
Research progress on the intrinsic non‑immune function of PD‑L1 in tumors (Review)
- Authors:
- Jiao Deng
- Wei Jiang
- Liang Liu
- Wenli Zhan
- Yudi Wu
- Xiangshang Xu
-
Affiliations: Gastrointestinal Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China - Published online on: November 15, 2022 https://doi.org/10.3892/ol.2022.13596
- Article Number: 10
-
Copyright: © Deng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Sun C, Mezzadra R and Schumacher TN: Regulation and Function of the PD-L1 Checkpoint. Immunity. 48:434–452. 2018. View Article : Google Scholar : PubMed/NCBI | |
Thompson RH, Gillett MD, Cheville JC, Lohse CM, Dong H, Webster WS, Krejci KG, Lobo JR, Sengupta S, Chen L, et al: Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci USA. 101:17174–17179. 2004. View Article : Google Scholar : PubMed/NCBI | |
Muenst S, Schaerli AR, Gao F, Däster S, Trella E, Droeser RA, Muraro MG, Zajac P, Zanetti R, Gillanders WE, et al: Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat. 146:15–24. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kraft S, Fernandez-Figueras MT, Richarz NA, Flaherty KT and Hoang MP: PDL1 expression in desmoplastic melanoma is associated with tumor aggressiveness and progression. J Am Acad Dermatol. 77:534–542. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nduom EK, Wei J, Yaghi NK, Huang N, Kong LY, Gabrusiewicz K, Ling X, Zhou S, Ivan C, Chen JQ, et al: PD-L1 expression and prognostic impact in glioblastoma. Neuro Oncol. 18:195–205. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xia H, Shen J, Hu F, Chen S, Huang H, Xu Y and Ma H: PD-L1 over-expression is associated with a poor prognosis in Asian non-small cell lung cancer patients. Clin Chim Acta. 469:191–194. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Yuan B, Wang Y, Li M, Liu X, Cao J, Li C and Hu J: Clinicopathological and prognostic significance of PD-L1 expression in colorectal cancer: A meta-analysis. Int J Colorectal Dis. 36:117–130. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cha JH, Chan LC, Li CW, Hsu JL and Hung MC: Mechanisms Controlling PD-L1 Expression in Cancer. Mol Cell. 76:359–370. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yarchoan M, Hopkins A and Jaffee EM: Tumor mutational burden and response rate to PD-1 Inhibition. N Engl J Med. 377:2500–2501. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pitt JM, Vetizou M, Daillere R, Roberti MP, Yamazaki T, Routy B, Lepage P, Boneca IG, Chamaillard M, Kroemer G and Zitvogel L: Resistance mechanisms to immune-checkpoint blockade in cancer: Tumor-intrinsic and -extrinsic factors. Immunity. 44:1255–1269. 2016. View Article : Google Scholar : PubMed/NCBI | |
Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, et al: Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 192:1027–1034. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yang T, Ren C, Lu C, Qiao P, Han X, Wang L, Wang D, Lv S, Sun Y and Yu Z: Phosphorylation of HSF1 by PIM2 Induces PD-L1 expression and promotes tumor growth in breast cancer. Cancer Res. 79:5233–5244. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kim W, Chu TH, Nienhuser H, Jiang Z, Del Portillo A, Remotti HE, White RA, Hayakawa Y, Tomita H, Fox JG, et al: PD-1 Signaling promotes tumor-infiltrating myeloid-derived suppressor cells and gastric tumorigenesis in mice. Gastroenterology. 160:781–796. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gao H, Zhang J and Ren X: PD-L1 regulates tumorigenesis and autophagy of ovarian cancer by activating mTORC signaling. Biosci Rep. 39:BSR201910412019. View Article : Google Scholar : PubMed/NCBI | |
