|
1
|
Marx A, Chan JKC, Chalabreysse L, Dacic S,
Detterbeck F, French CA, Hornick JL, Inagaki H, Jain D, Lazar AJ,
et al: The 2021 WHO classification of tumors of the thymus and
mediastinum: What is new in thymic epithelial, germ cell, and
mesenchymal tumors? J Thorac Oncol. 17:200–213. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Detterbeck FC, Stratton K, Giroux D,
Asamura H, Crowley J, Falkson C, Filosso PL, Frazier AA, Giaccone
G, Huang J, et al: The IASLC/ITMIG thymic epithelial tumors staging
project: Proposal for an evidence-based stage classification system
for the forthcoming (8th) edition of the TNM classification of
malignant tumors. J Thorac Oncol. 9 (9 Suppl 2):S65–S72. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Detterbeck FC, Nicholson AG, Kondo K, Van
Schil P and Moran C: The Masaoka-Koga stage classification for
thymic malignancies: Clarification and definition of terms. J
Thorac Oncol. 6 (7 Suppl 3):S1710–S1716. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Girard N, Ruffini E, Marx A, Faivre-Finn C
and Peters S; ESMO Guidelines Committee, : Thymic epithelial
tumours: ESMO clinical practice guidelines for diagnosis, treatment
and follow-up. Ann Oncol. 26 (Suppl 5):v40–v55. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Ettinger DS, Wood DE, Aisner DL, Akerley
W, Bauman JR, Bharat A, Bruno DS, Chang JY, Chirieac LR, D'Amico
TA, et al: NCCN guidelines insights: Non-small cell lung cancer,
version 2.2021. J Natl Compr Canc Netw. 19:254–266. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Conforti F, Pala L, Giaccone G and De Pas
T: Thymic epithelial tumors: From biology to treatment. Cancer
Treat Rev. 86:1020142020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Masaoutis C, Palamaris K, Kokkali S,
Levidou G and Theocharis S: Unraveling the immune microenvironment
of thymic epithelial tumors: Implications for autoimmunity and
treatment. Int J Mol Sci. 23:78642022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Kondo K, Ohigashi I and Takahama Y: Thymus
machinery for T-cell selection. Int Immunol. 31:119–125. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Takaba H and Takayanagi H: The mechanisms
of T cell selection in the thymus. Trends Immunol. 38:805–816.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Anderson MS and Su MA: AIRE expands: New
roles in immune tolerance and beyond. Nat Rev Immunol. 16:247–258.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Iberg CA, Jones A and Hawiger D: Dendritic
cells as inducers of peripheral tolerance. Trends Immunol.
38:793–804. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Owen DL, Sjaastad LE and Farrar MA:
Regulatory T cell development in the thymus. J Immunol.
203:2031–2041. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Weksler B and Lu B: Alterations of the
immune system in thymic malignancies. J Thorac Oncol. 9 (9 Suppl
2):S137–S142. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Boucher M, Dansin E, Kerjouan M, Mazieres
J, Pichon E, Thillays F, Massard G, Quantin X, Youssef O, Westeel
V, et al: OA 03.01 prevalence of autoimmune diseases in thymic
epithelial tumors (TET) insights from RYTHMIC. J Thorac Oncol. 12
(Suppl 2):S1748–S1749. 2017. View Article : Google Scholar
|
|
15
|
Radovich M, Pickering CR, Felau I, Ha G,
Zhang H, Jo H, Hoadley KA, Anur P, Zhang J, McLellan M, et al: The
integrated genomic landscape of thymic epithelial tumors. Cancer
Cell. 33:244–258.e10. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Tateo V, Manuzzi L, De Giglio A, Parisi C,
Lamberti G, Campana D and Pantaleo MA: Immunobiology of thymic
epithelial tumors: Implications for immunotherapy with immune
checkpoint inhibitors. Int J Mol Sci. 21:90562020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Marchevsky AM and Walts AE: PD-L1, PD-1,
CD4, and CD8 expression in neoplastic and nonneoplastic thymus. Hum
Pathol. 60:16–23. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Weissferdt A, Fujimoto J, Kalhor N,
Rodriguez J, Bassett R, Wistuba II and Moran CA: Expression of PD-1
and PD-L1 in thymic epithelial neoplasms. Mod Pathol. 30:826–833.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Owen D, Chu B, Lehman AM, Annamalai L,
Yearley JH, Shilo K and Otterson GA: Expression patterns,
prognostic value, and intratumoral heterogeneity of PD-L1 and PD-1
in thymoma and thymic carcinoma. J Thorac Oncol. 13:1204–1212.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Yokoyama S, Miyoshi H, Nishi T, Hashiguchi
T, Mitsuoka M, Takamori S, Akagi Y, Kakuma T and Ohshima K:
Clinicopathologic and prognostic implications of programmed death
ligand 1 expression in thymoma. Ann Thorac Surg. 101:1361–1369.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Padda SK, Riess JW, Schwartz EJ, Tian L,
Kohrt HE, Neal JW, West RB and Wakelee HA: Diffuse high intensity
PD-L1 staining in thymic epithelial tumors. J Thorac Oncol.
