|
1
|
Dahariya S, Paddibhatla I, Kumar S,
Raghuwanshi S, Pallepati A and Gutti RK: Long non-coding RNA:
Classification, biogenesis and functions in blood cells. Mol
Immunol. 112:82–92. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Zhang H, Chen Z, Wang X, Huang Z, He Z and
Chen Y: Long non-coding RNA: A new player in cancer. J Hematol
Oncol. 6:372013. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Bhat AA, Younes SN, Raza SS, Zarif L,
Nisar S, Ahmed I, Mir R, Kumar S, Sharawat SK, Hashem S, et al:
Role of non-coding RNA networks in leukemia progression, metastasis
and drug resistance. Mol Cancer. 19:572020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Xu Y, Qiu M, Shen M, Dong S, Ye G, Shi X
and Sun M: The emerging regulatory roles of long non-coding RNAs
implicated in cancer metabolism. Mol Ther. 29:2209–2218. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Zhu D, Shi C, Jiang Y, Zhu K, Wang X and
Feng W: Cisatracurium inhibits the growth and induces apoptosis of
ovarian cancer cells by promoting lincRNA-p21. Bioengineered.
12:1505–1516. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Colak S and Ten Dijke P: Targeting TGF-β
signaling in cancer. Trends Cancer. 3:56–71. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Ikushima H and Miyazono K: TGF-β signal
transduction spreading to a wider field: A broad variety of
mechanisms for context-dependent effects of TGF-β. Cell Tissue Res.
347:37–49. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Zhao M, Mishra L and Deng CX: The role of
TGF-β/SMAD4 signaling in cancer. Int J Biol Sci. 14:111–123. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhang C, Hao Y, Wang Y, Xu J, Teng Y and
Yang X: TGF-β/SMAD4-regulated LncRNA-LINP1 inhibits
epithelial-mesenchymal transition in lung cancer. Int J Biol Sci.
14:1715–1723. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Lu Z, Chen Z, Li Y, Wang J, Zhang Z, Che
Y, Huang J, Sun S, Mao S, Lei Y, et al: TGF-β-induced NKILA
inhibits ESCC cell migration and invasion through NF-κB/MMP14
signaling. J Mol Med (Berl). 96:301–313. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Shen X, Hu X, Mao J, Wu Y, Liu H, Shen J,
Yu J and Chen W: The long noncoding RNA TUG1 is required for
TGF-β/TWIST1/EMT-mediated metastasis in colorectal cancer cells.
Cell Death Dis. 11:652020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Tan YT, Lin JF, Li T, Li JJ, Xu RH and Ju
HQ: LncRNA-mediated posttranslational modifications and
reprogramming of energy metabolism in cancer. Cancer Commun (Lond).
41:109–120. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhou B, Yang H, Yang C, Bao YL, Yang SM,
Liu J and Xiao YF: Translation of noncoding RNAs and cancer. Cancer
Lett. 497:89–99. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Peng WX, Koirala P and Mo YY:
LncRNA-mediated regulation of cell signaling in cancer. Oncogene.
36:5661–5667. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Brannan CI, Dees EC, Ingram RS and
Tilghman SM: The product of the H19 gene may function as an RNA.
Mol Cell Biol. 10:28–36. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kwok ZH and Tay Y: Long noncoding RNAs:
Lincs between human health and disease. Biochem Soc Trans.
45:805–812. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Kong X, Duan Y, Sang Y, Li Y, Zhang H,
Liang Y, Liu Y, Zhang N and Yang Q: LncRNA-CDC6 promotes breast
cancer progression and function as ceRNA to target CDC6 by sponging
microRNA-215. J Cell Physiol. 234:9105–9117. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Takeiwa T, Mitobe Y, Ikeda K, Hasegawa K,
Horie K and Inoue S: Long intergenic noncoding RNA promotes ovarian
cancer growth by modulating apoptosis-related gene expression. Int
J Mol Sci. 22:112422021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Huang R, Nie W, Yao K and Chou J:
Depletion of the lncRNA RP11-567G11.1 inhibits pancreatic cancer
progression. Biomed Pharmacother. 112:1086852019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Xu K, Cai Y, Zhang M, Zou H, Chang Z, Li
D, Bai J, Xu J and Li Y: Pan-cancer characterization of expression
and clinical relevance of m6A-related tissue-elevated
long non-coding RNAs. Mol Cancer. 20:312021. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lin J, Liao S, Liu Z, Li E, Wu X and Zeng
W: LncRNA FGD5-AS1 accelerates cell proliferation in pancreatic
cancer by regulating miR-520a-3p/KIAA1522 axis. Cancer Biol Ther.