Mu L, Wang Y, Su H, Lin Y, Sui W, Yu X and Lv Z: HIF1A-AS2 promotes the proliferation and metastasis of gastric cancer cells through miR-429/PD-L1 Axis. Dig Dis Sci. 66:4314–4325. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zak KM, Kitel R, Przetocka S, Golik P, Guzik K, Musielak B, Dömling A, Dubin G and Holak TA: Structure of the complex of human programmed death 1, PD-1, and Its Ligand PD-L1. Structure. 23:2341–2348. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gato-Canas M, Zuazo M, Arasanz H, Ibañez-Vea M, Lorenzo L, Fernandez-Hinojal G, Vera R, Smerdou C, Martisova E, Arozarena I, et al: PDL1 signals through conserved sequence motifs to overcome interferon-mediated cytotoxicity. Cell Rep. 20:1818–1829. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lin DY, Tanaka Y, Iwasaki M, Gittis AG, Su HP, Mikami B, Okazaki T, Honjo T, Minato N and Garboczi DN: The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors. Proc Natl Acad Sci USA. 105:3011–3016. 2008. View Article : Google Scholar : PubMed/NCBI | |
Keir ME, Butte MJ, Freeman GJ and Sharpe AH: PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 26:677–704. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Jiang CC, Jin L and Zhang XD: Regulation of PD-L1: A novel role of pro-survival signalling in cancer. Ann Oncol. 27:409–416. 2016. View Article : Google Scholar : PubMed/NCBI | |
Azuma T, Yao S, Zhu G, Flies AS, Flies SJ and Chen L: B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood. 111:3635–3643. 2008. View Article : Google Scholar : PubMed/NCBI | |
Huang RSP, Decker B, Murugesan K, Hiemenz M, Mata DA, Li G, Creeden J, Ramkissoon SH and Ross JS: Pan-cancer analysis of CD274 (PD-L1) mutations in 314,631 patient samples and subset correlation with PD-L1 protein expression. J Immunother Cancer. 9:e0025582021. View Article : Google Scholar : PubMed/NCBI | |
Brody R, Zhang Y, Ballas M, Siddiqui MK, Gupta P, Barker C, Midha A and Walker J: PD-L1 expression in advanced NSCLC: Insights into risk stratification and treatment selection from a systematic literature review. Lung Cancer. 112:200–215. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yagi T, Baba Y, Ishimoto T, Iwatsuki M, Miyamoto Y, Yoshida N, Watanabe M and Baba H: PD-L1 expression, tumor-infiltrating lymphocytes, and clinical outcome in patients with surgically resected esophageal cancer. Ann Surg. 269:471–478. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hassen G, Kasar A, Jain N, Berry S, Dave J, Zouetr M, Priyanka Ganapathiraju VLN, Kurapati T, Oshai S, Saad M, et al: Programmed Death-Ligand 1 (PD-L1) positivity and factors associated with poor prognosis in patients with gastric cancer: An umbrella meta-analysis. Cureus. 14:e238452022.PubMed/NCBI | |
Wan X, Hu T, Wu H, Cheng X and Xu S: Predictive values of PDL1 expression for survival outcomes in patients with cervical cancer: A systematic review and meta-analysis. Ginekol Pol. Aug 19–2022.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Iacovelli R, Nole F, Verri E, Renne G, Paglino C, Santoni M, Cossu Rocca M, Giglione P, Aurilio G, Cullurà D, et al: Prognostic Role of PD-L1 expression in renal cell carcinoma. A systematic review and meta-analysis. Target Oncol. 11:143–148. 2016. View Article : Google Scholar : PubMed/NCBI | |