10:500–508. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yokoyama S, Miyoshi H, Nakashima K,
Shimono J, Hashiguchi T, Mitsuoka M, Takamori S, Akagi Y and
Ohshima K: Prognostic value of programmed death ligand 1 and
programmed death 1 expression in thymic carcinoma. Clin Cancer Res.
22:4727–4734. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Arbour KC, Naidoo J, Steele KE, Ni A,
Moreira AL, Rekhtman N, Robbins PB, Karakunnel J, Rimner A, Huang
J, et al: Expression of PD-L1 and other immunotherapeutic targets
in thymic epithelial tumors. PLoS One. 12:e01826652017. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Giaccone G, Kim C, Thompson J, McGuire C,
Kallakury B, Chahine JJ, Manning M, Mogg R, Blumenschein WM, Tan
MT, et al: Pembrolizumab in patients with thymic carcinoma: A
single-arm, single-centre, phase 2 study. Lancet Oncol. 19:347–355.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Giaccone G and Kim C: Durable response in
patients with thymic carcinoma treated with pembrolizumab after
prolonged follow-up. J Thorac Oncol. 16:483–485. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Cho J, Kim HS, Ku BM, Choi YL, Cristescu
R, Han J, Sun JM, Lee SH, Ahn JS, Park K and Ahn MJ: Pembrolizumab
for patients with refractory or relapsed thymic epithelial tumor:
An open-label phase II trial. J Clin Oncol. 37:2162–2170. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Rajan A, Heery CR, Thomas A, Mammen AL,
Perry S, O'Sullivan Coyne G, Guha U, Berman A, Szabo E, Madan RA,
et al: Efficacy and tolerability of anti-programmed death-ligand 1
(PD-L1) antibody (Avelumab) treatment in advanced thymoma. J
Immunother Cancer. 7:2692019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Mammen AL, Rajan A, Pak K, Lehky T,
Casciola-Rosen L, Donahue RN, Lepone LM, Zekeridou A, Pittock SJ,
Hassan R, et al: Pre-existing antiacetylcholine receptor
autoantibodies and B cell lymphopaenia are associated with the
development of myositis in patients with thymoma treated with
avelumab, an immune checkpoint inhibitor targeting programmed
death-ligand 1. Ann Rheum Dis. 78:150–152. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Katsuya Y, Horinouchi H, Seto T, Umemura
S, Hosomi Y, Satouchi M, Nishio M, Kozuki T, Hida T, Sukigara T, et
al: Single-arm, multicentre, phase II trial of nivolumab for
unresectable or recurrent thymic carcinoma: PRIMER study. Eur J
Cancer. 113:78–86. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ak N and Aydiner A: Nivolumab treatment
for metastatic thymic epithelial tumors. J Oncol Pharm Pract.
