|
1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Rosen R and Karachaliou N: Large-scale
screening for somatic mutations in lung cancer. Lancet.
387:1354–1356. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Liu L, Wang X, Ji Z, Wang J, Bi N, Hui Z,
Lyu J, Liang J, Zhou Z, Feng Q, et al: Outcome of concurrent
chemoradiotherapy in locally advanced non-small-cell lung cancer
patients. Zhonghua Zhong Liu Za Zhi. 37:863–867. 2015.(In Chinese).
PubMed/NCBI
|
|
4
|
Moro-Sibilot D, Smit E, de Castro Carpeño
J, Lesniewski-Kmak K, Aerts J, Villatoro R, Kraaij K, Nacerddine K,
Dyachkova Y, Smith KT, et al: Outcomes and resource use of
non-small cell lung cancer (NSCLC) patients treated with first-line
platinum-based chemotherapy across Europe: FRAME prospective
observational study. Lung Cancer. 88:215–222. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Lu H and Jiang Z: Advances in antibody
therapeutics targeting small-cell lung cancer. Adv Clin Exp Med.
27:1317–1323. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Bielenberg DR and Zetter BR: The
contribution of angiogenesis to the process of metastasis. Cancer
J. 21:267–273. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Nemeth JA, Cher ML, Zhou Z, Mullins C,
Bhagat S and Trikha M: Inhibition of alpha(v)beta3 integrin reduces
angiogenesis, bone turnover, and tumor cell proliferation in
experimental prostate cancer bone metastases. Clin Exp Metastasis.
20:413–420. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Liu Y and Cao X: Characteristics and
significance of the pre-metastatic niche. Cancer Cell. 30:668–681.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Quail DF and Joyce JA: Microenvironmental
regulation of tumor progression and metastasis. Nat Med.
19:1423–1437. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Sceneay J, Smyth MJ and Möller A: The
pre-metastatic niche: Finding common ground. Cancer Metastasis Rev.
32:449–464. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Shoenfeld Y, Tal A, Berliner S and Pinkhas
J: Leukocytosis in non hematological malignancies-a possible
tumor-associated marker. J Cancer Res Clin Oncol. 111:54–58. 1986.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Tecchio C, Scapini P, Pizzolo G and
Cassatella MA: On the cytokines produced by human neutrophils in
tumors. Semin Cancer Biol. 23:159–170. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Houghton AM: The paradox of
tumor-associated neutrophils. Cell Cycle. 9:1732–1737. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Gregory A and Houghton AM:
Tumor-associated neutrophils: New targets for cancer therapy.
Cancer Research. 71:2411–2416. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kim J and Bae JS: Tumor-Associated
macrophages and neutrophils in tumor microenvironment. Mediators
Inflamm. 2016:60581472016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Borregaard N: Neutrophils, from marrow to
microbes. Immunity. 33:657–670. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Cortez-Retamozo V, Etzrodt M, Newton A,
Rauch PJ, Chudnovskiy A, Berger C, Ryan RJ, Iwamoto Y, Marinelli B,
Gorbatov R, et al: Origins of tumor associated macrophages and
neutrophils. Proc Natl Acad Sci USA. 109:2491–2496. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Stöth M, Freire Valls A, Chen M, Hidding
S, Knipper K, Shen Y, Klose J, Ulrich A, Ruiz de Almodovar C,
Schneider M and Schmidt T: Splenectomy reduces lung metastases and
tumoral and metastatic niche inflammation. Int J Cancer.
145:2509–2520. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Eruslanov EB, Bhojnagarwala PS, Quatromoni
JG, Stephen TL, Ranganathan A, Deshpande C, Akimova T, Vachani A,
Litzky L, Hancock WW, et al: Tumor-associated neutrophils stimulate
T cell responses in early-stage human lung cancer. J Clin Invest.
124:5466–5480. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Piccard H, Muschel RJ and Opdenakker G: On
the dual roles and polarized phenotypes of neutrophils in tumor
development and progression. Crit Rev Oncol Hematol. 82:296–309.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Sionov RV, Fridlender ZG and Granot Z: The
multifaceted roles neutrophils play in the tumor microenvironment.
Cancer Microenviron. 8:125–158. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Coffelt SB, Wellenstein MD and de Visser
KE: Neutrophils in cancer: Neutral no more. Nat Rev Cancer.