22:257–266. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Sun H, Sun X, Zhang H, Yue A and Sun M:
LncRNA-PCAT1 controls the growth, metastasis and drug resistance of
human colon cancer cells. J BUON. 25:2180–2185. 2020.PubMed/NCBI
|
|
23
|
Shang C, Wang W, Liao Y, Chen Y, Liu T, Du
Q, Huang J, Liang Y, Liu J, Zhao Y, et al: LNMICC promotes nodal
metastasis of cervical cancer by reprogramming fatty acid
metabolism. Cancer Re. 78:877–890. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Bhan A, Soleimani M and Mandal SS: Long
noncoding RNA and cancer: A new paradigm. Cancer Res. 77:3965–3981.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Ransohoff JD, Wei Y and Khavari PA: The
functions and unique features of long intergenic non-coding RNA.
Nat Rev Mol Cell Biol. 19:143–157. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wei GH and Wang X: lncRNA MEG3 inhibit
proliferation and metastasis of gastric cancer via p53 signaling
pathway. Eur Rev Med Pharmacol Sci. 21:3850–3856. 2017.PubMed/NCBI
|
|
27
|
Hu W, Wang Z, Li Q, Wang J, Li L and Jiang
G: Upregulation of lincRNA-p21 in thoracic aortic aneurysms is
involved in the regulation of proliferation and apoptosis of
vascular smooth muscle cells by activating TGF-β1 signaling
pathway. J Cell Biochem. 120:4113–4120. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Han M, Liao Z, Liu F, Chen X and Zhang B:
Modulation of the TGF-β signaling pathway by long noncoding RNA in
hepatocellular carcinoma. Biomark Res. 8:702020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Goyal B, Yadav SRM, Awasthee N, Gupta S,
Kunnumakkara AB and Gupta SC: Diagnostic, prognostic, and
therapeutic significance of long non-coding RNA MALAT1 in cancer.
Biochim Biophys Acta Rev Cancer. 1875:1885022021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Morikawa M, Derynck R and Miyazono K:
TGF-β and the TGF-β Family: Context-dependent roles in cell and
tissue physiology. Cold Spring Harb Perspect Biol. 8:a0218732016.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Heldin CH and Moustakas A: Signaling
receptors for TGF-β family members. Cold Spring Harb Perspect Biol.
8:a0220532016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Syed V: TGF-β signaling in cancer. J Cell
Biochem. 117:1279–1287. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wrana JL, Attisano L, Wieser R, Ventura F
and Massagué J: Mechanism of activation of the TGF-beta receptor.
Nature. 370:341–347. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Lan HY: Diverse roles of TGF-β/Smads in
renal fibrosis and inflammation. Int J Biol Sci. 7:1056–1067. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Attisano L and Wrana JL: Smads as
transcriptional co-modulators. Curr Opin Cell Biol. 12:235–243.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Miyazawa K and Miyazono K: Regulation of
TGF-β family signaling by inhibitory smads. Cold Spring Harb
Perspect Biol. 9:a0220952017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Kavsak P, Rasmussen RK, Causing CG, Bonni
S, Zhu H, Thomsen GH and Wrana JL: Smad7 binds to Smurf2 to form an
E3 ubiquitin ligase that targets the TGF beta receptor for
degradation. Mol Cell. 6:1365–1375. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ebisawa T, Fukuchi M, Murakami G, Chiba T,
Tanaka K, Imamura T and Miyazono K: Smurf1 interacts with
transforming growth factor-beta type I receptor through Smad7 and
induces receptor degradation. J Biol Chem. 276:12477–12480. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ogunjimi AA, Briant DJ, Pece-Barbara N, Le
Roy C, Di Guglielmo GM, Kavsak P, Rasmussen RK, Seet BT, Sicheri F
and Wrana JL: Regulation of Smurf2 ubiquitin ligase activity by
anchoring the E2 to the HECT domain. Mol Cell. 19:297–308. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Komuro A, Imamura T, Saitoh M, Yoshida Y,
Yamori T, Miyazono K and Miyazawa K: Negative regulation of
transforming growth factor-beta (TGF-beta) signaling by WW
domain-containing protein 1 (WWP1). Oncogene. 23:6914–6923. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhang Y, Alexander PB and Wang XF: TGF-β
family signaling in the control of cell proliferation and survival.
