|
1
|
Deo SVS, Sharma J and Kumar S: GLOBOCAN
2020 report on global cancer burden: Challenges and opportunities
for surgical oncologists. Ann Surg Oncol. 29:6497–6500. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Xia C, Dong X, Li H, Cao M, Sun D, He S,
Yang F, Yan X, Zhang S, Li N and Chen W: Cancer statistics in China
and United States, 2022: Profiles, trends, and determinants. Chin
Med J (Engl). 135:584–590. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Wei C, Zhao L, Liang H, Zhen Y and Han L:
Recent advances in unraveling the molecular mechanisms and
functions of HOXA11-AS in human cancers and other diseases
(review). Oncol Rep. 43:1737–1754. 2020.PubMed/NCBI
|
|
4
|
Mao M, Zhang J, Xiang Y, Gong M, Deng Y
and Ye D: Role of exosomal competitive endogenous RNA (ceRNA) in
diagnosis and treatment of malignant tumors. Bioengineered.
13:12156–12168. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Bhan A, Soleimani M and Mandal SS: Long
noncoding RNA and Cancer: A new paradigm. Cancer Res. 77:3965–3981.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ye J, Li J and Zhao P: Roles of ncRNAs as
ceRNAs in gastric cancer. Genes (Basel). 12:10362021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Lee YR and Pandolfi PP: PTEN mouse models
of cancer initiation and progression. Cold Spring Harb Perspect
Med. 10:a0372832020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Wang J, Zhu S, Meng N, He Y, Lu R and Yan
GR: ncRNA-encoded peptides or proteins and cancer. Mol Ther.
27:1718–1725. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Liu C, Wu Y and Ma J: Interaction of
non-coding RNAs and Hippo signaling: Implications for
tumorigenesis. Cancer Lett. 493:207–216. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Slack FJ and Chinnaiyan AM: The role of
non-coding RNAs in oncology. Cell. 179:1033–1055. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Anastasiadou E, Jacob LS and Slack FJ:
Non-coding RNA networks in cancer. Nat Rev Cancer. 18:5–18. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zhang J, Li K, Zheng H and Zhu Y: Research
progress review on long non-coding RNA in colorectal cancer.
Neoplasma. 68:240–252. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Basera A, Hull R, Demetriou D, Bates DO,
Kaufmann AM, Dlamini Z and Marima R: Competing endogenous RNA
(ceRNA) networks and splicing switches in cervical cancer: HPV
oncogenesis, clinical significance and therapeutic opportunities.
Microorganisms. 10:18522022. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Liu Y, Khan S, Li L, Ten Hagen TLM and
Falahati M: Molecular mechanisms of thyroid cancer: A competing
endogenous RNA (ceRNA) point of view. Biomed Pharmacother.
146:1122512022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Liu H, Deng H, Zhao Y, Li C and Liang Y:
LncRNA XIST/miR-34a axis modulates the cell proliferation and tumor
growth of thyroid cancer through MET-PI3K-AKT signaling. J Exp Clin
Cancer Res. 37:2792018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lima CR, Geraldo MV, Fuziwara CS, Kimura
ET and Santos MF: MiRNA-146b-5p upregulates migration and invasion
of different Papillary thyroid carcinoma cells. BMC Cancer.
16:1082016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Worst TS, Previti C, Nitschke K, Diessl N,
Gross JC, Hoffmann L, Frey L, Thomas V, Kahlert C, Bieback K, et
al: miR-10a-5p and miR-29b-3p as extracellular vesicle-associated
prostate cancer detection markers. Cancers (Basel). 12:432019.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wang J, Wang B, Chen LQ, Yang J, Gong ZQ,
Zhao XL, Zhang CQ and Du KL: miR-10b promotes invasion by targeting
KLF4 in osteosarcoma cells. Biomed Pharmacother. 84:947–953. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zhu H, Kang M and Bai X: TCF21 regulates
miR-10a-5p/LIN28B signaling to block the proliferation and invasion
of melanoma cells. PLoS One. 16:e02559712021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Wang L, Cho KB, Li Y, Tao G, Xie Z and Guo
B: Long noncoding RNA (lncRNA)-mediated competing endogenous RNA
networks provide novel potential biomarkers and therapeutic targets
for colorectal cancer. Int J Mol Sci. 20:57582019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Xing C, Sun SG, Yue ZQ and Bai F: Role of
lncRNA LUCAT1 in cancer. Biomed Pharmacother. 134:1111582021.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Tan YT, Lin JF, Li T, Li JJ, Xu RH and Ju
HQ: LncRNA-mediated posttranslational modifications and
reprogramming of energy metabolism in cancer. Cancer Commun (Lond).