16:443–446. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Houghton AM: The paradox of
tumor-associated neutrophils: Fueling tumor growth with cytotoxic
substances. Cell Cycle. 9:1732–1737. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Shen M, Hu P, Donskov F, Wang G, Liu Q and
Du J: Tumorassociated neutrophils as a new prognostic factor in
cancer: A systematic review and meta-analysis. PLoS One.
9:e982592014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Uribe-Querol E and Rosales C: Neutrophils
in cancer: Two sides of the same coin. J Immunol Res.
2015:9836982015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Liu X, Wu S, Yang Y, Zhao M, Zhu G and Hou
Z: The prognostic landscape of tumor-infiltrating immune cell and
immunomodulators in lung cancer. Biomed Pharmacother. 95:55–61.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Shaul ME, Eyal O, Guglietta S, Aloni P,
Zlotnik A, Forkosh E, Levy L, Weber LM, Levin Y, Pomerantz A, et
al: Circulating neutrophil subsets in advanced lung cancer patients
exhibit unique immune signature and relate to prognosis. FASEB J.
34:4204–4218. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Chen Y, Chen H, Mao B, Zhou Y, Shi X, Tang
L, Jiang H, Wang G and Zhuang W: Transcriptional characterization
of the tumor immune microenvironment and its prognostic value for
locally advanced lung adenocarcinoma in a Chinese population.
Cancer Manag Res. 11:9165–9173. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Sebastian NT, Raj R, Prasad R, Barney C,
Brownstein J, Grecula J, Haglund K, Xu-Welliver M, Williams TM and
Bazan JG: Association of Pre- and Posttreatment
neutrophil-lymphocyte ratio with recurrence and mortality in
locally advanced non-small cell lung cancer. Front Oncol.
10:5988732020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Diem S, Schmid S, Krapf M, Flatz L, Born
D, Jochum W, Templeton AJ and Früh M: Neutrophil-to-Lymphocyte
ratio (NLR) and Platelet-to-Lymphocyte ratio (PLR) as prognostic
markers in patients with non-small cell lung cancer (NSCLC) treated
with nivolumab. Lung Cancer. 111:176–181. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhao K, Wang C, Shi F, Huang Y, Ma L, Li M
and Song Y: Combined prognostic value of the SUVmax derived from
FDG-PET and the lymphocyte-monocyte ratio in patients with stage
IIIB-IV non-small cell lung cancer receiving chemotherapy. BMC
Cancer. 21:662021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ilie M, Hofman V, Ortholan C, Bonnetaud C,
Coëlle C, Mouroux J and Hofman P: Predictive clinical outcome of
the intratumoralCD66b-positive neutrophil-to-CD8-positive T-cell
ratio in patients with resectable nonsmall cell lung cancer.
Cancer. 118:1726–1737. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Fridlender ZG and Albelda SM:
Tumor-associated neutrophils: Friend or foe? Carcinogenesis.
33:949–955. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Dumitru CA, Lang S and Brandau S:
Modulation of neutrophil granulocytes in the tumor
microenvironment: Mechanisms and consequences for tumor
progression. Semin Cancer Biol. 23:141–148. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Abe H, Morikawa T, Saito R, Yamashita H,
Seto Y and Fukayama M: In Epstein-Barr virus-associated gastric
carcinoma a high density ofCD66b-positive tumor-associated
neutrophils is associated with intestinal-type histology and low
frequency of lymph node metastasis. Virchows Arch. 468:539–548.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
López-Lago MA, Posner S, Thodima VJ,
Molina AM, Motzer RJ and Chaganti RS: Neutrophil chemokines
secreted by tumor cells mount a lung antimetastatic response during
renal cell carcinoma progression. Oncogene. 32:1752–1760. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Houghton AM, Rzymkiewicz DM, Ji H, Gregory
AD, Egea EE, Metz HE, Stolz DB, Land SR, Marconcini LA, Kliment CR,
et al: Neutrophil Elastase-mediated degradation of IRS-1
accelerates lung tumor growth. Nat Med. 16:219–223. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Deryugina EI, Zajac E, Juncker-Jensen A,
Kupriyanova TA, Welter L and Quigley JP: Tissue-infiltrating
neutrophils constitute the major in vivo source of
angiogenesis-inducing MMP-9 in the tumor microenvironment.