Cold Spring Harb Perspect Biol. 9:a0221452017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Peng D, Fu M, Wang M, Wei Y and Wei X:
Targeting TGF-β signal transduction for fibrosis and cancer
therapy. Molecular Cancer. 21:1042022. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Moustakas A and Heldin CH: Signaling
networks guiding epithelial-mesenchymal transitions during
embryogenesis and cancer progression. Cancer Sci. 98:1512–1520.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Xie F, Ling L, van Dam H, Zhou F and Zhang
L: TGF-β signaling in cancer metastasis. Acta Biochim Biophys Sin
(Shanghai). 50:121–132. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ma S, Li X, Wang X, Cheng L, Li Z, Zhang
C, Ye Z and Qian Q: Current progress in CAR-T cell therapy for
solid tumors. Int J Biol Sci. 15:2548–2560. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Shen X and Zhao B: Efficacy of PD-1 or
PD-L1 inhibitors and PD-L1 expression status in cancer:
Meta-analysis. BMJ. 362:k35292018. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Biller LH and Schrag D: Diagnosis and
treatment of metastatic colorectal cancer: A review. JAMA.
325:669–685. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Harada S and Morlote D: Molecular
pathology of colorectal cancer. Adv Anat Pathol. 27:20–26. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wu N, Jiang M, Liu H, Chu Y, Wang D, Cao
J, Wang Z, Xie X, Han Y and Xu B: LINC00941 promotes CRC metastasis
through preventing SMAD4 protein degradation and activating the
TGF-β/SMAD2/3 signaling pathway. Cell Death Differ. 28:219–232.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Schwarzmueller L, Bril O, Vermeulen L and
Léveillé N: Emerging role and therapeutic potential of lncRNAs in
colorectal cancer. Cancers (Basel). 12:38432020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wang X, Lai Q, He J, Li Q, Ding J, Lan Z,
Gu C, Yan Q, Fang Y, Zhao X and Liu S: LncRNA SNHG6 promotes
proliferation, invasion and migration in colorectal cancer cells by
activating TGF-beta/Smad signaling pathway via targeting UPF1 and
inducing EMT via regulation of ZEB1. Int J Med Sci. 16:51–59. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Javanmard AR, Dokanehiifard S, Bohlooli M
and Soltani BM: LOC646329 long non-coding RNA sponges miR-29b-1 and
regulates TGFβ signaling in colorectal cancer. J Cancer Res Clin
Oncol. 146:1205–1215. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zhan J, Tong J and Fu Q: Long non-coding
RNA LINC00858 promotes TP53-wild-type colorectal cancer progression
by regulating the microRNA-25-3p/SMAD7 axis. Oncol Rep.
43:1267–1277. 2020.PubMed/NCBI
|
|
54
|
Li Q, Yue W, Li M, Jiang Z, Hou Z, Liu W,
Ma N, Gan W, Li Y, Zhou T, et al: Downregulating Long Non-coding
RNAs CTBP1-AS2 inhibits colorectal cancer development by modulating
the miR-93-5p/TGF-β/SMAD2/3 pathway. Front Oncol. 11:6266202021.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Luo K, Geng J, Zhang Q, Xu Y, Zhou X,
Huang Z, Shi KQ, Pan C and Wu J: LncRNA CASC9 interacts with CPSF3
to regulate TGF-β signaling in colorectal cancer. J Exp Clin Cancer
Res. 38:2492019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yang JD, Hainaut P, Gores GJ, Amadou A,
Plymoth A and Roberts LR: A global view of hepatocellular
carcinoma: Trends, risk, prevention and management. Nat Rev
Gastroenterol Hepatol. 16:589–604. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Laube R, Sabih AH, Strasser SI, Lim L,
Cigolini M and Liu K: Palliative care in hepatocellular carcinoma.