41:109–120. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Peng WX, Koirala P and Mo YY:
LncRNA-mediated regulation of cell signaling in cancer. Oncogene.
36:5661–5667. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Tang X, Ren H, Guo M, Qian J, Yang Y and
Gu C: Review on circular RNAs and new insights into their roles in
cancer. Comput Struct Biotechnol J. 19:910–928. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Chen L, Wang C, Sun H, Wang J, Liang Y,
Wang Y and Wong G: The bioinformatics toolbox for circRNA discovery
and analysis. Brief Bioinform. 22:1706–1728. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wu P, Mo Y, Peng M, Tang T, Zhong Y, Deng
X, Xiong F, Guo C, Wu X, Li Y, et al: Emerging role of
tumor-related functional peptides encoded by lncRNA and circRNA.
Mol Cancer. 19:222020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yu T, Wang Y, Fan Y, Fang N, Wang T, Xu T
and Shu Y: CircRNAs in cancer metabolism: A review. J Hematol
Oncol. 12:902019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Memczak S, Jens M, Elefsinioti A, Torti F,
Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer
M, et al: Circular RNAs are a large class of animal RNAs with
regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kong S, Tao M, Shen X and Ju S:
Translatable circRNAs and lncRNAs: Driving mechanisms and functions
of their translation products. Cancer Lett. 483:59–65. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Hansen TB, Jensen TI, Clausen BH, Bramsen
JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function
as efficient microRNA sponges. Nature. 495:384–388. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Saliminejad K, Khorram Khorshid HR,
Soleymani Fard S and Ghaffari SH: An overview of microRNAs:
Biology, functions, therapeutics, and analysis methods. J Cell
Physiol. 234:5451–5465. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wang S, Talukder A, Cha M, Li X and Hu H:
Computational annotation of miRNA transcription start sites. Brief
Bioinform. 22:380–392. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ali Syeda Z, Langden SSS, Munkhzul C, Lee
M and Song SJ: Regulatory mechanism of MicroRNA expression in
cancer. Int J Mol Sci. 21:17232020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Catalanotto C, Cogoni C and Zardo G:
MicroRNA in control of gene expression: An overview of nuclear
functions. Int J Mol Sci. 17:17122016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
He B, Zhao Z, Cai Q, Zhang Y, Zhang P, Shi
S, Xie H, Peng X, Yin W, Tao Y and Wang X: miRNA-based biomarkers,
therapies, and resistance in Cancer. Int J Biol Sci. 16:2628–2647.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhao Z, Sun W, Guo Z, Zhang J, Yu H and
Liu B: Mechanisms of lncRNA/microRNA interactions in angiogenesis.
Life Sci. 254:1169002020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yang L, Sun HF, Guo LQ and Cao HB:
MiR-10a-5p: A promising biomarker for early diagnosis and prognosis
evaluation of bladder cancer. Cancer Manag Res. 13:7841–7850. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Han TS, Hur K, Cho HS and Ban HS:
Epigenetic associations between lncRNA/circRNA and miRNA in
hepatocellular carcinoma. Cancers (Basel). 12:26222020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Qi X, Zhang DH, Wu N, Xiao JH, Wang X and
Ma W: ceRNA in cancer: Possible functions and clinical
implications. J Med Genet. 52:710–718. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Zhu J, Zhang X, Gao W, Hu H, Wang X and
Hao D: lncRNA/circRNA-miRNA-mRNA ceRNA network in lumbar
intervertebral disc degeneration. Mol Med Rep. 20:3160–3174.
