR kinase inhibitors. Lung Cancer. 145:63–70. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Li S, Lyu Z, Cai J, Zheng N, Li Y, Xu T and Zeng H: The co-mutation of EGFR and tumor-related genes leads to a worse prognosis and a higher level of tumor mutational burden in Chinese non-small cell lung cancer patients. J Thorac Dis. 14:185–193. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Li HS, Liu CM and Wang Y: Limited role of KRAS mutation in guiding immunotherapy in advanced non-small-cell lung cancer. Future Oncol. 18:2433–2443. 2022. View Article : Google Scholar | |
|
Marcoux N, Gettinger SN, O'Kane G, Arbour KC, Neal JW, Husain H, Evans TL, Brahmer JR, Muzikansky A, Bonomi PD, et al: EGFR-Mutant adenocarcinomas that transform to small-cell lung cancer and other neuroendocrine carcinomas: Clinical outcomes. J Clin Oncol. 37:278–285. 2019. View Article : Google Scholar | |
|
Niederst MJ, Sequist LV, Poirier JT, Mermel CH, Lockerman EL, Garcia AR, Katayama R, Costa C, Ross KN, Moran T, et al: RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. Nat Commun. 6:63772015. View Article : Google Scholar : PubMed/NCBI | |
|
Lee JK, Lee J, Kim S, Kim S, Youk J, Park S, An Y, Keam B, Kim DW, Heo DS, et al: Clonal history and genetic predictors of transformation into small-cell carcinomas from lung adenocarcinomas. J Clin Oncol. 35:3065–3074. 2017. View Article : Google Scholar | |
|
Offin M, Chan JM, Tenet M, Rizvi HA, Shen R, Riely GJ, Rekhtman N, Daneshbod Y, Quintanal-Villalonga A, Penson A, et al: Concurrent RB1 and TP53 alterations define a subset of EGFR-Mutant lung cancers at risk for histologic transformation and inferior clinical outcomes. J Thorac Oncol. 14:1784–1793. 2019. View Article : Google Scholar | |
|
Mambetsariev I, Arvanitis L, Fricke J, Pharaon R, Baroz AR, Afkhami M, Koczywas M, Massarelli E and Salgia R: Small cell lung cancer transformation following treatment in EGFR-Mutated non-small cell lung cancer. J Clin Med. 11:14292022. View Article : Google Scholar : PubMed/NCBI | |
|
Mc Leer A, Foll M, Brevet M, Antoine M, Novello S, Mondet J, Cadranel J, Girard N, Giaj Levra M, Demontrond P, et al: Detection of acquired TERT amplification in addition to predisposing p53 and Rb pathways alterations in EGFR-mutant lung adenocarcinomas transformed into small-cell lung cancers. Lung Cancer. 167:98–106. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Song KA, Niederst MJ, Lochmann TL, Hata AN, Kitai H, Ham J, Floros KV, Hicks MA, Hu H, Mulvey HE, et al: Epithelial-to-Mesenchymal transition antagonizes response to targeted therapies in lung cancer by suppressing BIM. Clin Cancer Res. 24:197–208. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Shaurova T, Zhang L, Goodrich DW and Hershberger PA: Understanding lineage plasticity as a path to targeted therapy failure in EGFR-Mutant non-small cell lung cancer. Front Genet. 11:2812020. View Article : Google Scholar | |
|
Wang W, Xu C, Chen H, Jia J, Wang L, Feng H, Wang H, Song Z, Yang N and Zhang Y: Genomic alterations and clinical outcomes in patients with lung adenocarcinoma with transformation to small cell lung cancer after treatment with EGFR tyrosine kinase inhibitors: A multicenter retrospective study. Lung Cancer. 155:20–27. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C, Zhang S, Yao Y, Huang J, Peng K, Gao Q, Chen H, Xu C, Zhang X, Wu Y, Yang J, et al: MA12. 08 Chemotherapy plus EGFR TKIs or bevacizumab versus chemotherapy alone in SCLC-transformed EGFR-mutant lung adenocarcinoma. J Thor Oncol. 16:S178–S179. 2021. View Article : Google Scholar | |
|
Kuiper JL, Ronden MI, Becker A, Heideman DA, van Hengel P, Ylstra B, Thunnissen E and Smit EF: Transformation to a squamous cell carcinoma phenotype of an EGFR-mutated NSCLC patient after treatment with an EGFR-tyrosine kinase inhibitor. J Clin Pathol. 68:320–321. 2015. View Article : Google Scholar | |
|
Levin PA, Mayer M, Hoskin S, Sailors J, Oliver DH and Gerber DE: Histologic transformation from adenocarcinoma to squamous cell carcinoma as a mechanism of resistance to EGFR inhibition. J Thorac Oncol. 10:e86–e88. 2015. View Article : Google Scholar | |
|