27:1710–1715. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lattanzio R, La Sorda R, Facciolo F,
Sioletic S, Lauriola L, Martucci R, Gallo E, Palmieri G, Evoli A,
Alessandrini G, et al: Thymic epithelial tumors express vascular
endothelial growth factors and their receptors as potential targets
of antiangiogenic therapy: A tissue micro array-based multicenter
study. Lung Cancer. 85:191–196. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Cimpean AM, Raica M, Encica S, Cornea R
and Bocan V: Immunohistochemical expression of vascular endothelial
growth factor A (VEGF), and its receptors (VEGFR1, 2) in normal and
pathologic conditions of the human thymus. Ann Anat. 190:238–245.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Cimpean AM, Ceausu R, Encică S, Gaje PN,
Ribatti D and Raica M: Platelet-derived growth factor and
platelet-derived growth factor receptor-α expression in the normal
human thymus and thymoma. Int J Exp Pathol. 92:340–344. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Janik S, Bekos C, Hacker P, Raunegger T,
Schiefer AI, Müllauer L, Veraar C, Dome B, Klepetko W, Ankersmit HJ
and Moser B: Follistatin impacts tumor angiogenesis and outcome in
thymic epithelial tumors. Sci Rep. 9:173592019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Thomas A, Rajan A, Berman A, Tomita Y,
Brzezniak C, Lee MJ, Lee S, Ling A, Spittler AJ, Carter CA, et al:
Sunitinib in patients with chemotherapy-refractory thymoma and
thymic carcinoma: An open-label phase 2 trial. Lancet Oncol.
16:177–186. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Rajan A, Kim C, Guha U, Szabo E, Berman A,
Sciuto L, Spittler AJ, Trepel J, Steinberg S, Harris P, et al:
OA18.02 evaluation of a modified dosing regimen (2-weeks
on/1-week off) of sunitinib as part of a phase II trial in thymic
carcinoma. J Thorac Oncol. 12 (Suppl):S313–S314. 2017. View Article : Google Scholar
|
|
37
|
Kim SH, Kim YJ, Ock C, Kim M, Keam B, Kim
TM, Kim D, Heo DS and Lee JS: OA11.05 phase II study of sunitinib
in patients with thymic carcinoma previously treated with
platinum-based chemotherapy (KOSMIC trial). J Thorac Oncol. 13
(Suppl):S346–S347. 2018. View Article : Google Scholar
|
|
38
|
Remon J, Girard N, Mazieres J, Dansin E,
Pichon E, Greillier L, Dubos C, Lindsay CR and Besse B: Sunitinib
in patients with advanced thymic malignancies: Cohort from the
French RYTHMIC network. Lung Cancer. 97:99–104. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Sato J, Satouchi M, Itoh S, Okuma Y, Niho
S, Mizugaki H, Murakami H, Fujisaka Y, Kozuki T, Nakamura K, et al:
Lenvatinib in patients with advanced or metastatic thymic carcinoma
(REMORA): A multicentre, phase 2 trial. Lancet Oncol. 21:843–850.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Xie C, Wan X, Quan H, Zheng M, Fu L, Li Y
and Lou L: Preclinical characterization of anlotinib, a highly
potent and selective vascular endothelial growth factor receptor-2
inhibitor. Cancer Sci. 109:1207–1219. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lin B, Song X, Yang D, Bai D, Yao Y and Lu
N: Anlotinib inhibits angiogenesis via suppressing the activation
of VEGFR2, PDGFRβ and FGFR1. Gene. 654:77–86. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zuo R, Zhang C, Lin L, Meng Z, Wang Y, Su
Y, Abudurazik M, Du Y and Chen P: Durable efficacy of anlotinib in
a patient with advanced thymic squamous cell carcinoma after
multiline chemotherapy and apatinib: A case report and literature
review. Thorac Cancer. 11:3383–3387. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yudong S, Zhaoting M, Xinyue W, Li L,
Xiaoyan X, Ran Z, Jinliang C and Peng C: EGFR exon 20 insertion
mutation in advanced thymic squamous cell carcinoma: Response to
apatinib and clinical outcomes. Thorac Cancer. 9:885–891. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Besse B, Girard N, Gazzah A, Hierro C,
Tabernero J, Debraud F, Camboni G, Dubois F, Leger C, Legrand F, et
al: Clinical activity of lucitanib in advanced thymic epithelial
tumours. J Thorac Oncol. 10:S3532015.
|
|
45
|
Perrino M, De Pas T, Bozzarelli S,
Giordano L, De Vincenzo F, Conforti F, Digiacomo N, Cordua N,
D'Antonio F, Borea F, et al: Resound trial: A phase 2 study of
regorafenib in patients with thymoma (type B2-B3) and thymic
carcinoma previously treated with chemotherapy. Cancer.