Neoplasia. 16:771–788. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Deryugina EI and Quigley JP: Tumor
angiogenesis: MMP-mediated induction of intravasation- and
metastasis-sustaining neovasculature. Matrix Biol. 44–46. 94–112.
2015.PubMed/NCBI
|
|
40
|
Grunwald B, Vandooren J, Locatelli E,
Fiten P, Opdenakker G, Proost P, Krüger A, Lellouche JP, Israel LL,
Shenkman L and Comes Franchini M: Matrix metalloproteinase-9
(MMP-9) as an activator of nanosystems for targeted drug delivery
in pancreatic cancer. J Control Release. 239:39–48. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Andzinski L, Kasnitz N, Stahnke S, Wu CF,
Gereke M, von Köckritz-Blickwede M, Schilling B, Brandau S, Weiss S
and Jablonska J: Type I IFNs induce anti-tumor polarization of
tumor associated neutrophils in mice and human. Int J Cancer.
138:1982–1993. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wang N, Wang Q, Chi J, Xiang F, Lin M,
Wang W, Wei F and Feng Y: Carcinoembryonic antigen cell adhesion
molecule 1 inhibits the antitumor effect of neutrophils in tongue
squamous cell carcinoma. Cancer Sci. 110:519–529. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Krstic J and Santibanez JF: Transforming
growth factor-beta and matrix metalloproteinases: Functional
interactions in tumor Stroma-infiltrating myeloid cells.
ScientificWorldJournal. 2014:5217542014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Kim Y, Lee D, Lee J, Lee S and Lawler S:
Role of tumor-associated neutrophils in regulation of tumor growth
in lung cancer development: A mathematical model. PLoS One.
14:e02110412019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Shaul ME, Levy L, Sun J, Mishalian I,
Singhal S, Kapoor V, Horng W, Fridlender G, Albelda SM and
Fridlender ZG: Tumor-associated neutrophils display a distinct N1
profile following TGF-β modulation: A transcriptomics analysis of
pro-vs. Antitumor TANs. Oncoimmunology. 5:e12322212016. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Fridlender ZG, Sun J, Kim S, Kapoor V,
Cheng G, Ling L, Worthen GS and Albelda SM: Polarization of
tumor-associated neutrophil phenotype by TGF-beta: ‘N1’ versus ‘N2’
TAN. Cancer Cell. 16:183–194. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Saha S and Biswas SK: Tumor-Associated
neutrophils show phenotypic and functional divergence in human lung
cancer. Cancer Cell. 30:11–13. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zhang J, Qiao X, Shi H, Han X, Liu W, Tian
X and Zeng X: Circulating tumor-associated neutrophils (cTAN)
contribute to circulating tumor cell survival by suppressing
peripheral leukocyte activation. Tumour Biol. 37:5397–5404. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Mishalian I, Bayuh R, Levy L, Zolotarov L,
Michaeli J and Fridlender ZG: Tumor-associated neutrophils (TAN)
develop pro-tumorigenic properties during tumor progression. Cancer
Immunol Immunother. 62:1745–1756. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
McDonald B, Urrutia R, Yipp BG, Jenne CN
and Kubes P: Intravascular neutrophil extracellular traps capture
bacteria from the bloodstream during sepsis. Cell Host Microbe.
12:324–333. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Urban CF, Ermert D, Schmid M, Abu-Abed U,
Goosmann C, Nacken W, Brinkmann V, Jungblut PR and Zychlinsky A:
Neutrophil extracellular traps contain calprotectin, a cytosolic
protein complex involved in host defense against Candida albicans.
PLoS Pathog. 5:e10006392009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Spicer JD, McDonald B, Cools-Lartigue JJ,
Chow SC, Giannias B, Kubes P and Ferri LE: Neutrophils promote
liver metastasis via Mac-1-mediated interactions with circulating
tumor cells. Cancer Res. 72:3919–3927. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Rayes RF, Mouhanna JG, Nicolau I, Bourdeau
F, Giannias B, Rousseau S, Quail D, Walsh L, Sangwan V, Bertos N,
et al: Primary tumors induce neutrophil extracellular traps with
targetable metastasis promoting effects. JCI Insight.
5:e1280082019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Erpenbeck L and Schön MP: Neutrophil
extracellular traps: Protagonists of cancer progression? Oncogene.