Huang W, Ran R, Shao B and Li H: Prognostic and clinicopathological value of PD-L1 expression in primary breast cancer: A meta-analysis. Breast Cancer Res Treat. 178:17–33. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Xue R and Pan C: Prognostic and clinicopathological value of PD-L1 in colorectal cancer: A systematic review and meta-analysis. Onco Targets Ther. 12:3671–3682. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Dong M, Shui Y, Zhang Y, Zhang Z, Mi Y, Zuo X, Jiang L, Liu K, Liu Z, et al: A pooled analysis of the prognostic value of PD-L1 in melanoma: Evidence from 1062 patients. Cancer Cell Int. 20:962020. View Article : Google Scholar : PubMed/NCBI | |
Fife BT, Pauken KE, Eagar TN, Obu T, Wu J, Tang Q, Azuma M, Krummel MF and Bluestone JA: Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol. 10:1185–1192. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li J, Chen L, Xiong Y, Zheng X, Xie Q, Zhou Q, Shi L, Wu C, Jiang J and Wang H: Knockdown of PD-L1 in human gastric cancer cells inhibits tumor progression and improves the cytotoxic sensitivity to CIK therapy. Cell Physiol Biochem. 41:907–920. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lotfinejad P, Kazemi T, Safaei S, Amini M, Roshani Asl E, Baghbani E, Sandoghchian Shotorbani S, Jadidi Niaragh F, Derakhshani A, Abdoli Shadbad M, et al: PD-L1 silencing inhibits triple-negative breast cancer development and upregulates T-cell-induced pro-inflammatory cytokines. Biomed Pharmacother. 138:1114362021. View Article : Google Scholar : PubMed/NCBI | |
Chang CH, Qiu J, O'Sullivan D, Buck MD, Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, van der Windt GJ, et al: Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 162:1229–1241. 2015. View Article : Google Scholar : PubMed/NCBI | |
Clark CA, Gupta HB, Sareddy G, Pandeswara S, Lao S, Yuan B, Drerup JM, Padron A, Conejo-Garcia J, Murthy K, et al: Tumor-Intrinsic PD-L1 signals regulate cell growth, pathogenesis, and autophagy in ovarian cancer and melanoma. Cancer Res. 76:6964–6974. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fan Y, Che X, Hou K, Zhang M, Wen T, Qu X and Liu Y: MiR-940 promotes the proliferation and migration of gastric cancer cells through up-regulation of programmed death ligand-1 expression. Exp Cell Res. 373:180–187. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kong T, Ahn R, Yang K, Zhu X, Fu Z, Morin G, Bramley R, Cliffe NC, Xue Y, Kuasne H, et al: CD44 Promotes PD-L1 expression and its tumor-intrinsic function in breast and lung cancers. Cancer Res. 80:444–457. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Qin B, Moyer AM, Nowsheen S, Tu X, Dong H, Boughey JC, Goetz MP, Weinshilboum R, Lou Z and Wang L: Regulation of sister chromatid cohesion by nuclear PD-L1. Cell Res. 30:590–601. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Zeng Y, Du W, Zhu J, Shen D, Liu Z and Huang JA: The EGFR pathway is involved in the regulation of PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in EGFR-mutated non-small cell lung cancer. Int J Oncol. 49:1360–1368. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kaufmann SH and Earnshaw WC: Induction of apoptosis by cancer chemotherapy. Exp Cell Res. 256:42–49. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ghebeh H, Lehe C, Barhoush E, Al-Romaih K, Tulbah A, Al-Alwan M, Hendrayani SF, Manogaran P, Alaiya A, Al-Tweigeri T, et al: Doxorubicin downregulates cell surface B7-H1 expression and upregulates its nuclear expression in breast cancer cells: Role of B7-H1 as an anti-apoptotic molecule. Breast Cancer Res. 12:R482010. View Article : Google Scholar : PubMed/NCBI | |