128:719–726. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Bedano PM, Perkins S, Burns M, Kessler K,
Nelson R, Schneider BP, Risley L, Dropcho S and Loehrer PJ: A phase
II trial of erlotinib plus bevacizumab in patients with recurrent
thymoma or thymic carcinoma. J Clin Oncol. 26 (15
Suppl):S190872008. View Article : Google Scholar
|
|
47
|
Tateo V, Manuzzi L, Parisi C, De Giglio A,
Campana D, Pantaleo MA and Lamberti G: An overview on molecular
characterization of thymic tumors: Old and new targets for clinical
advances. Pharmaceuticals (Basel). 14:3162021. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Girard N, Shen R, Guo T, Zakowski MF,
Heguy A, Riely GJ, Huang J, Lau C, Lash AE, Ladanyi M, et al:
Comprehensive genomic analysis reveals clinically relevant
molecular distinctions between thymic carcinomas and thymomas. Clin
Cancer Res. 15:6790–6799. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Petrini I, Zucali PA, Lee HS, Pineda MA,
Meltzer PS, Walter-Rodriguez B, Roncalli M, Santoro A, Wang Y and
Giaccone G: Expression and mutational status of c-kit in thymic
epithelial tumors. J Thorac Oncol. 5:1447–1453. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ströbel P, Hartmann M, Jakob A, Mikesch K,
Brink I, Dirnhofer S and Marx A: Thymic carcinoma with
overexpression of mutated KIT and the response to imatinib. N Engl
J Med. 350:2625–2626. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Yoh K, Nishiwaki Y, Ishii G, Goto K,
Kubota K, Ohmatsu H, Niho S, Nagai K and Saijo N: Mutational status
of EGFR and KIT in thymoma and thymic carcinoma. Lung Cancer.
62:316–320. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Hirai F, Edagawa M, Shimamatsu S, Toyozawa
R, Toyokawa G, Nosaki K, Yamaguchi M, Seto T, Twakenoyama M and
Ichinose Y: c-kit mutation-positive advanced thymic carcinoma
successfully treated as a mediastinal gastrointestinal stromal
tumor: A case report. Mol Clin Oncol. 4:527–529. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Buti S, Donini M, Sergio P, Garagnani L,
Schirosi L, Passalacqua R and Rossi G: Impressive response with
imatinib in a heavily pretreated patient with metastatic c-KIT
mutated thymic carcinoma. J Clin Oncol. 29:e803–e805. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Bisagni G, Rossi G, Cavazza A, Sartori G,
Gardini G and Boni C: Long lasting response to the multikinase
inhibitor bay 43–9006 (sorafenib) in a heavily pretreated
metastatic thymic carcinoma. J Thorac Oncol. 4:773–775. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Catania C, Conforti F, Spitaleri G,
Barberis M, Preda L, Noberasco C, Lazzari C, Toffalorio F, de
Marinis F, Manzotti M and De Pas TM: Antitumor activity of
sorafenib and imatinib in a patient with thymic carcinoma harboring
c-KIT exon 13 missense mutation K642E. Onco Targets Ther.
7:697–702. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Dişel U, Oztuzcu S, Beşen AA, Karadeniz C,
Köse F, Sümbül AT, Sezer A, Nursal GN, Abalı H and Ozyılkan O:
Promising efficacy of sorafenib in a relapsed thymic carcinoma with
C-KIT exon 11 deletion mutation. Lung Cancer. 71:109–112. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Giaccone G, Rajan A, Ruijter R, Smit E,
van Groeningen C and Hogendoorn PC: Imatinib mesylate in patients
with WHO B3 thymomas and thymic carcinomas. J Thorac Oncol.
4:1270–1273. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Palmieri G, Marino M, Buonerba C, Federico
P, Conti S, Milella M, Petillo L, Evoli A, Lalle M, Ceribelli A, et
al: Imatinib mesylate in thymic epithelial malignancies. Cancer
Chemother Pharmacol. 69:309–315. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Pagano M, Sierra NM, Panebianco M, Rossi
G, Gnoni R, Bisagni G and Boni C: Sorafenib efficacy in thymic
carcinomas seems not to require c-KIT or PDGFR-alpha mutations.
Anticancer Res. 34:5105–5110. 2014.PubMed/NCBI
|
|
60
|
Neuhaus T and Luyken J: Long lasting
efficacy of sorafenib in a heavily pretreated patient with thymic
carcinoma. Target Oncol. 7:247–251. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Li XF, Chen Q, Huang WX and Ye YB:
Response to sorafenib in cisplatin-resistant thymic carcinoma: A
case report. Med Oncol. 26:157–160. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Schirosi L, Nannini N, Nicoli D, Cavazza
A, Valli R, Buti S, Garagnani L, Sartori G, Calabrese F, Marchetti
A, et al: Activating c-KIT mutations in a subset of thymic
carcinoma and response to different c-KIT inhibitors. Ann Oncol.