J Gastroenterol Hepatol. 36:618–628. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Huang WJ, Tian XP, Bi SX, Zhang SR, He TS,
Song LY, Yun JP, Zhou ZG, Yu RM and Li M: The
β-catenin/TCF-4-LINC01278-miR-1258-Smad2/3 axis promotes
hepatocellular carcinoma metastasis. Oncogene. 39:4538–4550. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Wu YH, Yu B, Chen WX, Ai X, Zhang W, Dong
W and Shao YJ: Downregulation of lncRNA SBF2-AS1 inhibits
hepatocellular carcinoma proliferation and migration by regulating
the miR-361-5p/TGF-β1 signaling pathway. Aging (Albany NY).
13:19260–19271. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Li Y, Liu G, Li X, Dong H, Xiao W and Lu
S: Long non-coding RNA SBF2-AS1 promotes hepatocellular carcinoma
progression through regulation of miR-140-5p-TGFBR1 pathway.
Biochem Biophys Res Commun. 503:2826–2832. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Li Y, Guo D, Ren M, Zhao Y, Wang X, Chen
Y, Liu Y, Lu G and He S: Long non-coding RNA SNAI3-AS1 promotes the
proliferation and metastasis of hepatocellular carcinoma by
regulating the UPF1/Smad7 signalling pathway. J Cell Mol Med.
23:6271–6282. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Yang X, Cai JB, Peng R, Wei CY, Lu JC, Gao
C, Shen ZZ, Zhang PF, Huang XY, Ke AW, et al: The long noncoding
RNA NORAD enhances the TGF-β pathway to promote hepatocellular
carcinoma progression by targeting miR-202-5p. J Cell Physiol.
234:12051–12060. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Hu ML, Wang XY and Chen WM: TGF-β1
upregulates the expression of lncRNA UCA1 and its downstream HXK2
to promote the growth of hepatocellular carcinoma. Eur Rev Med
Pharmacol Sci. 22:4846–4854. 2018.PubMed/NCBI
|
|
64
|
Dong H, Zhang Y, Xu Y, Ma R, Liu L, Luo C
and Jiang W: Downregulation of long non-coding RNA MEG3 promotes
proliferation, migration, and invasion of human hepatocellular
carcinoma cells by upregulating TGF-β1. Acta Biochim Biophys Sin
(Shanghai). 51:645–652. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Chen Z, Xiang L, Li L, Ou H, Fang Y, Xu Y,
Liu Q, Hu Z, Huang Y, Li X and Yang D: TGF-β1 induced deficiency of
linc00261 promotes epithelial-mesenchymal-transition and stemness
of hepatocellular carcinoma via modulating SMAD3. J Transl Med.
20:752022. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhang L, Niu H, Ma J, Yuan BY, Chen YH,
Zhuang Y, Chen GW, Zeng ZC and Xiang ZL: The molecular mechanism of
LncRNA34a-mediated regulation of bone metastasis in hepatocellular
carcinoma. Mol Cancer. 18:1202019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wang Y, Yang L, Dong X, Yang X, Zhang X,
Liu Z, Zhao X and Wen T: Overexpression of NNT-AS1 activates TGF-β
signaling to decrease tumor CD4 lymphocyte infiltration in
hepatocellular carcinoma. Biomed Res Int. 2020:82165412020.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Tayob N, Kanwal F, Alsarraj A, Hernaez R
and El-Serag HB: The performance of AFP, AFP-3, DCP as biomarkers
for detection of hepatocellular carcinoma (HCC): A Phase 3
Biomarker Study in the United States. Clin Gastroenterol Hepatol.