Longo L, Mengoli MC, Bertolini F, Bettelli S, Manfredini S and Rossi G: Synchronous occurrence of squamous-cell carcinoma ‘transformation’ and EGFR exon 20 S768I mutation as a novel mechanism of resistance in EGFR-mutated lung adenocarcinoma. Lung Cancer. 103:24–26. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Roca E, Pozzari M, Vermi W, Tovazzi V, Baggi A, Amoroso V, Nonnis D, Intagliata S and Berruti A: Outcome of EGFR-mutated adenocarcinoma NSCLC patients with changed phenotype to squamous cell carcinoma after tyrosine kinase inhibitors: A pooled analysis with an additional case. Lung Cancer. 127:12–18. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liao J, Li Y, Liu C, Long Q and Wang J: Case report: EGFR-Positive early-stage lung adenocarcinoma transforming to squamous cell carcinoma after TKI treatment. Front Oncol. 11:6968812021. View Article : Google Scholar | |
|
Jukna A, Montanari G, Mengoli MC, Cavazza A, Covi M, Barbieri F, Bertolini F and Rossi G: Squamous Cell Carcinoma ‘Transformation’ concurrent with secondary T790M mutation in resistant EGFR-Mutated Adenocarcinomas. J Thorac Oncol. 11:e49–e51. 2016. View Article : Google Scholar | |
|
Bugano DDG, Kalhor N, Zhang J, Neskey M and William WN Jr: Squamous-cell transformation in a patient with lung adenocarcinoma receiving erlotinib: Co-occurrence with T790M mutation. Cancer Treat Comm. 4:34–36. 2015. View Article : Google Scholar | |
|
Park S, Shim JH, Lee B, Cho I, Park WY, Kim Y, Lee SH, Choi Y, Han J, Ahn JS, et al: Paired genomic analysis of squamous cell carcinoma transformed from EGFR-mutated lung adenocarcinoma. Lung Cancer. 134:7–15. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Weng CH, Chen LY, Lin YC, Shih JY, Lin YC, Tseng RY, Chiu AC, Yeh YH, Liu C, Lin YT, et al: Epithelial-mesenchymal transition (EMT) beyond EGFR mutations per se is a common mechanism for acquired resistance to EGFR TKI. Oncogene. 38:455–468. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Brabletz S, Schuhwerk H, Brabletz T and Stemmler MP: Dynamic EMT: A multi-tool for tumor progression. EMBO J. 40:e1086472021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu X, Chen L, Liu L and Niu X: EMT-Mediated Acquired EGFR-TKI resistance in NSCLC: Mechanisms and strategies. Front Oncol. 9:10442019. View Article : Google Scholar | |
|
Miralaei N, Majd A, Ghaedi K, Peymani M and Safaei M: Integrated pan-cancer of AURKA expression and drug sensitivity analysis reveals increased expression of AURKA is responsible for drug resistance. Cancer Med. 10:6428–6441. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Nilsson MB, Sun H, Robichaux J, Pfeifer M, McDermott U, Travers J, Diao L, Xi Y, Tong P, Shen L, et al: A YAP/FOXM1 axis mediates EMT-associated EGFR inhibitor resistance and increased expression of spindle assembly checkpoint components. Sci Transl Med. 12:eaaz45892020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang CY, Lee MH, Kao YR, Hsiao SH, Hong SY and Wu CW: Alisertib inhibits migration and invasion of EGFR-TKI resistant cells by partially reversing the epithelial-mesenchymal transition. Biochim Biophys Acta Mol Cell Res. 1868:1190162021. View Article : Google Scholar : PubMed/NCBI | |
|
Yeh CT, Chen TT, Satriyo PB, Wang CH, Wu ATH, Chao TY, Lee KY, Hsiao M, Wang LS and Kuo KT: Bruton's tyrosine kinase (BTK) mediates resistance to EGFR inhibition in non-small-cell lung carcinoma. Oncogenesis. 10:562021. View Article : Google Scholar : PubMed/NCBI | |
|
Liao BC, Griesing S and Yang JC: Second-line treatment of EGFR T790M-negative non-small cell lung cancer patients. Ther Adv Med Oncol. Nov 25–2019.(Epub ahead of print). View Article : Google Scholar | |
|
Lee CK, Man J, Lord S, Links M, Gebski V, Mok T and Yang JC: Checkpoint Inhibitors in Metastatic EGFR-Mutated non-small cell lung cancer-A meta-analysis. J Thorac Oncol. 12:403–407. 2017. View Article : Google Scholar | |
|
Lee CK, Man J, Lord S, Cooper W, Links M, Gebski V, Herbst RS, Gralla RJ, Mok T and Yang JC: Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced non-small cell lung carcinoma: A systematic review and meta-analysis. JAMA Oncol. 4:210–216. 2018. View Article : Google Scholar | |