23:2409–2414. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Alberobello AT, Wang Y, Beerkens FJ,
Conforti F, McCutcheon JN, Rao G, Raffeld M, Liu J, Rahhal R, Zhang
YW and Giaccone G: PI3K as a potential therapeutic target in thymic
epithelial tumors. J Thorac Oncol. 11:1345–1356. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zucali PA, Petrini I, Lorenzi E, Merino M,
Cao L, Di Tommaso L, Lee HS, Incarbone M, Walter BA, Simonelli M,
et al: Insulin-like growth factor-1 receptor and phosphorylated
AKT-serine 473 expression in 132 resected thymomas and thymic
carcinomas. Cancer. 116:4686–4695. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Maury JM, Merveilleux du Vignaux C, Drevet
G, Zarza V, Chalabreysse L, Maisse C, Gineys B, Dolmazon C, Tronc
F, Girard N and Leroux C: Activation of the mTOR/Akt pathway in
thymic epithelial cells derived from thymomas. PLoS One.
14:e01976552019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zucali PA, De Pas T, Palmieri G, Favaretto
A, Chella A, Tiseo M, Caruso M, Simonelli M, Perrino M, De Vincenzo
F, et al: Phase II study of everolimus in patients with thymoma and
thymic carcinoma previously treated with cisplatin-based
chemotherapy. J Clin Oncol. 36:342–349. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hellyer JA, Ouseph MM, Padda SK and
Wakelee HA: Everolimus in the treatment of metastatic thymic
epithelial tumors. Lung Cancer. 149:97–102. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Padda SK, Gökmen-Polar Y, Hellyer JA,
Badve SS, Singh NK, Vasista SM, Basu K, Kumar A and Wakelee HA:
Genomic clustering analysis identifies molecular subtypes of thymic
epithelial tumors independent of World Health Organization
histologic type. Oncotarget. 12:1178–1186. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Abu Zaid MI, Radovich M, Althouse S, Liu
H, Spittler AJ, Solzak J, Badve S and Loehrer PJ Sr: A phase II
study of buparlisib in relapsed or refractory thymomas. Front
Oncol. 12:8913832022. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Girard N, Teruya-Feldstein J, Payabyab EC,
Riely GJ, Rusch VW, Kris MG and Zakowski MF: Insulin-like growth
factor-1 receptor expression in thymic malignancies. J Thorac
Oncol. 5:1439–1446. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Rajan A, Carter CA, Berman A, Cao L, Kelly
RJ, Thomas A, Khozin S, Chavez AL, Bergagnini I, Scepura B, et al:
Cixutumumab for patients with recurrent or refractory advanced
thymic epithelial tumours: A multicentre, open-label, phase 2
trial. Lancet Oncol. 15:191–200. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Sakane T, Murase T, Okuda K, Saida K,
Masaki A, Yamada T, Saito Y, Nakanishi R and Inagaki H: A mutation
analysis of the EGFR pathway genes, RAS, EGFR, PIK3CA, AKT1 and
BRAF, and TP53 gene in thymic carcinoma and thymoma type A/B3.
Histopathology. 75:755–766. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Farina G, Garassino MC, Gambacorta M, La
Verde N, Gherardi G and Scanni A: Response of thymoma to cetuximab.
Lancet Oncol. 8:449–450. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Palmieri G, Marino M, Salvatore M,
Budillon A, Meo G, Caraglia M and Montella L: Cetuximab is an
active treatment of metastatic and chemorefractory thymoma. Front
Biosci. 12:757–761. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kurup A, Burns M, Dropcho S, Pao W and
Loehrer PJ: Phase II study of gefitinib treatment in advanced
thymic malignancies. J Clin Oncol. 23 (16 Suppl):S70682005.