Feb 3–2022.doi: 10.1016/j.cgh.2022.01.047 (Epub ahead of
print).
|
|
69
|
Smyth EC, Nilsson M, Grabsch HI, van
Grieken NC and Lordick F: Gastric cancer. Lancet. 396:635–648.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Thrift AP and El-Serag HB: Burden of
gastric cancer. Clin Gastroenterol Hepatol. 18:534–542. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zhang X and Wu J: LINC00665 promotes cell
proliferation, invasion, and metastasis by activating the TGF-β
pathway in gastric cancer. Pathol Res Pract. 224:1534922021.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Fu M, Huang Z, Zang X, Pan L, Liang W,
Chen J, Qian H, Xu W, Jiang P and Zhang X: Long noncoding RNA
LINC00978 promotes cancer growth and acts as a diagnostic biomarker
in gastric cancer. Cell Prolif. 51:e124252018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Moreau JM, Velegraki M, Bolyard C,
Rosenblum MD and Li Z: Transforming growth factor-β1 in regulatory
T cell biology. Sci Immunol. 7:eabi46132022. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Xiong G, Yang L, Chen Y and Fan Z:
Linc-POU3F3 promotes cell proliferation in gastric cancer via
increasing T-reg distribution. Am J Transl Res. 7:2262–2269.
2015.PubMed/NCBI
|
|
75
|
Huang D, Zhang K, Zheng W, Zhang R, Chen
J, Du N, Xia Y, Long Y, Gu Y, Xu J and Deng M: Long noncoding RNA
SGO1-AS1 inactivates TGFβ signaling by facilitating TGFB1/2 mRNA
decay and inhibits gastric carcinoma metastasis. J Exp Clin Cancer
Res. 40:3422021. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Sakai S, Ohhata T, Kitagawa K, Uchida C,
Aoshima T, Niida H, Suzuki T, Inoue Y, Miyazawa K and Kitagawa M:
Long Noncoding RNA ELIT-1 Acts as a Smad3 cofactor to facilitate
TGFβ/Smad signaling and promote epithelial-mesenchymal transition.
Cancer Res. 79:2821–2838. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Su J, Chen D, Ruan Y, Tian Y, Lv K, Zhou
X, Ying D and Lu Y: LncRNA MBNL1-AS1 represses gastric cancer
progression via the TGF-β pathway by modulating miR-424-5p/Smad7
axis. Bioengineered. 13:6978–6995. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Li H, Wang M, Zhou H, Lu S and Zhang B:
Long Noncoding RNA EBLN3P promotes the progression of liver cancer
via alteration of microRNA-144-3p/DOCK4 signal. Cancer Manag Res.
12:9339–9349. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Fahad Ullah M: Breast cancer: Current
perspectives on the disease status. Adv Exp Med Biol. 1152:51–64.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Januškevičienė I and Petrikaitė V:
Heterogeneity of breast cancer: The importance of interaction
between different tumor cell populations. Life Sci. 239:1170092019.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhang Y, Zhu M, Sun Y, Li W, Wang Y and Yu
W: Upregulation of lncRNA CASC2 suppresses cell proliferation and
metastasis of breast cancer via inactivation of the TGF-β signaling
pathway. Oncol Res. 27:379–387. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wu ZJ, Li Y, Wu YZ, Wang Y, Nian WQ, Wang
LL, Li LC, Luo HL and Wang DL: Long non-coding RNA CCAT2 promotes
the breast cancer growth and metastasis by regulating TGF-β
signaling pathway. Eur Rev Med Pharmacol Sci. 21:706–714.
2017.PubMed/NCBI
|
|
83
|
Hou L, Tu J, Cheng F, Yang H, Yu F, Wang
M, Liu J, Fan J and Zhou G: Long noncoding RNA ROR promotes breast
cancer by regulating the TGF-β pathway. Cancer Cell International.
18:1422018. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wang CL, Li JC, Zhou CX, Ma CN, Wang DF,
Wo LL, He M, Yin Q, He JR and Zhao Q: Long non-coding RNA
ARHGAP5-AS1 inhibits migration of breast cancer cell via
stabilizing SMAD7 protein. Breast Cancer Res Treat. 189:607–619.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ni K, Huang Z, Zhu Y, Xue D, Jin Q, Zhang
C and Gu C: The lncRNA ADAMTS9-AS2 regulates RPL22 to modulate TNBC
progression controlling the TGF-β signaling pathway. Front Oncol.