|
Yang CY, Liao WY, Ho CC, Chen KY, Tsai TH, Hsu CL, Su KY, Chang YL, Wu CT, Hsu CC, et al: Association between programmed death-ligand 1 expression, immune microenvironments, and clinical outcomes in epidermal growth factor receptor mutant lung adenocarcinoma patients treated with tyrosine kinase inhibitors. Eur J Cancer. 124:110–122. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Isomoto K, Haratani K, Hayashi H, Shimizu S, Tomida S, Niwa T, Yokoyama T, Fukuda Y, Chiba Y, Kato R, et al: Impact of EGFR-TKI treatment on the tumor immune microenvironment in EGFR mutation-positive non-small cell lung cancer. Clin Cancer Res. 26:2037–2046. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Reck M, Mok TS, Nishio M, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, Rodríguez-Abreu D, Moro-Sibilot D, et al: Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): Key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir Med. 7:387–401. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wu SG, Ho CC, Yang JC, Lia BC, Yang CY, Lin YT, Yu CJ, Liao WY and Shih JY: 12P A phase II study of atezolizumab in combination with bevacizumab, carboplatin or cisplatin, and pemetrexed for EGFR-mutant metastatic NSCLC patients after failure of EGFR TKIs. Ann Oncol. 33:S33–S34. 2022. View Article : Google Scholar | |
|
Lam TC, Tsang KC, Choi HC, Lee VH, Lam KO, Chiang CL, So TH, Chan WW, Nyaw SF, Lim F, et al: Combination atezolizumab, bevacizumab, pemetrexed and carboplatin for metastatic EGFR mutated NSCLC after TKI failure. Lung Cancer. 159:18–26. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ren S, Zhang J, Zhao Y, Zhou J, Fan Y, Shu Y, Liu X, Zhang H, He J, Gao G, et al: A multi-center phase II study of toripalimab with chemotherapy in patients with EGFR mutant advanced NSCLC patients resistant to EGFR TKIs: Efficacy and biomarker analysis. Am Soc Clin Oncol. 6:3552020. | |
|
Jiang T, Wang P, Zhang J, Zhao Y, Zhou J, Fan Y, Shu Y, Liu X, Zhang H, He J, et al: Toripalimab plus chemotherapy as second-line treatment in previously EGFR-TKI treated patients with EGFR-mutant-advanced NSCLC: A multicenter phase-II trial. Signal Transduct Target Ther. 6:3552021. View Article : Google Scholar : PubMed/NCBI | |
|
Lu S, Wu L, Jian H, Cheng Y, Wang Q, Fang J, Wang Z, Hu Y, Sun M, Han L, et al: VP9-2021: ORIENT-31: Phase III study of sintilimab with or without IBI305 plus chemotherapy in patients with EGFR mutated nonsquamous NSCLC who progressed after EGFR-TKI therapy. Ann Oncol. 33:112–113. 2022. View Article : Google Scholar | |
|
Hayashi H, Sugawara S, Fukuda Y, Fujimoto D, Miura S, Ota K, Ozawa Y, Hara S, Tanizaki J, Azuma K, et al: A randomized phase II study comparing nivolumab with carboplatin-pemetrexed for EGFR-mutated NSCLC with resistance to EGFR tyrosine kinase inhibitors (WJOG8515L). Clin Cancer Res. 28:893–902. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
de Rouw N, Piet B, Derijks HJ, van den Heuvel MM and Ter Heine R: Mechanisms, management and prevention of pemetrexed-related toxicity. Drug Saf. 44:1271–1281. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liang SK, Keng LT, Chang CH, Wen YF, Lee MR, Yang CY, Wang JY, Ko JC, Shih JY and Yu CJ: Treatment options of first-line tyrosine kinase inhibitors and subsequent systemic chemotherapy agents for advanced EGFR mutant lung adenocarcinoma patients: Implications from Taiwan cancer registry cohort. Front Oncol. 10:5903562021. View Article : Google Scholar | |
|
Li Z, Guo H, Lu Y, Hu J, Luo H and Gu W: Chemotherapy with or without pemetrexed as second-line regimens for advanced non-small-cell lung cancer patients who have progressed after first-line EGFR TKIs: A systematic review and meta-analysis. Onco Targets Ther. 11:3697–3703. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yoo KH, Lee SJ, Cho J, Lee KH, Park KU, Kim KH, Cho EK, Choi YH, Kim HR, Kim HG, et al: A randomized, open-label, Phase II study comparing pemetrexed plus cisplatin followed by maintenance pemetrexed versus pemetrexed alone in patients with epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer after failure of first-line EGFR tyrosine kinase inhibitor: KCSG-LU12-13. Cancer Res Treat. 51:718–726. 2019. View Article : Google Scholar | |