2019.PubMed/NCBI
|
|
41
|
Cheng Y, Su Y, Wang S, Liu Y, Jin L, Wan
Q, Liu Y, Li C, Sang X, Yang L, et al: Identification of
circRNA-lncRNA-miRNA-mRNA competitive endogenous RNA network as
novel prognostic markers for acute myeloid leukemia. Genes (Basel).
11:8682020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Salmena L, Poliseno L, Tay Y, Kats L and
Pandolfi PP: A ceRNA hypothesis: The Rosetta Stone of a hidden RNA
language? Cell. 146:353–358. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Moreno-Garcia L, López-Royo T, Calvo AC,
Toivonen JM, de la Torre M, Moreno-Martínez L, Molina N, Aparicio
P, Zaragoza P, Manzano R and Osta R: Competing endogenous RNA
networks as biomarkers in neurodegenerative diseases. Int J Mol
Sci. 21:95822020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Zhou T, Lin K, Nie J, Pan B, He B, Pan Y,
Sun H, Xu T and Wang S: LncRNA SPINT1-AS1 promotes breast cancer
proliferation and metastasis by sponging let-7 a/b/i-5p. Pathol Res
Pract. 217:1532682021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Tajima H, Kumazaki T, Gemma K, Iida E,
Kawamata H, Murakami R, Goto S and Aoyama T: Rotational digital
angiography of ulcer-like projection of pelvis. Radiat Med.
14:49–51. 1996.PubMed/NCBI
|
|
46
|
Li C, Mu J, Shi Y and Xin H: LncRNA CCDC26
interacts with CELF2 protein to enhance myeloid leukemia cell
proliferation and invasion via the circRNA_ANKIB1/miR-195-5p/PRR11
axis. Cell Transplant. 30:9636897209860802021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zeng X, Xiao J, Bai X, Liu Y, Zhang M, Liu
J, Lin Z and Zhang Z: Research progress on the
circRNA/lncRNA-miRNA-mRNA axis in gastric cancer. Pathol Res Pract.
238:1540302022. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Cao J, Zhang M, Zhang L, Lou J, Zhou F and
Fang M: Non-coding RNA in thyroid cancer-functions and mechanisms.
Cancer Lett. 496:117–126. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Tehler D, Hoyland-Kroghsbo NM and Lund AH:
The miR-10 microRNA precursor family. RNA Biol. 8:728–734. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Liu F, Shi Y, Liu Z, Li Z and Xu W: The
emerging role of miR-10 family in gastric cancer. Cell Cycle.
20:1468–1476. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Guo L, Li Y, Zhao C, Peng J, Song K, Chen
L, Zhang P, Ma H, Yuan C, Yan S, et al: RECQL4, negatively
regulated by miR-10a-5p, facilitates cell proliferation and
invasion via MAFB in ovarian cancer. Front Oncol. 10:5241282020.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lu Y, Wei G, Liu L, Mo Y, Chen Q, Xu L,
Liao R, Zeng D and Zhang K: Direct targeting of MAPK8IP1 by
miR-10a-5p is a major mechanism for gastric cancer metastasis.
Oncol Lett. 13:1131–1136. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zhu J, Du S, Zhang J, Huang G, Dong L, Ren
E and Liu D: microRNA-10a-5p from gastric cancer cell-derived
exosomes enhances viability and migration of human umbilical vein
endothelial cells by targeting zinc finger MYND-type containing 11.
Bioengineered. 13:496–507. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Vu TT, Stölzel F, Wang KW, Röllig C,
Tursky ML, Molloy TJ and Ma DD: miR-10a as a therapeutic target and
predictive biomarker for MDM2 inhibition in acute myeloid leukemia.
Leukemia. 35:1933–1948. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kuratomi N, Takano S, Fukasawa M, Maekawa
S, Kadokura M, Shindo H, Takahashi E, Hirose S, Fukasawa Y,
Kawakami S, et al: MiR-10a in pancreatic juice as a biomarker for
invasive intraductal papillary mucinous neoplasm by miRNA
sequencing. Int J Mol Sci. 22:32212021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Thai AA, Solomon BJ, Sequist LV, Gainor JF
and Heist RS: Lung cancer. Lancet. 398:535–554. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Bade BC and Dela Cruz CS: Lung cancer
2020: Epidemiology, etiology, and prevention. Clin Chest Med.