11:6544722021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Mota MSV, Jackson WP, Bailey SK, Vayalil
P, Landar A, Rostas JW III, Mulekar MS, Samant RS and Shevde LA:
Deficiency of tumor suppressor Merlin facilitates metabolic
adaptation by co-operative engagement of SMAD–Hippo signaling in
breast cancer. Carcinogenesis. 39:1165–1175. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Bo H, Zhang W, Zhong X, Chen J, Liu Y,
Cheong KL, Fan R and Tang S: LINC00467, driven by copy number
amplification and DNA demethylation, is associated with oxidative
lipid metabolism and immune infiltration in breast cancer. Oxid Med
Cell Longev. 2021:45863192021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zhang X, Wang M, Sun H, Zhu T and Wang X:
Downregulation of LINC00894-002 contributes to tamoxifen resistance
by enhancing the TGF-β signaling pathway. Biochemistry (Mosc).
83:603–611. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Tang L, Chen Y, Chen H, Jiang P, Yan L, Mo
D, Tang X and Yan F: DCST1-AS1 Promotes TGF-β-induced
epithelial-mesenchymal transition and enhances chemoresistance in
triple-negative breast cancer cells via ANXA1. Front Oncol.
10:2802020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Ren Y, Jia HH, Xu YQ, Zhou X, Zhao XH,
Wang YF, Song X, Zhu ZY, Sun T, Dou Y, et al: Paracrine and
epigenetic control of CAF-induced metastasis: The role of HOTAIR
stimulated by TGF-ß1 secretion. Mol Cancer. 17:52018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Toumazis I, Bastani M, Han SS and
Plevritis SK: Risk-based lung cancer screening: A systematic
review. Lung Cancer. 147:154–186. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Nooreldeen R and Bach H: Current and
future development in lung cancer diagnosis. Int J Mol Sci.
22:86612021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Wang S, Lan F and Xia Y: lncRA ANCR
inhibits non-small cell lung cancer cell migration and invasion by
inactivating TGF-β pathway. Med Sci Monit. 24:6002–6009. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Su WZ and Yuan X: LncRNA GASL1 inhibits
tumor growth of non-small cell lung cancer by inactivating TGF-β
pathway. Eur Rev Med Pharmacol Sci. 22:7282–7288. 2018.PubMed/NCBI
|
|
95
|
Lu Z, Li Y, Wang J, Che Y, Sun S, Huang J,
Chen Z and He J: Long non-coding RNA NKILA inhibits migration and
invasion of non-small cell lung cancer via NF-κB/Snail pathway. J
Exp Clin Cancer Res. 36:542017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Xu L, Liu W, Li T, Hu Y, Wang Y, Huang L,
Wang Y, Shao S, Liu X and Zhan Q: Long non-coding RNA SMASR
inhibits the EMT by negatively regulating TGF-β/Smad signaling
pathway in lung cancer. Oncogene. 40:3578–3592. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Wang X, Zhang G, Cheng Z, Dai L, Jia L,
Jing X, Wang H, Zhang R, Liu M, Jiang T, et al: Knockdown of
LncRNA-XIST suppresses proliferation and TGF-β1-induced EMT in
NSCLC through the Notch-1 pathway by regulation of miR-137. Genet
Test Mol Biomarkers. 220:333–342. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Ni J, Zhang X, Li J, Zheng Z, Zhang J,
Zhao W and Liu L: Tumour-derived exosomal lncRNA-SOX2OT promotes
bone metastasis of non-small cell lung cancer by targeting the
miRNA-194-5p/RAC1 signalling axis in osteoclasts. Cell Death Dis.