|
Le X, Nilsson M, Goldman J, Reck M, Nakagawa K, Kato T, Ares LP, Frimodt-Moller B, Wolff K, Visseren-Grul C, et al: Dual EGFR-VEGF Pathway inhibition: A promising strategy for patients with EGFR-Mutant NSCLC. J Thorac Oncol. 16:205–215. 2021. View Article : Google Scholar | |
|
Lian Z, Du W, Zhang Y, Fu Y, Liu T, Wang A, Cai T, Zhu J, Zeng Y, Liu Z and Huang JA: Anlotinib can overcome acquired resistance to EGFR-TKIs via FGFR1 signaling in non-small cell lung cancer without harboring EGFR T790M mutation. Thorac Cancer. 11:1934–1943. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C, Cao H, Cui Y, Jin S, Gao W, Huang C and Guo R: Concurrent use of anlotinib overcomes acquired resistance to EGFR-TKI in patients with advanced EGFR-mutant non-small cell lung cancer. Thorac Cancer. 12:2574–2584. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hata A, Katakami N, Kaji R, Yokoyama T, Kaneda T, Tamiya M, Inoue T, Kimura H, Yano Y, Tamura D, et al: Afatinib plus bevacizumab combination after acquired resistance to EGFR tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer: Multicenter, single-arm, phase 2 trial (ABC Study). Cancer. 124:3830–3838. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yang R, Wang D, Li X, Mao K, Wang J, Li P, Shi X, Zhang S and Wang Y: An advanced non-small cell lung cancer patient with EGFR and KRAS mutations, and PD-L1 positive, benefited from immunotherapy: A case report. Ann Transl Med. 10:3812022. View Article : Google Scholar : PubMed/NCBI | |
|
Bai M, Wang W, Gao X, Wu L, Jin P, Wu H, Yu J and Meng X: Efficacy of immune checkpoint inhibitors in patients with EGFR Mutated NSCLC and potential risk factors associated with prognosis: A single institution experience. Front Immunol. 13:8324192022. View Article : Google Scholar | |
|
Mu Y, Hao X, Xing P, Hu X, Wang Y, Li T, Zhang J, Xu Z and Li J: Acquired resistance to osimertinib in patients with non-small-cell lung cancer: Mechanisms and clinical outcomes. J Cancer Res Clin Oncol. 146:2427–2433. 2020. View Article : Google Scholar | |
|
Leonetti A, Sharma S, Minari R, Perego P, Giovannetti E and Tiseo M: Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer. 121:725–737. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
He J, Huang Z, Han L, Gong Y and Xie C: Mechanisms and management of 3rd-generation EGFR-TKI resistance in advanced non-small cell lung cancer (Review). Int J Oncol. 59:902021. View Article : Google Scholar | |
|
Papadimitrakopoulou V, Wu YL, Han JY, Ahn MJ, Ramalingam SS, John T, Okamoto I, Yang JC, Bulusu K, Laus G, et al: Analysis of resistance mechanisms to osimertinib in patients with EGFR T790M advanced NSCLC from the AURA3 study. Annal Oncol. 29:viii7412018. View Article : Google Scholar | |
|
Piotrowska Z, Nagy R, Fairclough S, Lanman R, Marcoux N, Gettinger S, Owonikoko T, Ramalingam S and Sequist L: Characterizing the genomic landscape of EGFR C797S in lung cancer using ctDNA next-generation sequencing. J Thorac Oncol. 12:S17672017. View Article : Google Scholar | |
|
Wang X, Zhou L, Yin JC, Wu X, Shao YW and Gao B: Lung adenocarcinoma harboring EGFR 19del/C797S/T790M triple mutations responds to brigatinib and Anti-EGFR antibody combination therapy. J Thorac Oncol. 14:e85–e88. 2019. View Article : Google Scholar | |
|
Chang Y, Liu S, Jiang Y, Hua L and Wen L: Effective treatment of pulmonary adenocarcinoma harboring triple EGFR mutations of L858R, T790M, cis-G796s/cis-C797s by osimertinib, brigatinib, and bevacizumab combination therapy: A case report. Respir Med Case Rep. 36:1015822022.PubMed/NCBI | |
|
Zhou R, Song L, Zhang W, Shao L and Li X and Li X: Combination of osimertinib and anlotinib may overcome the resistance mediated by in cis EGFR T790M-C797S in NSCLC: A case report. Onco Targets Ther. 14:2847–2851. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Xu H, Ma L, Yang L, Yang G, Zhang S, Ai X, Zhang S and Wang Y: Possibility of brigatinib-based therapy, or chemotherapy plus anti-angiogenic treatment after resistance of osimertinib harboring EGFR T790M-cis-C797S mutations in lung adenocarcinoma patients. Cancer Med. 10:8328–8337. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Y, Chen Y, Huang H, Li X, Shao L and Ding H: Significant benefits of afatinib and apatinib in a refractory advanced NSCLC patient resistant to osimertinib: A case report. OncoTargets Ther. 14:3063–3067. 2021. View Article : Google Scholar | |