36:2483–2490. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Richardson JJR, Hendrickse C, Gao-Smith F
and Thickett DR: Neutrophil extracellular trap production in
patients with colorectal cancer in vitro. Int J Inflam.
2017:49150622017.PubMed/NCBI
|
|
56
|
Jin W, Xu HX, Zhang SR, Li H, Wang WQ, Gao
HL, Wu CT, Xu JZ, Qi ZH, Li S, et al: Tumor-Infiltrating nets
predict postsurgical survival in patients with pancreatic ductal
adenocarcinoma. Ann Surg Oncol. 26:635–643. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Thålin C, Lundström S, Seignez C, Daleskog
M, Lundström A, Henriksson P, Helleday T, Phillipson M, Wallén H
and Demers M: Citrullinated histone H3 as a novel prognostic blood
marker in patients with advanced cancer. PLoS One. 13:e01912312018.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhou J, Yang Y, Gan T, Li Y, Hu F, Hao N,
Yuan B, Chen Y and Zhang M: lung cancer cells release high mobility
group box 1 and promote the formation of neutrophil extracellular
traps. Oncol Lett. 18:181–188. 2019.PubMed/NCBI
|
|
59
|
Najmeh S, Cools-Lartigue J, Giannias B,
Spicer J and Ferri LE: Simplified human neutrophil extracellular
traps (NETs) isolation and handling. J Vis Exp. 526872015.doi:
10.3791/52687. PubMed/NCBI
|
|
60
|
Cools-Lartigue J, Spicer J, McDonald B,
Gowing S, Chow S, Giannias B, Bourdeau F, Kubes P and Ferri L:
Neutrophil extracellular traps sequester circulating tumor cells
and promote metastasis. J Clin Invest. 123:3446–3458. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Monti M, De Rosa V, Iommelli F, Carriero
MV, Terlizzi C, Camerlingo R, Belli S, Fonti R, Di Minno G and Del
Vecchio S: Neutrophil extracellular traps as an adhesion substrate
for difffferent tumor cells expressing RGD-binding integrins. Int J
Mol Sci. 19:23502018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Kanamaru R, Ohzawa H, Miyato H, Yamaguchi
H, Hosoya Y, Lefor AK, Sata N and Kitayama J: Neutrophil
extracellular traps generated by low density neutrophils obtained
from peritoneal lavage fluid mediate tumor cell growth and
attachment. J Vis Exp. 138:582012018.PubMed/NCBI
|
|
63
|
Yang L, Liu L, Zhang R, Hong J, Wang Y,
Wang J, Zuo J, Zhang J, Chen J and Hao H: IL-8 mediates a positive
loop connecting increased neutrophil extracellular traps (Nets) and
colorectal cancer liver metastasis. J Cancer. 11:4384–4396. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Yang LY, Luo Q, Lu L, Zhu WW, Sun HT, Wei
R, Lin ZF, Wang XY, Wang CQ, Lu M, et al: Increased neutrophil
extracellular traps promote metastasis potential of hepatocellular
carcinoma via provoking tumorous inflammatory response. J Hematol
Oncol. 13:32020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kern MA, Haugg AM, Koch AF, Schilling T,
Breuhahn K, Walczak H, Fleischer B, Trautwein C, Michalski C,
Schulze-Bergkamen H, et al: yclooxygenase-2 inhibition induces
apoptosis signaling via death receptors and mitochondria in
hepatocellular carcinoma. Cancer Res. 66:7059–7066. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Leng J, Han C, Demetris AJ, Michalopoulos
GK and Wu T: Cyclooxygenase-2 promotes hepatocellular carcinoma
cell growth through Akt activation: Evidence for Akt inhibition in
celecoxib-induced apoptosis. Hepatology. 38:756–768. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Xu L, Stevens J, Hilton MB, Seaman S,
Conrads TP, Veenstra TD, Logsdon D, Morris H, Swing DA, Patel NL,
et al: COX-2 inhibition potentiates antiangiogenic cancer therapy
and prevents metastasis in preclinical models. Sci Transl Med.
6:242ra842014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Takesue S, Ohuchida K, Shinkawa T, Otsubo
Y, Matsumoto S, Sagara A, Yonenaga A, Ando Y, Kibe S, Nakayama H,
et al: Neutrophil extracellular traps promote liver micrometastasis
in pancreatic ductal adenocarcinoma via the activation of
cancer-associated fibroblasts. Int J Oncol. 56:596–605.