12:6622021. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Shi J, Li J, Yang S, Hu X, Chen J, Feng J,
Shi T, He Y, Mei Z, He W, et al: LncRNA SNHG3 is activated by E2F1
and promotes proliferation and migration of non-small-cell lung
cancer cells through activating TGF-β pathway and IL-6/JAK2/STAT3
pathway. J Cell Physiol. 235:2891–2900. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhu L, Liu Y, Tang H and Wang P: FOXP3
activated-LINC01232 accelerates the stemness of non-small cell lung
carcinoma by activating TGF-β signaling pathway and recruiting
IGF2BP2 to stabilize TGFBR1. Exp Cell Res. 413:1130242022.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Lu Z, Li Y, Che Y, Huang J, Sun S, Mao S,
Lei Y, Li N, Sun N and He J: The TGFβ-induced lncRNA TBILA promotes
non-small cell lung cancer progression in vitro and in vivo via
cis-regulating HGAL and activating S100A7/JAB1 signaling. Cancer
Lett. 432:156–168. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Jiang L, Wang R, Fang L, Ge X, Chen L,
Zhou M, Zhou Y, Xiong W, Hu Y, Tang X, et al: HCP5 is a
SMAD3-responsive long non-coding RNA that promotes lung
adenocarcinoma metastasis via miR-203/SNAI axis. Theranostics.
9:2460–2474. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Chen Y, Gao H and Li Y: Inhibition of
LncRNA FOXD3-AS1 suppresses the aggressive biological behaviors of
thyroid cancer via elevating miR-296-5p and inactivating
TGF-β1/Smads signaling pathway. Mol Cell Endocrinol.
500:1106342020. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zhao JJ, Hao S, Wang LL, Hu CY, Zhang S,
Guo LJ, Zhang G, Gao B, Jiang Y, Tian WG and Luo DL: Long
non-coding RNA ANRIL promotes the invasion and metastasis of
thyroid cancer cells through TGF-β/Smad signaling pathway.
Oncotarget. 7:57903–57918. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zhou H, Sun Z, Li S, Wang X and Zhou X:
LncRNA SPRY4-IT was concerned with the poor prognosis and
contributed to the progression of thyroid cancer. Cancer Gene Ther.
25:39–46. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Ju W, Luo X and Zhang N: LncRNA NEF
inhibits migration and invasion of HPV-negative cervical squamous
cell carcinoma by inhibiting TGF-β pathway. Biosci Rep.
39:BSR201808782019. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Cao L, Jin H, Zheng Y, Mao Y, Fu Z, Li X
and Dong L: DANCR-mediated microRNA-665 regulates proliferation and
metastasis of cervical cancer through the ERK/SMAD pathway. Cancer
Sci. 110:913–925. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Feng S, Liu W, Bai X, Pan W, Jia Z, Zhang
S, Zhu Y and Tan W: LncRNA-CTS promotes metastasis and
epithelial-to-mesenchymal transition through regulating
miR-505/ZEB2 axis in cervical cancer. Cancer Lett. 465:105–117.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Mao S, Jin J, Li Z and Yang W: Knockdown
of long non-coding RNA ANRIL inhibits the proliferation and
promotes the apoptosis of Burkitt lymphoma cells through the TGF-β1
signaling pathway. Mol Med Rep. 23:1462021. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Li Z, Liu H, Zhong Q, Wu J and Tang Z:
LncRNA UCA1 is necessary for TGF-β-induced epithelial-mesenchymal
transition and stemness via acting as a ceRNA for Slug in glioma
cells. FEBS Open Bio. 8:1855–1865. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Li Z, Li M, Xia P, Wang L and Lu Z:
Targeting long non-coding RNA PVT1/TGF-β/Smad by p53 prevents
glioma progression. Cancer Biol Ther. 23:225–233. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Ma J, Kong FF, Yang D, Yang H, Wang C,
Cong R and Ma XX: lncRNA MIR210HG promotes the progression of
endometrial cancer by sponging miR-337-3p/137 via the
HMGA2-TGF-β/Wnt pathway. Mol Ther Nucleic Acids. 24:905–922. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Weng W, Liu C, Li G, Ruan Q, Li H, Lin N
and Chen G: Long non-coding RNA SNHG16 functions as a tumor
activator by sponging miR-373-3p to regulate the TGF-β-R2/SMAD
pathway in prostate cancer. Mol Med Rep. 24:8432021. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Zhang X, Feng W, Zhang J, Ge L, Zhang Y,
Jiang X, Peng W, Wang D, Gong A and Xu M: Long non-coding RNA PVT1
promotes epithelial-mesenchymal transition via the TGF-β/Smad
pathway in pancreatic cancer cells. Oncol Rep. 40:1093–1102.