|
Yang Z, Yang N, Ou Q, Xiang Y, Jiang T, Wu X, Bao H, Tong X, Wang X, Shao YW, et al: Investigating novel resistance mechanisms to third-generation EGFR tyrosine kinase inhibitor osimertinib in non-small cell lung cancer patients. Clin Cancer Res. 24:3097–3107. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, He B, Zhou D, Li M and Hu C: Newly emergent acquired EGFR exon 18 G724S mutation after resistance of a T790M specific EGFR inhibitor osimertinib in non-small-cell lung cancer: A case report. OncoTargets Ther. 12:51–56. 2018. View Article : Google Scholar | |
|
Schoenfeld AJ, Chan JM, Kubota D, Sato H, Rizvi H, Daneshbod Y, Chang JC, Paik PK, Offin M, Arcila ME, et al: Tumor analyses reveal squamous transformation and off-target alterations as early resistance mechanisms to first-line osimertinib in EGFR-Mutant lung cancer. Clin Cancer Res. 26:2654–2663. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Fairclough SR, Kiedrowski LA, Lin JJ, Zelichov O, Tarcic G, Stinchcombe TE, Odegaard JI, Lanman RB, Shaw AT and Nagy RJ: Identification of osimertinib-resistant EGFR L792 mutations by cfDNA sequencing: oncogenic activity assessment and prevalence in large cfDNA cohort. Exp Hematol Oncol. 8:242019. View Article : Google Scholar | |
|
Ma L, Chen R, Wang F, Ma LL, Yuan MM, Chen RR and Liu J: EGFR L718Q mutation occurs without T790M mutation in a lung adenocarcinoma patient with acquired resistance to osimertinib. Ann Transl Med. 7:2072019. View Article : Google Scholar : PubMed/NCBI | |
|
Fang W, Huang Y, Gan J, Zheng Q and Zhang L: Emergence of EGFR G724S after progression on osimertinib responded to afatinib monotherapy. J Thorac Oncol. 15:e36–e37. 2020. View Article : Google Scholar | |
|
Zhang Y, Yang Q, Zeng X, Wang M, Dong S, Yang B, Tu X, Wei T, Xie W, Zhang C, et al: MET amplification attenuates lung tumor response to immunotherapy by inhibiting STING. Cancer Discov. 11:2726–2737. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Syed YY: Amivantamab: First approval. Drugs. 81:1349–1353. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Amivantamab OK'd for EGFR-Mutant NSCLC, . Cancer Discov. 11:16042021. View Article : Google Scholar | |
|
Neijssen J, Cardoso RM, Chevalier KM, Wiegman L, Valerius T, Anderson GM, Moores SL, Schuurman J, Parren PW, Strohl WR and Chiu ML: Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. J Biol Chem. 296:1006412021. View Article : Google Scholar : PubMed/NCBI | |
|
Planchard D, Loriot Y, André F, Gobert A, Auger N, Lacroix L and Soria JC: EGFR-independent mechanisms of acquired resistance to AZD9291 in EGFR T790M-positive NSCLC patients. Ann Oncol. 26:2073–2078. 2015. View Article : Google Scholar | |
|
Ramalingam S, Cheng Y, Zhou C, Ohe Y, Imamura F, Cho BC, Lin M, Majem M, Shah R, Rukazenkov Y, et al: Mechanisms of acquired resistance to first-line osimertinib: preliminary data from the phase III FLAURA study. OncologyPro. 29:viii7402018. | |
|
Oxnard GR, Hu Y, Mileham KF, Husain H, Costa DB, Tracy P, Feeney N, Sholl LM, Dahlberg SE, Redig AJ, et al: Assessment of resistance mechanisms and clinical implications in patients With EGFR T790M-Positive lung cancer and acquired resistance to osimertinib. JAMA Oncol. 4:1527–1534. 2018. View Article : Google Scholar | |
|
Qu F, Zhou Y and Yu WJA-CD: A review of research progress on mechanisms and overcoming strategies of acquired osimertinib resistance. Anticancer Drugs. 33:e76–e83. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Beenken A and Mohammadi M: The FGF family: Biology, pathophysiology and therapy. Nat Rev Drug Discov. 8:235–253. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Lu Y, Liu Y, Oeck S, Zhang GJ, Schramm A and Glazer PM: Hypoxia induces resistance to EGFR inhibitors in lung cancer cells via upregulation of FGFR1 and the MAPK pathway. Cancer Res. 80:4655–4667. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Quintanal-Villalonga A, Molina-Pinelo S, Cirauqui C, Ojeda-Márquez L, Marrugal Á, Suarez R, Conde E, Ponce-Aix S, Enguita AB, Carnero A, et al: FGFR1 Cooperates with EGFR in lung cancer oncogenesis, and their combined inhibition shows improved efficacy. J Thorac Oncol. 14:641–655. 2019. View Article : Google Scholar | |