2020.PubMed/NCBI
|
|
69
|
Xiao Y, Cong M, Li J, He D, Wu Q, Tian P,
Wang Y, Yang S, Liang C, Liang Y, et al: Cathepsin C promotes
breast cancer lung metastasis by modulating neutrophil infiltration
and neutrophil extracellular trap formation. Cancer Cell.
39:423–437.e7. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Yuan M, Zhu H, Xu J, Zheng Y, Cao X and
Liu Q: Tumor-Derived CXCL1 promotes lung cancer growth via
recruitment of tumor-associated neutrophils. J Immunol Res.
2016:65304102016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Eash KJ, Greenbaum AM, Gopalan PK and Link
DC: CXCR2 and CXCR4 antagonistically regulate neutrophil
traffificking from murine bone marrow. J Clin Investig.
120:2423–2431. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Raccosta L, Fontana R, Maggioni D,
Lanterna C, Villablanca EJ, Paniccia A, Musumeci A, Chiricozzi E,
Trincavelli ML, Daniele S, et al: The oxysterol-CXCR2 axis plays a
key role in the recruitment of tumor-promoting neutrophils. J Exp
Med. 210:1711–1728. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Forsthuber A, Lipp K, Andersen L,
Ebersberger S, Graña-Castro, Ellmeier W, Petzelbauer P,
Lichtenberger BM and Loewe R: CXCL5 as regulator of neutrophil
function in cutaneous melanoma. J Invest Dermatol. 139:186–194.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Viola A, Sarukhan A, Bronte V and Molon B:
The pros and cons of chemokines in tumor immunology. Trends
Immunol. 33:496–504. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Huang SY, Mills L, Mian B, Tellez C,
McCarty M, Yang XD, Gudas JM and Bar-Eli M: Fully humanized
neutralizing antibodies to interleukin-8 (ABX–IL8) inhibit
angiogenesis, tumor growth, and metastasis of human melanoma. Am J
Pathol. 161:125–134. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Luca M, Huang S, Gershenwald JE, Singh RK,
Reich R and Bar-Eli M: Expression of interleukin-8 by human
melanoma cells up-regulates MMP-2 activity and increases tumor
growth and metastasis. Am J Pathol. 151:1105–1113. 1997.PubMed/NCBI
|
|
77
|
Pignatti P, Moscato G, Casarini S,
Delmastro M, Poppa M, Brunetti G, Pisati P and Balbi B:
Downmodulation of CXCL8/IL-8 receptors on neutrophils after
recruitment in the airways. J Allergy Clin Immunol. 115:88–94.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Fortunati E, Kazemier KM, Grutters JC,
Koenderman L and Van den Bosch VJ: Human neutrophils switch to an
activated phenotype after homing to the lung irrespective of
inflammatory disease. Clin Exp Immunol. 155:559–566. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Tazzyman S, Niaz H and Murdoch C:
Neutrophil-mediated tumour angiogenesis: Subversion of immune
responses to promote tumour growth. Semin Cancer Biol. 23:149–158.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Pelletier M, Maggi L, Micheletti A,
Lazzeri E, Tamassia N, Costantini C, Cosmi L, Lunardi C, Annunziato
F, Romagnani S and Cassatella MA: Evidence for a cross-talk between
human neutrophils and Th17 cells. Blood. 115:335–343. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Jungnickel C, Schmidt LH, Bittigkoffer L,
Wolf L, Wolf A, Ritzmann F, Kamyschnikow A, Herr C, Menger MD,
Spieker T, et al: IL-17C mediates the recruitment of
tumor-associated neutrophils and lung tumor growth. Oncogene.
36:4182–4190. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Shojaei F, Singh M, Thompson JD and
Ferrara N: Role of Bv8 in neutrophildependent angiogenesis in a
transgenic model of cancer progression. Proc Natl Acad Sci.