Liao Y, Chen L, Feng Y, Shen J, Gao Y, Cote G, Choy E, Harmon D, Mankin H, Hornicek F and Duan Z: Targeting programmed cell death ligand 1 by CRISPR/Cas9 in osteosarcoma cells. Oncotarget. 8:30276–30287. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shen B, Huang D, Ramsey AJ, Ig-Izevbekhai K, Zhang K, Lajud SA, O'Malley BW and Li D: PD-L1 and MRN synergy in platinum-based chemoresistance of head and neck squamous cell carcinoma. Br J Cancer. 122:640–647. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Liu J, Li W, Li S and Han X: Lactoferricin B reverses cisplatin resistance in head and neck squamous cell carcinoma cells through targeting PD-L1. Cancer Med. 7:3178–3187. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Fu C, Du J, Wang H, He R, Yin X, Li H, Li X, Wang H, Li K, et al: Enhanced histone H3 acetylation of the PD-L1 promoter via the COP1/c-Jun/HDAC3 axis is required for PD-L1 expression in drug-resistant cancer cells. J Exp Clin Cancer Res. 39:292020. View Article : Google Scholar : PubMed/NCBI | |
Gao Q, Xiang SD, Wilson K, Madondo M, Stephens AN and Plebanski M: Sperm Protein 17 expression by murine epithelial ovarian cancer cells and its impact on tumor progression. Cancers (Basel). 10:2762018. View Article : Google Scholar : PubMed/NCBI | |
Zhu F, Niu R and Shao X and Shao X: FGD5AS1 promotes cisplatin resistance of human lung adenocarcinoma cell via the miR1425p/PDL1 axis. Int J Mol Med. 47:523–532. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li D, Wang X, Yang M, Kan Q and Duan Z: MiR3609 sensitizes breast cancer cells to adriamycin by blocking the programmed death-ligand 1 immune checkpoint. Exp Cell Res. 380:20–28. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zeng Y, Liu T, Du W, Zhu J, Liu Z and Huang JA: The canonical TGF-β/Smad signalling pathway is involved in PD-L1-induced primary resistance to EGFR-TKIs in EGFR-mutant non-small-cell lung cancer. Respir Res. 20:1642019. View Article : Google Scholar : PubMed/NCBI | |
Huang TY, Chang TC, Chin YT, Pan YS, Chang WJ, Liu FC, Hastuti ED, Chiu SJ, Wang SH, Changou CA, et al: NDAT Targets PI3K-Mediated PD-L1 upregulation to reduce proliferation in gefitinib-resistant colorectal cancer. Cells. 9:18302020. View Article : Google Scholar : PubMed/NCBI | |
Li D, Sun FF, Wang D, Wang T, Peng JJ, Feng JQ, Li H, Wang C, Zhou DJ, Luo H, et al: Programmed death ligand-1 (PD-L1) Regulated by NRF-2/MicroRNA-1 regulatory axis enhances drug resistance and promotes tumorigenic properties in sorafenib-resistant hepatoma cells. Oncol Res. 28:467–481. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Xiong Y, Li J, Zheng X, Zhou Q, Turner A, Wu C, Lu B and Jiang J: PD-L1 expression promotes epithelial to mesenchymal transition in human esophageal cancer. Cell Physiol Biochem. 42:2267–2280. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Zhang L, Kamimura Y, Ritprajak P, Hashiguchi M, Hirose S and Azuma M: B7-H1 overexpression regulates epithelial-mesenchymal transition and accelerates carcinogenesis in skin. Cancer Res. 71:1235–1243. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim S, Koh J, Kim MY, Kwon D, Go H, Kim YA, Jeon YK and Chung DH: PD-L1 expression is associated with epithelial-to-mesenchymal transition in adenocarcinoma of the lung. Hum Pathol. 58:7–14. 2016. View Article : Google Scholar : PubMed/NCBI | |
Inaguma S, Lasota J, Wang Z, Felisiak-Golabek A, Ikeda H and Miettinen M: Clinicopathologic profile, immunophenotype, and genotype of CD274 (PD-L1)-positive colorectal carcinomas. Mod Pathol. 30:278–285. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tieche CC, Gao Y, Buhrer ED, Hobi N, Berezowska SA, Wyler K, Froment L, Weis S, Peng RW, Bruggmann R, et al: Tumor initiation capacity and therapy resistance are differential features of EMT-Related subpopulations in the NSCLC cell line A549. Neoplasia. 21:185–196. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhi Y, Mou Z, Chen J, He Y, Dong H, Fu X and Wu Y: B7H1 expression and epithelial-to-mesenchymal transition phenotypes on colorectal cancer stem-like cells. PLoS One. 10:e01355282015. View Article : Google Scholar : PubMed/NCBI | |