41:1–24. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhu Y, Ma K, Ye Y, Tang J and Zhu J: Long
non-coding RNA LINRIS is upregulated in non-small cell lung cancer
and its silencing inhibits cell proliferation by suppressing
microRNA-10a maturation. Bioengineered. 13:4340–4346. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Gao Y, Zhao H and Mu L: LncRNA-KAT7
negatively regulates miR-10a through an epigenetic pathway to
participate in nonsmall cell lung cancer. Cancer Biother
Radiopharm. 36:441–445. 2021.PubMed/NCBI
|
|
60
|
Thrift AP: Global burden and epidemiology
of Barrett oesophagus and oesophageal cancer. Nat Rev Gastroenterol
Hepatol. 18:432–443. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Iriarte F, Su S, Petrov RV, Bakhos CT and
Abbas AE: Surgical management of early esophageal cancer. Surg Clin
North Am. 101:427–441. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
He N, Xiang L, Chen L, Tong H, Wang K,
Zhao J, Song F, Yang H, Wei X and Jiao Z: The role of long
non-coding RNA FGD5-AS1 in cancer. Bioengineered. 13:11026–11041.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Feng B, Wang G, Liang X, Wu Z, Wang X,
Dong Z, Guo Y, Shen S, Liang J and Guo W: LncRNA FAM83H-AS1
promotes oesophageal squamous cell carcinoma progression via
miR-10a-5p/Girdin axis. J Cell Mol Med. 24:8962–8976. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Llovet JM, Kelley RK, Villanueva A, Singal
AG, Pikarsky E, Roayaie S, Lencioni R, Koike K, Zucman-Rossi J and
Finn RS: Hepatocellular carcinoma. Nat Rev Dis Primers. 7:62021.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Anwanwan D, Singh SK, Singh S, Saikam V
and Singh R: Challenges in liver cancer and possible treatment
approaches. Biochim Biophys Acta Rev Cancer. 1873:1883142020.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Li H, Zhao X, Li C, Sheng C and Bai Z:
Integrated analysis of lncRNA-associated ceRNA network reveals
potential biomarkers for the prognosis of hepatitis B virus-related
hepatocellular carcinoma. Cancer Manag Res. 11:877–897. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhang Y, Liu J, Lv Y, Zhang C and Guo S:
LncRNA meg3 suppresses hepatocellular carcinoma in vitro and vivo
studies. Am J Transl Res. 11:4089–4099. 2019.PubMed/NCBI
|
|
68
|
Wu Y, Zhou Y, Huan L, Xu L, Shen M, Huang
S and Liang L: LncRNA MIR22HG inhibits growth, migration and
invasion through regulating the miR-10a-5p/NCOR2 axis in
hepatocellular carcinoma cells. Cancer Sci. 110:973–984. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Gao J, Dai C, Yu X, Yin XB and Zhou F:
Long noncoding RNA LEF1-AS1 acts as a microRNA-10a-5p regulator to
enhance MSI1 expression and promote chemoresistance in
hepatocellular carcinoma cells through activating AKT signaling
pathway. J Cell Biochem. 122:86–99. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhu H, Du F and Cao C: Restoration of
circPSMC3 sensitizes gefitinib-resistant esophageal squamous cell
carcinoma cells to gefitinib by regulating miR-10a-5p/PTEN axis.