105:2640–2645. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Tazawa H, Okada F, Kobayashi T, Tada M,
Mori Y, Une Y, Sendo F, Kobayashi M and Hosokawa M: Infiltration of
neutrophils is required for acquisition of metastatic phenotype of
benign murine fibrosarcoma cells: Implication of
inflammation-associated carcinogenesis and tumor progression. Am J
Pathol. 163:2221–2232. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Vannitamby A, Seow HJ, Anderson G, Vlahos
R, Thompson M, Steinfort D, Irving LB and Bozinovski S:
Tumour-associated neutrophils and loss of epithelial PTEN can
promote corticosteroid-insensitive MMP-9 expression in the
chronically inflamed lung microenvironment. Thorax. 72:1140–1143.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Coussens LM, Tinkle CL, Hanahan D and Werb
Z: MMP-9 supplied by bone marrow-derived cells contributes to skin
carcinogenesis. Cell. 103:481–490. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Shojaei F, Wu X, Zhong C, Yu L, Liang XH,
Yao J, Blanchard D, Bais C, Peale FV, van Bruggen N, et al: Bv8
regulates myeloid-cell-dependent tumour angiogenesis. Nature.
450:825–831. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Qu X, Zhuang G, Yu L, Meng G and Ferrara
N: Induction of Bv8 expression by granulocyte colony-stimulating
factor in CD11b+Gr1+ cells: Key role of Stat3 signaling. J Biol
Chem. 287:19574–19584. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Kowanetz M, Wu X, Lee J, Tan M, Hagenbeek
T, Qu X, Yu L, Ross J, Korsisaari N, Cao T, et al:
Granulocyte-colony stimulating factor promotes lung metastasis
through mobilization of Ly6G+Ly6C+ granulocytes. Proc Natl Acad Sci
USA. 107:21248–21255. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Kalluri R and Weinberg RA: The basics of
epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Xu J, Lamouille S and Derynck R:
TGF-beta-induced epithelial to mesenchymal transition. Cell Res.
19:156–172. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Hu P, Shen M, Zhang P, Zheng C, Pang Z,
Zhu L and Du J: Intratumoral neutrophil granulocytes contribute to
epithelial-mesenchymal transition in lung adenocarcinoma cells.
Tumor Boil. 36:7789–7796. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Tsai YM, Wu KL, Liu YW, Chang AW, Huang
YC, Chang CY, Tsai PH, Liao SH, Hung JY and Hsu YL: Cooperation
between cancer and fibroblasts in vascular mimicry and N2-type
neutrophil recruitment via Notch2-Jagged1 interaction in lung
cancer. Front Oncol. 11:6969312021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Patel S, Fu S, Mastio J, Dominguez GA,
Purohit A, Kossenkov A, Lin C, Alicea-Torres K, Sehgal M, Nefedova
Y, et al: Unique pattern of neutrophil migration and function
during tumor progression. Nat Immunol. 19:1236–1247. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Shao B, Zhao X, Liu T, Zhang Y, Sun R,
Dong X, Liu F, Zhao N, Zhang D, Wu L, et al: LOXL2 promotes
vasculogenic mimicry and tumour aggressiveness in hepatocellular
carcinoma. J Cell Mol Med. 23:1363–1374. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Mayer C, Darb-Esfahani S, Meyer AS, Hübner
K, Rom J, Sohn C, Braicu I, Sehouli J, Hänsch GM and Gaida MM:
Neutrophil granulocytes in ovarian cancer-induction of
epithelial-to-mesenchymal-transition and tumor cell migration. J
Cancer. 7:546–554. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Michaeli J, Shaul ME, Mishalian I, Hovav
AH, Levy L, Zolotriov L, Granot Z and Fridlender ZG:
Tumor-associated neutrophils induce apoptosis of non-activated CD8
T-cells in a TNFα and NO-dependent mechanism, promoting a
tumor-supportive environment. Oncoimmunology. 6:e13569652017.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Singhal S, Bhojnagarwala PS, O'Brien S,
Moon EK, Garfall AL, Rao AS, Quatromoni JG, Stephen TL, Litzky L,
Deshpande C, et al: Origin and role of a subset of tumor-associated
neutrophils with antigen-presenting cell features in early-stage
human lung cancer. Cancer Cell. 30:120–135. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Shaul ME and Fridlender ZG:
Tumour-associated neutrophils in patients with cancer. Nat Rev Clin
Oncol. 16:601–620. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Sica A, Porta C, Morlacchi S, Banfi S,
Strauss L, Rimoldi M, Totaro MG and Riboldi E: Origin and functions
of tumor-associated myeloid cells (TAMCs). Cancer Microenviron.