|
Hayakawa D, Takahashi F, Mitsuishi Y, Tajima K, Hidayat M, Winardi W, Ihara H, Kanamori K, Matsumoto N, Asao T, et al: Activation of insulin-like growth factor-1 receptor confers acquired resistance to osimertinib in non-small cell lung cancer with EGFR T790M mutation. Thorac Cancer. 11:140–149. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Y, Wang H and He C: Drug resistance of targeted therapy for advanced non-small cell lung cancer harbored EGFR mutation: From mechanism analysis to clinical strategy. J Cancer Res Clin Oncol. 147:3653–3664. 2021. View Article : Google Scholar | |
|
Makimoto G, Ninomiya K, Kubo T, Sunami R, Kato Y, Ichihara E, Ohashi K, Rai K, Hotta K, Tabata M, et al: A novel osimertinib-resistant human lung adenocarcinoma cell line harbouring mutant EGFR and activated IGF1R. Jpn J Clin Oncol. 51:956–965. 2021. View Article : Google Scholar | |
|
Wang R, Yamada T, Kita K, Taniguchi H, Arai S, Fukuda K, Terashima M, Ishimura A, Nishiyama A, Tanimoto A, et al: Transient IGF-1R inhibition combined with osimertinib eradicates AXL-low expressing EGFR mutated lung cancer. Nat Commun. 11:46072020. View Article : Google Scholar : PubMed/NCBI | |
|
Lin CC, Shih JY, Yu CJ, Ho CC, Liao WY, Lee JH, Tsai TH, Su KY, Hsieh MS, Chang YL, et al: Outcomes in patients with non-small-cell lung cancer and acquired Thr790Met mutation treated with osimertinib: A genomic study. Lancet Respir Med. 6:107–116. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Jia Y, Yun CH, Park E, Ercan D, Manuia M, Juarez J, Xu C, Rhee K, Chen T, Zhang H, et al: Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature. 534:129–132. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
To C, Jang J, Chen T, Park E, Mushajiang M, De Clercq DJH, Xu M, Wang S, Cameron MD, Heppner DE, et al: Single and dual targeting of mutant EGFR with an allosteric inhibitor. Cancer Discov. 9:926–943. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tripathi SK and Biswal BK: Allosteric mutant-selective fourth-generation EGFR inhibitors as an efficient combination therapeutic in the treatment of non-small cell lung carcinoma. Drug Discov Today. 26:1466–1472. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kashima K, Kawauchi H, Tanimura H, Tachibana Y, Chiba T, Torizawa T and Sakamoto H: CH7233163 overcomes osimertinib-resistant EGFR-Del19/T790M/C797S Mutation. Mol Cancer Ther. 19:2288–2297. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Schalm S, Dineen T, Lim S, Park CW, Hsieh J, Woessner R, Zhang Z, Wilson K, Eno M, Wilson D, et al: 1296P BLU-945, a highly potent and selective 4th generation EGFR TKI for the treatment of EGFR T790M/C797S resistant NSCLC. Ann Oncol. 31:S8392020. View Article : Google Scholar | |
|
Conti C, Campbell J, Woessner R, Guo J, Timsit Y, Iliou M, Wardwell S, Davis A, Chicklas S, Hsieh J, et al: BLU-701 is a highly potent, brain-penetrant and WT-sparing next-generation EGFR TKI for the treatment of sensitizing (ex19del, L858R) and C797S resistance mutations in metastatic NSCLC. Cancer Res. 81 (Suppl 13):12622021. View Article : Google Scholar | |
|
Lim SM, Park CW, Zhang Z, Woessner R, Dineen T, Stevison F, Hsieh J, Eno M, Wilson D, Campbell J, et al: BLU-945, a fourth-generation, potent and highly selective epidermal growth factor receptor tyrosine kinase inhibitor with intracranial activity, demonstrates robust in vivo anti-tumor activity in models of osimertinib-resistant non-small cell lung cancer. Cancer Res. 81 (Suppl 13):14672021. View Article : Google Scholar | |
|