Cell Biol Int. 45:107–116. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Dekker E, Tanis PJ, Vleugels JLA, Kasi PM
and Wallace MB: Colorectal cancer. Lancet. 394:1467–1480. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Fan A, Wang B, Wang X, Nie Y, Fan D, Zhao
X and Lu Y: Immunotherapy in colorectal cancer: Current
achievements and future perspective. Int J Biol Sci. 17:3837–3849.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ren W, Chen S, Liu G, Wang X, Ye H and Xi
Y: TUSC7 acts as a tumor suppressor in colorectal cancer. Am J
Transl Res. 9:4026–4035. 2017.PubMed/NCBI
|
|
74
|
Yang RQ, Jin ZZ, Jiang SY and Jin YJ:
LncRNA GAS5 interacts with MicroRNA-10b to inhibit cell
proliferation and migration and induces apoptosis in colorectal
cancer. Comput Math Methods Med. 2022:49968702022.PubMed/NCBI
|
|
75
|
Wu Y, Cong L, Chen W, Wang X and Qiu F:
lncRNA LINC00963 downregulation regulates colorectal cancer
tumorigenesis and progression via the miR-10b/FGF13 axis. Mol Med
Rep. 23:2112021. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Li F, Aljahdali IAM, Zhang R, Nastiuk KL,
Krolewski JJ and Ling X: Kidney cancer biomarkers and targets for
therapeutics: Survivin (BIRC5), XIAP, MCL-1, HIF1α, HIF2α, NRF2,
MDM2, MDM4, p53, KRAS and AKT in renal cell carcinoma. J Exp Clin
Cancer Res. 40:2542021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Yong C, Stewart GD and Frezza C:
Oncometabolites in renal cancer. Nat Rev Nephrol. 16:156–172. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Dong D, Mu Z, Wei N, Sun M, Wang W, Xin N,
Shao Y and Zhao C: Long non-coding RNA ZFAS1 promotes proliferation
and metastasis of clear cell renal cell carcinoma via targeting
miR-10a/SKA1 pathway. Biomed Pharmacother. 111:917–925. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Xu Z, Ye J, Bao P, Wu Q, Xie F and Li P:
Long non-coding RNA SNHG3 promotes the progression of clear cell
renal cell carcinoma via regulating BIRC5 expression. Transl Cancer
Res. 10:4502–4513. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Luo Y, Yang J, Yu J, Liu X, Yu C, Hu J,
Shi H and Ma X: Long non-coding RNAs: Emerging roles in the
immunosuppressive tumor microenvironment. Front Oncol. 10:482020.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Liu RJ, Xu ZP, Li S, Yu JJ, Xu B and Chen
M: Identification a ceRNA (XIST/miR-10a-5p/SERPINE1) axis as a
prognostic biomarker in kidney renal clear cell carcinoma. Research
Square. 2021.
|
|
82
|
Liu RJ, Xu ZP, Li SY, Yu JJ, Feng NH, Xu B
and Chen M: BAP1-related ceRNA (NEAT1/miR-10a-5p/SERPINE1) promotes
proliferation and migration of kidney cancer cells. Front Oncol.
12:8525152022. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Tan P, Chen H, Huang Z, Huang M, Du Y, Li
T, Chen Z, Liu Y and Fu W: MMP25-AS1/hsa-miR-10a-5p/SERPINE1 axis
as a novel prognostic biomarker associated with immune cell
infiltration in KIRC. Mol Ther Oncolytics. 22:307–325. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Liang Y, Zhang H, Song X and Yang Q:
Metastatic heterogeneity of breast cancer: Molecular mechanism and
potential therapeutic targets. Semin Cancer Biol. 60:14–27. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Coughlin SS: Epidemiology of breast cancer
in women. Adv Exp Med Biol. 1152:9–29. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Matamala N, Vargas MT, González-Cámpora R,
Miñambres R, Arias JI, Menéndez P, Andrés-León E, Gómez-López G,
Yanowsky K, Calvete-Candenas J, et al: Tumor microRNA expression
profiling identifies circulating microRNAs for early breast cancer
detection. Clin Chem. 61:1098–1106. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Lu Y, Ding Y, Wei J, He S, Liu X, Pan H,
Yuan B, Liu Q and Zhang J: Anticancer effects of traditional
Chinese medicine on epithelial-mesenchymal transition (EMT) in
breast cancer: Cellular and molecular targets. Eur J Pharmacol.