Ock CY, Kim S, Keam B, Kim M, Kim TM, Kim JH, Jeon YK, Lee JS, Kwon SK, Hah JH, et al: PD-L1 expression is associated with epithelial-mesenchymal transition in head and neck squamous cell carcinoma. Oncotarget. 7:15901–15914. 2016. View Article : Google Scholar : PubMed/NCBI | |
Alsuliman A, Colak D, Al-Harazi O, Fitwi H, Tulbah A, Al-Tweigeri T, Al-Alwan M and Ghebeh H: Bidirectional crosstalk between PD-L1 expression and epithelial to mesenchymal transition: Significance in claudin-low breast cancer cells. Mol Cancer. 14:1492015. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wang H, Zhao Q, Xia Y, Hu X and Guo J: PD-L1 induces epithelial-to-mesenchymal transition via activating SREBP-1c in renal cell carcinoma. Med Oncol. 32:2122015. View Article : Google Scholar : PubMed/NCBI | |
David JM, Dominguez C, McCampbell KK, Gulley JL, Schlom J and Palena C: A novel bifunctional anti-PD-L1/TGF-β Trap fusion protein (M7824) efficiently reverts mesenchymalization of human lung cancer cells. Oncoimmunology. 6:e13495892017. View Article : Google Scholar : PubMed/NCBI | |
Almozyan S, Colak D, Mansour F, Alaiya A, Al-Harazi O, Qattan A, Al-Mohanna F, Al-Alwan M and Ghebeh H: PD-L1 promotes OCT4 and Nanog expression in breast cancer stem cells by sustaining PI3K/AKT pathway activation. Int J Cancer. 141:1402–1412. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fang X, Chen C, Xia F, Yu Z, Zhang Y, Zhang F, Gu H, Wan J, Zhang X, Weng W, et al: CD274 promotes cell cycle entry of leukemia-initiating cells through JNK/Cyclin D2 signaling. J Hematol Oncol. 9:1242016. View Article : Google Scholar : PubMed/NCBI | |
Wei F, Zhang T, Deng SC, Wei JC, Yang P, Wang Q, Chen ZP, Li WL, Chen HC, Hu H and Cao J: PD-L1 promotes colorectal cancer stem cell expansion by activating HMGA1-dependent signaling pathways. Cancer Lett. 450:1–13. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Liu Y, Zhang J, Liu Y and Qi Q: LncRNA SNHG14/miR-5590-3p/ZEB1 positive feedback loop promoted diffuse large B cell lymphoma progression and immune evasion through regulating PD-1/PD-L1 checkpoint. Cell Death Dis. 10:7312019. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Gibbons DL, Goswami S, Cortez MA, Ahn YH, Byers LA, Zhang X, Yi X, Dwyer D, Lin W, et al: Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat Commun. 5:52412014. View Article : Google Scholar : PubMed/NCBI | |
Wang QM, Lian GY, Song Y, Huang YF and Gong Y: LncRNA MALAT1 promotes tumorigenesis and immune escape of diffuse large B cell lymphoma by sponging miR-195. Life Sci. 231:1163352019. View Article : Google Scholar : PubMed/NCBI | |
Rogers TJ, Christenson JL, Greene LI, O'Neill KI, Williams MM, Gordon MA, Nemkov T, D'Alessandro A, Degala GD, Shin J, et al: Reversal of Triple-Negative Breast Cancer EMT by miR-200c decreases tryptophan catabolism and a program of immunosuppression. Mol Cancer Res. 17:30–41. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gao L, Guo Q, Li X, Yang X, Ni H, Wang T, Zhao Q, Liu H, Xing Y, Xi T and Zheng L: MiR-873/PD-L1 axis regulates the stemness of breast cancer cells. EBioMedicine. 41:395–407. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hong W, Xue M, Jiang J, Zhang Y and Gao X: Circular RNA circ-CPA4/let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC). J Exp Clin Cancer Res. 39:1492020. View Article : Google Scholar : PubMed/NCBI | |