Tavera L, Zhang Z, Wardwell S, Job E, McGinn K, Chen M, Iliou M, Albayya F, Campbell J, Eno M, et al: BLU-701 tumour suppression and intracranial activity as a single agent and in combination with BLU-945 in models of non-small cell lung cancer (NSCLC) driven by EGFR mutations. Mol Cell Biol. 165:S372022. | |
|
Liu X, Zhang X, Yang L, Chen S, Tian X, Dong T, Ding CZ, Hu L, Wu L, Zhao L, Mao J, et al: Preclinical evaluation of TQB3804, a potent EGFR C797S inhibitor. Cancer Res. 79 (Suppl 13):13202019. View Article : Google Scholar | |
|
Huang J and Wang H: Targeted therapy and mechanism of drug resistance in non-small cell lung cancer with epidermal growth factor receptor gene mutation. Zhongguo Fei Ai Za Zhi. 25:183–192. 2022.(In Chinese). | |
|
Lim S, Kim DW, Jung JE, Lee G, Ryou JH, Kang SU, Lee YH, Shin HJ, Yum SY and Yim Ε: A Phase 1/2, open-label study of BBT-176, a triple mutation targeting EGFR TKI, in patients with NSCLC who progressed after prior EGFR TKI therapy. Ann Oncol. 32:S949–S1039. 2021. View Article : Google Scholar | |
|
Lim S, Kim D and Jung J: A phase I/II, open-label study of BBT-176, a triple mutation targeting EGFR TKI, in patients with NSCLC who progressed after prior EGFR TKI therapy. Ann Oncol. 32:S1035(Suppl 5):2021. | |
|
Park K, Haura EB, Leighl NB, Mitchell P, Shu CA, Girard N, Viteri S, Han JY, Kim SW, Lee CK, et al: Amivantamab in EGFR exon 20 insertion-mutated non-small-cell lung cancer progressing on platinum chemotherapy: Initial results from the CHRYSALIS phase I study. J Clin Oncol. 39:3391–3402. 2021. View Article : Google Scholar | |
|
Cho B, Lee K, Cho E, Kim DW, Lee JS, Han JY, Kim SW, Spira A, Haura EB, Sabari JK, et al: 1258O Amivantamab (JNJ-61186372), an EGFR-MET bispecific antibody, in combination with lazertinib, a 3rd-generation tyrosine kinase inhibitor (TKI), in advanced EGFR NSCLC. Ann Oncol. 31:S813(Suppl 4):2020. View Article : Google Scholar | |
|
Yu H, Johnson M, Steuer C, Vigliotti M, Chen S, Kamai Y, Yu C and Jänne P: Preliminary phase 1 results of U3-1402-A novel HER3-targeted antibody-drug conjugate-in EGFR TKI-resistant, EGFR-mutant NSCLC. Mol Cell Biol. 14:S336–S337. 2019. | |
|
Jänne PA, Baik C, Su WC, Johnson ML, Hayashi H, Nishio M, Kim DW, Koczywas M, Gold KA, Steuer CE, et al: Efficacy and safety of patritumab deruxtecan (HER3-DXd) in EGFR inhibitor-resistant, EGFR-mutated non-small cell lung cancer. Cancer Discov. 12:74–89. 2022. View Article : Google Scholar | |
|
Soo RA, Han JY, Dafni U, Cho BC, Yeo CM, Nadal E, Carcereny E, de Castro J, Sala MA, Bernabé R, et al: A randomised phase II study of osimertinib and bevacizumab versus osimertinib alone as second-line targeted treatment in advanced NSCLC with confirmed EGFR and acquired T790M mutations: The European Thoracic Oncology Platform (ETOP 10–16) BOOSTER trial. Ann Oncol. 33:181–192. 2022. View Article : Google Scholar | |
|
Cui Q, Hu Y, Cui Q, Wu D, Mao Y, Ma D and Liu H: Osimertinib rechallenge with bevacizumab vs. chemotherapy plus bevacizumab in EGFR-Mutant NSCLC patients with osimertinib resistance. Front Pharmacol. 12:7467072022. View Article : Google Scholar | |
|
Sequist L, Peled N, Tufman A, Servidio L, Li J, Taylor R and Zhao J: COMPEL: Chemotherapy with/without osimertinib in patients with EGFRm advanced NSCLC and progression on first-line osimertinib. J Thor Oncol. 16:S11012021. View Article : Google Scholar | |
|
Han B, Li K, Wang Q, Zhang L, Shi J, Wang Z, Cheng Y, He J, Shi Y, Zhao Y, et al: Effect of anlotinib as a third-line or further treatment on overall survival of patients with advanced non-small cell lung cancer: The ALTER 0303 phase 3 Randomized clinical trial. JAMA Oncol. 4:1569–1575. 2018. View Article : Google Scholar | |
|
Tamiya M, Kunimasa K, Nishino K, Matsumoto S, Kawachi H, Kuno K, Inoue T, Kuhara H, Imamura F, Goto K and Kumagai T: Successful treatment of an osimertinib-resistant lung adenocarcinoma with an exon 18 EGFR mutation (G719S) with afatinib plus bevacizumab. Invest New Drugs. 39:232–236. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Blakely CM, Watkins TBK, Wu W, Gini B, Chabon JJ, McCoach CE, McGranahan N, Wilson GA, Birkbak NJ, Olivas VR, et al: Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. Nat Genet. 49:1693–1704. 2017. View Article : Google Scholar | |
|