907:1742752021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Liu Z, Huang L, Sun L, Nie H, Liang Y,
Huang J, Wu F and Hu X: Ecust004 suppresses breast cancer cell
growth, invasion, and migration via EMT regulation. Drug Des Devel
Ther. 15:3451–3461. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Wang B, Zhang Y, Zhang H, Lin F, Tan Q,
Qin Q, Bao W, Liu Y, Xie J and Zeng Q: Long intergenic non-protein
coding RNA 324 prevents breast cancer progression by modulating
miR-10b-5p. Aging (Albany NY). 12:6680–6699. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wang D, Wang Z, Zhang L and Sun S: LncRNA
PDCD4-AS1 alleviates triple negative breast cancer by increasing
expression of IQGAP2 via miR-10b-5p. Transl Oncol. 14:1009582021.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Berek JS, Renz M, Kehoe S, Kumar L and
Friedlander M: Cancer of the ovary, fallopian tube, and peritoneum:
2021 Update. Int J Gynaecol Obstet. 155 (Suppl 1):S61–S85. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Tan WX, Sun G, Shangguan MY, Gui Z, Bao Y,
Li YF and Jia ZH: Novel role of lncRNA CHRF in cisplatin resistance
of ovarian cancer is mediated by miR-10b induced EMT and STAT3
signaling. Sci Rep. 10:147682020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Zhu Y, Mo M, Wei Y, Wu J, Pan J, Freedland
SJ, Zheng Y and Ye D: Epidemiology and genomics of prostate cancer
in Asian men. Nat Rev Urol. 18:282–301. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Adamaki M and Zoumpourlis V: Prostate
cancer biomarkers: From diagnosis to prognosis and precision-guided
therapeutics. Pharmacol Ther. 228:1079322021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Liu S, Wang L, Li Y, Cui Y, Wang Y and Liu
C: Long non-coding RNA CHRF promotes proliferation and mesenchymal
transition (EMT) in prostate cancer cell line PC3 requiring
up-regulating microRNA-10b. Biol Chem. Jul 9–2019.(Epub ahead of
print).
|
|
96
|
Li WJ, Li G, Liu ZW, Chen ZY and Pu R:
LncRNA LINC00355 promotes EMT and metastasis of bladder cancer
cells through the miR-424-5p/HMGA2 axis. Neoplasma. 68:1225–1235.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Li G, Zhang Y, Mao J, Hu P, Chen Q, Ding W
and Pu R: lncRNA TUC338 is a potential diagnostic biomarker for
bladder cancer. J Cell Biochem. 120:18014–18019. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Ye M, Gao R, Chen S, Wei M, Wang J, Zhang
B, Wu S, Xu Y, Wu P, Chen X, et al: Downregulation of MEG3 and
upregulation of EZH2 cooperatively promote neuroblastoma
progression. J Cell Mol Med. 26:2377–2391. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhou X, Lu H, Li F, Han L, Zhang H, Jiang
Z, Dong Q and Chen X: LncRNA cancer susceptibility candidate
(CASC7) upregulates phosphatase and tensin homolog by
downregulating miR-10a to inhibit neuroblastoma cell proliferation.
Neuroreport. 31:381–386. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Tan AC, Ashley DM, López GY, Malinzak M,
Friedman HS and Khasraw M: Management of glioblastoma: State of the
art and future directions. CA Cancer J Clin. 70:299–312. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Uddin MS, Mamun AA, Alghamdi BS, Tewari D,
Jeandet P, Sarwar MS and Ashraf GM: Epigenetics of glioblastoma
multiforme: From molecular mechanisms to therapeutic approaches.
Semin Cancer Biol. 83:100–120. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Hao SC, Ma H, Niu ZF, Sun SY, Zou YR and
Xia HC: hUC-MSCs secreted exosomes inhibit the glioma cell
progression through PTENP1/miR-10a-5p/PTEN pathway. Eur Rev Med
Pharmacol Sci. 23:10013–10023. 2019.PubMed/NCBI
|
|
103
|
Ding Y, Wang J, Zhang H and Li H: Long
noncoding RNA-GAS5 attenuates progression of glioma by eliminating
microRNA-10b and Sirtuin 1 in U251 and A172 cells. Biofactors.
46:487–496. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Shang C, Tang W, Pan C, Hu X and Hong Y:
Long non-coding RNA TUSC7 inhibits temozolomide resistance by
targeting miR-10a in glioblastoma. Cancer Chemother Pharmacol.