Warburg O: On the origin of cancer cells. Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI | |
Takada K, Toyokawa G, Okamoto T, Baba S, Kozuma Y, Matsubara T, Haratake N, Akamine T, Takamori S, Katsura M, et al: Metabolic characteristics of programmed cell death-ligand 1-expressing lung cancer on (18) F-fluorodeoxyglucose positron emission tomography/computed tomography. Cancer Med. 6:2552–2561. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Li J, Xie J, Liu F, Duan Y, Wu Y, Huang S, He X, Wang Z and Wu X: Programmed death ligand 1 promotes lymph node metastasis and glucose metabolism in cervical cancer by activating integrin β4/SNAI1/SIRT3 signaling pathway. Oncogene. 37:4164–4180. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cao D, Qi Z, Pang Y, Li H, Xie H, Wu J, Huang Y, Zhu Y, Shen Y, Zhu Y, et al: Retinoic acid-related orphan receptor C regulates proliferation, glycolysis, and chemoresistance via the PD-L1/ITGB6/STAT3 signaling axis in bladder cancer. Cancer Res. 79:2604–2618. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ma P, Xing M, Han L, Gan S, Ma J, Wu F, Huang Y, Chen Y, Tian W, An C, et al: High PDL1 expression drives glycolysis via an Akt/mTOR/HIF1α axis in acute myeloid leukemia. Oncol Rep. 43:999–1009. 2020.PubMed/NCBI | |
Feng J, Yang H, Zhang Y, Wei H, Zhu Z, Zhu B, Yang M, Cao W, Wang L and Wu Z: Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells. Oncogene. 36:5829–5839. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cui Y, Li X, Du B, Diao Y and Li Y: PD-L1 in lung adenocarcinoma: Insights into the role of (18)F-FDG PET/CT. Cancer Manag Res. 12:6385–6395. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tu X, Qin B, Zhang Y, Zhang C, Kahila M, Nowsheen S, Yin P, Yuan J, Pei H, Li H, et al: PD-L1 (B7-H1) Competes with the RNA exosome to regulate the DNA damage response and can be targeted to sensitize to radiation or chemotherapy. Mol Cell. 74:1215–1226.e4. 2019. View Article : Google Scholar : PubMed/NCBI | |
Du W, Zhu J, Zeng Y, Liu T, Zhang Y, Cai T, Fu Y, Zhang W, Zhang R, Liu Z and Huang JA: KPNB1-mediated nuclear translocation of PD-L1 promotes non-small cell lung cancer cell proliferation via the Gas6/MERTK signaling pathway. Cell Death Differ. 28:1284–1300. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Deng H, Lu M, Xu B, Wang Q, Jiang J and Wu C: B7-H1 expression associates with tumor invasion and predicts patient's survival in human esophageal cancer. Int J Clin Exp Pathol. 7:6015–6023. 2014.PubMed/NCBI | |
Satelli A, Batth IS, Brownlee Z, Rojas C, Meng QH, Kopetz S and Li S: Potential role of nuclear PD-L1 expression in cell-surface vimentin positive circulating tumor cells as a prognostic marker in cancer patients. Sci Rep. 6:289102016. View Article : Google Scholar : PubMed/NCBI | |
Hou J, Zhao R, Xia W, Chang CW, You Y, Hsu JM, Nie L, Chen Y, Wang YC, Liu C, et al: PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat Cell Biol. 22:1264–1275. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Nihira NT, Bu X, Chu C, Zhang J, Kolodziejczyk A, Fan Y, Chan NT, Ma L, Liu J, et al: Acetylation-dependent regulation of PD-L1 nuclear translocation dictates the efficacy of anti-PD-1 immunotherapy. Nat Cell Biol. 22:1064–1075. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bouillez A, Rajabi H, Jin C, Samur M, Tagde A, Alam M, Hiraki M, Maeda T, Hu X, Adeegbe D, et al: MUC1-C integrates PD-L1 induction with repression of immune effectors in non-small-cell lung cancer. Oncogene. 36:4037–4046. 2017. View Article : Google Scholar : PubMed/NCBI |