View Article : Google Scholar
|
|
76
|
Zu Y, Luo Y, Li C, Zhao J, He T, Shi X and
Li X: Complete remission following icotinib administration in an
advanced ectopic thymic carcinoma patient harbouring the EGFR exon
19 deletion. J Gene Med. 23:e33402021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Gomatou G, Trontzas I, Ioannou S, Drizou
M, Syrigos N and Kotteas E: Mechanisms of resistance to
cyclin-dependent kinase 4/6 inhibitors. Mol Biol Rep. 48:915–925.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Panagiotou E, Gomatou G, Trontzas IP,
Syrigos N and Kotteas E: Cyclin-dependent kinase (CDK) inhibitors
in solid tumors: A review of clinical trials. Clin Transl Oncol.
24:161–192. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Aesif SW, Aubry MC, Yi ES, Kloft-Nelson
SM, Jenkins SM, Spears GM, Greipp PT, Sukov WR and Roden AC: Loss
of p16INK4A expression and homozygous CDKN2A deletion
are associated with worse outcome and younger age in thymic
carcinomas. J Thorac Oncol. 12:860–871. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Besse B, Garassino MC, Rajan A, Novello S,
Mazieres J, Weiss GJ, Kocs DM, Barnett JM, Davite C, Crivori P and
Giaccone G: Efficacy of milciclib (PHA-848125AC), a pan-cyclin
d-dependent kinase inhibitor, in two phase II studies with thymic
carcinoma (TC) and B3 thymoma (B3T) patients. J Clin Oncol. 36 (15
Suppl):S85192018. View Article : Google Scholar
|
|
81
|
Ahn MJ, Jung HA, Kim M, Kim JH, Choi YH,
Cho J, Park JH, Park KU, Park S, Sun JM, et al: A phase II study of
palbociclib for recurrent or refractory advanced thymic epithelial
tumor (KCSG LU17-21). J Clin Oncol. 39 (15 Suppl):S85762021.
View Article : Google Scholar
|
|
82
|
Kirzinger L, Boy S, Marienhagen J,
Schuierer G, Neu R, Ried M, Hofmann HS, Wiebe K, Ströbel P, May C,
et al: Octreotide LAR and prednisone as neoadjuvant treatment in
patients with primary or locally recurrent unresectable thymic
tumors: A phase II study. PLoS One. 11:e01682152016. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Palmieri G, Montella L, Martignetti A,
Muto P, Di Vizio D, De Chiara A and Lastoria S: Somatostatin
analogs and prednisone in advanced refractory thymic tumors.
Cancer. 94:1414–1420. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Loehrer PJ Sr, Wang W, Johnson DH, Aisner
SC and Ettinger DS; Eastern Cooperative Oncology Group Phase II
Trial, : Octreotide alone or with prednisone in patients with
advanced thymoma and thymic carcinoma: An eastern cooperative
oncology group phase II trial. J Clin Oncol. 22:293–299. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wang Y, Thomas A, Lau C, Rajan A, Zhu Y,
Killian JK, Petrini I, Pham T, Morrow B, Zhong X, et al: Mutations
of epigenetic regulatory genes are common in thymic carcinomas. Sci
Rep. 4:73362014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Giaccone G, Rajan A, Berman A, Kelly RJ,
Szabo E, Lopez-Chavez A, Trepel J, Lee MJ, Cao L, Espinoza-Delgado
I, et al: Phase II study of belinostat in patients with recurrent
or refractory advanced thymic epithelial tumors. J Clin Oncol.
29:2052–2059. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Thomas A, Rajan A, Szabo E, Tomita Y,
Carter CA, Scepura B, Lopez-Chavez A, Lee MJ, Redon CE, Frosch A,
et al: A phase I/II trial of belinostat in combination with
cisplatin, doxorubicin, and cyclophosphamide in thymic epithelial
tumors: A clinical and translational study. Clin Cancer Res.
20:5392–5402. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Conforti F, Zhang X, Rao G, De Pas T,
Yonemori Y, Rodriguez JA, McCutcheon JN, Rahhal R, Alberobello AT,
Wang Y, et al: Therapeutic effects of XPO1 inhibition in thymic
epithelial tumors. Cancer Res. 77:5614–5627. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Abdul Razak AR, Mau-Soerensen M, Gabrail
NY, Gerecitano JF, Shields AF, Unger TJ, Saint-Martin JR, Carlson
R, Landesman Y, McCauley D, et al: First-in-class, first-in-human
phase I study of selinexor, a selective inhibitor of nuclear
export, in patients with advanced solid tumors. J Clin Oncol.
34:4142–4150. 2016. View Article : Google Scholar : PubMed/NCBI
|