Dagogo-Jack I and Shaw AT: Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 15:81–94. 2018. View Article : Google Scholar | |
|
Assaraf YG, Brozovic A, Gonçalves AC, Jurkovicova D, Linē A, Machuqueiro M, Saponara S, Sarmento-Ribeiro AB, Xavier CPR and Vasconcelos MH: The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Updat. 46:1006452019. View Article : Google Scholar | |
|
Zhang Y, Wang D, Peng M, Tang L, Ouyang J, Xiong F, Guo C, Tang Y, Zhou Y, Liao Q, et al: Single-cell RNA sequencing in cancer research. J Exp Clin Cancer Res. 40:812021. View Article : Google Scholar : PubMed/NCBI | |
|
Maynard A, McCoach CE, Rotow JK, Harris L, Haderk F, Kerr DL, Yu EA, Schenk EL, Tan W, Zee A, et al: Therapy-Induced evolution of human lung cancer revealed by single-cell RNA sequencing. Cell. 182:1232–1251.e22. 2020. View Article : Google Scholar | |
|
Kim DW and Cho JY: Recent advances in allogeneic CAR-T cells. Biomolecules. 10:2632020. View Article : Google Scholar | |
|
Patel AJ, Richter A, Drayson MT and Middleton GW: The role of B lymphocytes in the immuno-biology of non-small-cell lung cancer. Cancer Immunol Immunother. 69:325–342. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hung LVM, Ngo HT and Van Pham P: Clinical trials with cytokine-induced killer cells and CAR-T cell transplantation for non-small cell lung cancer treatment. Adv Exp Med Biol. 1292:113–130. 2020. View Article : Google Scholar | |
|
Johnson LA and June CH: Driving gene-engineered T cell immunotherapy of cancer. Cell Res. 27:38–58. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Xu J, Zhang Q, Tian K, Wang H, Yin H and Zheng J: Current status and future prospects of the strategy of combining CAR-T with PD-1 blockade for antitumor therapy (Review). Mol Med Rep. 17:2083–2088. 2018.PubMed/NCBI | |
|
Kandra P, Nandigama R, Eul B, Huber M, Kobold S, Seeger W, Grimminger F and Savai R: Utility and drawbacks of chimeric antigen receptor T Cell (CAR-T) therapy in lung cancer. Front Immunol. 13:9035622022. View Article : Google Scholar | |
|
Xu C, Ju D and Zhang X: Chimeric antigen receptor T-cell therapy: Challenges and opportunities in lung cancer. Antib Ther. 5:73–83. 2022.PubMed/NCBI | |
|
Yang P, Qiao Y, Meng M and Zhou Q: Cancer/Testis antigens as biomarker and target for the diagnosis, prognosis, and therapy of lung cancer. Front Oncol. 12:8641592022. View Article : Google Scholar | |
|
Yeku O, Li X and Brentjens RJ: Adoptive T-Cell therapy for solid tumors. Am Soc Clin Oncol Educ Book. 37:193–204. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Reppel L, Tsahouridis O, Akulian J, Davis IJ, Lee H, Fucà G, Weiss J, Dotti G, Pecot CV and Savoldo B: Targeting disialoganglioside GD2 with chimeric antigen receptor-redirected T cells in lung cancer. J Immunother Cancer. 10:e0038972022. View Article : Google Scholar : PubMed/NCBI | |
|
Min J, Long C, Zhang L, Duan J, Fan H, Chu F and Li Z: c-Met specific CAR-T cells as a targeted therapy for non-small cell lung cancer cell A549. Bioengineered. 13:9216–9232. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Feng K, Guo Y, Dai H, Wang Y, Li X, Jia H and Han W: Chimeric antigen receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer. Sci China Life Sci. 59:468–479. 2016. View Article : Google Scholar | |
|
Xiao BF, Zhang JT, Zhu YG, Cui XR, Lu ZM, Yu BT and Wu N: Chimeric antigen receptor T-Cell therapy in lung cancer: Potential and challenges. Front Immunol. 12:7827752021. View Article : Google Scholar | |
|
Qu J, Mei Q, Chen L and Zhou J: Chimeric antigen receptor (CAR)-T-cell therapy in non-small-cell lung cancer (NSCLC): Current status and future Aperspectives. Cancer Immunol Immunother. 70:619–631. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Chen F, Li J, Pu Y, Yang C, Wang Y, Lei Y and Huang Y: CAR-T cell therapy for lung cancer: Potential and perspective. Thorac Cancer. 13:889–899. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Vasic D, Lee JB, Leung Y, Khatri I, Na Y, Abate-Daga D and Zhang L: Allogeneic double-negative CAR-T cells inhibit tumor growth without off-tumor toxicities. Sci Immunol. 7:eabl36422022. View Article : Google Scholar |