81:671–678. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Saleh K, Khalifeh-Saleh N and Kourie HR:
Acute myeloid leukemia transformed to a targetable disease. Future
Oncol. 16:961–972. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Yuan Z and Wang W: LncRNA SNHG4 regulates
miR-10a/PTEN to inhibit the proliferation of acute myeloid leukemia
cells. Hematology. 25:160–164. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Petty RD, Dahle-Smith A, Stevenson DAJ,
Osborne A, Massie D, Clark C, Murray GI, Dutton SJ, Roberts C,
Chong IY, et al: Gefitinib and EGFR gene copy number aberrations in
esophageal cancer. J Clin Oncol. 35:2279–2287. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Kang J, Guo Z, Zhang H, Guo R, Zhu X and
Guo X: Dual inhibition of EGFR and IGF-1R signaling leads to
enhanced antitumor efficacy against esophageal squamous cancer. Int
J Mol Sci. 23:103822022. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Fu X, Cui G, Liu S and Zhao S: Linc01014
regulates gefitinib resistance in oesophagus cancer via
EGFR-PI3K-AKT-mTOR signalling pathway. J Cell Mol Med.
24:1670–1675. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Zhang K, Fan R, Zhao D, Liu Z, Yang Z, Liu
J, Zhang S, Rao S, Wang Y and Wan L: CircATIC inhibits esophageal
carcinoma progression and promotes radiosensitivity by elevating
RHCG through sponging miR-10-3p. Thorac Cancer. 13:934–946. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Lu C, Jiang W, Hui B, Rong D, Fu K, Dong
C, Tang W and Cao H: The circ_0021977/miR-10b-5p/P21 and P53
regulatory axis suppresses proliferation, migration, and invasion
in colorectal cancer. J Cell Physiol. 235:2273–2285. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Liu M: CircFAT1 is overexpressed in
colorectal cancer and suppresses cancer cell proliferation,
invasion and migration by increasing the maturation of miR-10a.
Cancer Manag Res. 13:4309–4315. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Luo L, Gao YQ and Sun XF: Circular RNA
ITCH suppresses proliferation and promotes apoptosis in human
epithelial ovarian cancer cells by sponging miR-10a-α. Eur Rev Med
Pharmacol Sci. 22:8119–8126. 2018.PubMed/NCBI
|
|
114
|
Teng F, Xu J, Zhang M, Liu S, Gu Y, Zhang
M, Wang X, Ni J, Qian B, Shen R and Jia X: Comprehensive circular
RNA expression profiles and the tumor-suppressive function of
circHIPK3 in ovarian cancer. Int J Biochem Cell Biol. 112:8–17.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Raglan O, Kalliala I, Markozannes G,
Cividini S, Gunter MJ, Nautiyal J, Gabra H, Paraskevaidis E,
Martin-Hirsch P, Tsilidis KK and Kyrgiou M: Risk factors for
endometrial cancer: An umbrella review of the literature. Int J
Cancer. 145:1719–1730. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Urick ME and Bell DW: Clinical
actionability of molecular targets in endometrial cancer. Nat Rev
Cancer. 19:510–521. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Yang P, Yun K and Zhang R: CircRNA
circ-ATAD1 is downregulated in endometrial cancer and suppresses
cell invasion and migration by downregulating miR-10a through
methylation. Mamm Genome. 32:488–494. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Cui C, Yang J, Li X, Liu D, Fu L and Wang
X: Functions and mechanisms of circular RNAs in cancer radiotherapy
and chemotherapy resistance. Mol Cancer. 19:582020. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Kim MK, Cho KJ, Kwon GY, Park SI, Kim YH,
Kim JH, Song HY, Shin JH, Jung HY, Lee GH, et al: ERCC1 predicting
chemoradiation resistance and poor outcome in oesophageal cancer.
Eur J Cancer. 44:54–60. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Tan S, Li D and Zhu X: Cancer
immunotherapy: Pros, cons and beyond. Biomed Pharmacother.
124:1098212020. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
van den Bulk J, Verdegaal EM and de
Miranda NF: Cancer immunotherapy: Broadening the scope of
targetable tumours. Open Biol. 8:1800372018. View Article : Google Scholar : PubMed/NCBI
|