5:133–149. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Lee WL and Downey GP: Leukocyte elastase:
Physiological functions and role in acute lung injury. Am J Respir
Crit Care Med. 164:896–904. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Wislez M, Antoine M, Rabbe N, Gounant V,
Poulot V, Lavolé A, Fleury-Feith J and Cadranel J: Neutrophils
promote aerogenous spread of lung adenocarcinoma with bronchiolo
alveolar carcinoma features. Clin Cancer Res. 13:3518–3527. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Gong L, Cumpian AM, Caetano MS, Ochoa CE,
De la Garza MM, Lapid DJ, Mirabolfathinejad SG, Dickey BF, Zhou Q
and Moghaddam SJ: Promoting effect of neutrophils on lung
tumorigenesis is mediated by CXCR2 and neutrophil elastase. Mol
Cancer. 12:1542013. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Liang W, Li Q and Ferrara N: Metastatic
growth instructed by neutrophil-derived transferrin. Proc Natl Acad
Sci USA. 115:11060–11065. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
O'Brien S, Thomas RM, Wertheim GB, Zhang
F, Shen H and Wells AD: Ikaros imposes a barrier to CD8+ T cell
differentiation by restricting autocrine IL-2 production. J
Immunol. 11:5118–5129. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Wang W, Erbe AK, Hank JA, Morris ZS and
Sondel PM: NK cell-mediated antibody dependent cellular
cytotoxicity in cancer immunotherapy. Front Immunol. 6:3682015.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Amarante-Mendes GP and Gfiffith TS:
Therapeutic applications of TRAIL receptor agonists in cancer and
beyond. Pharmacol Ther. 155:117–131. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Granot Z, Henke E, Comen EA, King TA,
Norton L and Benezra R: Tumor entrained neutrophils inhibit seeding
in the premetastatic lung. Cancer Cell. 20:300–314. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Jablonska S, Leschner K and Westphal S:
Neutrophils responsive to endogenous IFN-β regulate tumor
angiogenesis and growth in a mouse tumor model. J Clin Invest.
120:1151–1164. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Wu CF, Andzinski L, Kasnitz N, Kröger A,
Klawonn F, Lienenklaus S, Weiss S and Jablonska J: The lack of type
I interferon induces neutrophil-mediated pre-metastatic niche
formation in the mouse lung. Int J Cancer. 137:837–847. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Andzinski L, Wu CF, Lienenklaus S, Kröger
A, Weiss S and Jablonska J: Delayed apoptosis of tumor associated
neutrophils in the absence of endogenous IFN-β. Int J Cancer.
136:572–583. 2015.PubMed/NCBI
|
|
111
|
Jablonska J, Wu CF, Andzinski L, Leschner
S and Weiss S: CXCR2-mediated tumor associated neutrophil
recruitment is regulated by IFN-beta. Int J Cancer. 134:1346–1358.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Carus A, Ladekarl M, Hager H, Pilegaard H,
Nielsen PS and Donskov F: Tumor-associated neutrophils and
macrophages in non-small cell lung cancer: No immediate impact on
patient outcome. Lung Cancer. 81:130–137. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Tanizaki J, Haratani K, Hayashi H, Chiba
Y, Nakamura Y, Yonesaka K, Kudo K, Kaneda H, Hasegawa Y, Tanaka K,
et al: Peripheral blood biomarkers associated with clinical outcome
in non-small cell lung cancer patients treated with nivolumab. J
Thorac Oncol. 13:97–105. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Taniguchi Y, Tamiya A, Isa SI, Nakahama K,
Okishio K, Shiroyama T, Suzuki H, Inoue T, Tamiya M, Hirashima T,
et al: Predictive factors for poor progression-free survival in
patients with non-small cell lung cancer treated with nivolumab.
Anticancer Res. 37:857–5862. 2017.
|
|
115
|
Rakaee M, Busund LT, Paulsen EE,
Richardsen E, Al-Saad S, Andersen S, Donnem T, Bremnes RM and
Kilvaer TK: Prognostic effect of intratumoral neutrophils across
histological subtypes of non-small cell lung cancer. Oncotarget.
7:72184–72196. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Kubo S, Kobayashi N, Somekawa K, Hirata M,
Kamimaki C, Aiko H, Katakura S, Teranishi S, Watanabe K, Hara YU,
et al: Identification of biomarkers for non-small-cell lung cancer
patients treated with an immune checkpoint inhibitor. Anticancer
Res. 40:3889–3896. 2020. View Article : Google Scholar : PubMed/NCBI
|