2018.PubMed/NCBI
|
|
115
|
Papoutsoglou P, Rodrigues-Junior DM, Morén
A, Bergman A, Pontén F, Coulouarn C, Caja L, Heldin CH and
Moustakas A: The noncoding MIR100HG RNA enhances the autocrine
function of transforming growth factor β signaling. Oncogene.
40:3748–3765. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Zhou B, Guo W, Sun C, Zhang B and Zheng F:
Linc00462 promotes pancreatic cancer invasiveness through the
miR-665/TGFBR1-TGFBR2/SMAD2/3 pathway. Cell Death Dis. 9:7062018.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Wu Y, Gu W, Han X and Jin Z: LncRNA PVT1
promotes the progression of ovarian cancer by activating TGF-β
pathway via miR-148a-3p/AGO1 axis. J Cell Mol Med. 25:8229–8243.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Huang P, Qi B, Yao H, Zhang L, Li Y and Li
Q: Knockdown of DANCR suppressed the biological behaviors of
ovarian cancer cells treated with transforming growth factor-β
(TGF-β) by sponging MiR-214. Med Sci Monit. 26:e9227602020.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Shi H, Xie J, Wang K, Li W, Yin L, Wang G,
Wu Z, Ni J, Mao W, Guo C and Peng B: LINC01451 drives
epithelial-mesenchymal transition and progression in bladder cancer
cells via LIN28/TGF-β/Smad pathway. Cell Signal. 81:1099322021.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Zhuang J, Shen L, Yang L, Huang X, Lu Q,
Cui Y, Zheng X, Zhao X, Zhang D, Huang R, et al: TGFβ1 promotes
gemcitabine resistance through regulating the
LncRNA-LET/NF90/miR-145 signaling axis in bladder cancer.
Theranostics. 7:3053–3067. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Zheng C, Li R, Zheng S, Fang H, Xu M and
Zhong L: LINC00174 facilitates cell proliferation, cell migration
and tumor growth of osteosarcoma regulating the TGF-β/SMAD
signaling pathway and upregulating SSH2 expression. Front Mol
Biosci. 8:6977732021. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Huarte M: The emerging role of lncRNAs in
cancer. Nat Med. 21:1253–1261. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Tzavlaki K and Moustakas A: TGF-β
signaling. Biomolecules. 10:4872020. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Lai XN, Li J, Tang LB, Chen WT, Zhang L
and Xiong LX: MiRNAs and LncRNAs: Dual roles in TGF-β
signaling-regulated metastasis in lung cancer. Int J Mol Sci.
21:11932020. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Fan Y, Shen B, Tan M, Mu X, Qin Y, Zhang F
and Liu Y: TGF-β-induced upregulation of malat1 promotes bladder
cancer metastasis by associating with suz12. Clin Cancer Res.
20:1531–1541. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Zhang M, Weng W, Zhang Q, Wu Y, Ni S, Tan
C, Xu M, Sun H, Liu C, Wei P and Du X: The lncRNA NEAT1 activates
Wnt/β-catenin signaling and promotes colorectal cancer progression
via interacting with DDX5. J Hematol Oncol. 11:1132018. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Tao S, Chen Q, Lin C and Dong H: Linc00514
promotes breast cancer metastasis and M2 polarization of
tumor-associated macrophages via Jagged1-mediated notch signaling
pathway. J Exp Clin Cancer Res. 39:1912020. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Akbari A, Ghahremani MH, Mobini GR,
Abastabar M, Akhtari J, Bolhassani M and Heidari M: Down-regulation
of miR-135b in colon adenocarcinoma induced by a TGF-β receptor I
kinase inhibitor (SD-208). Iran J Basic Med Sci. 18:856–861.
2015.PubMed/NCBI
|
|
129
|
Han S, Bui NT, Ho MT, Kim YM, Cho M and
Shin DB: Dexamethasone inhibits TGF-β1-induced cell migration by
regulating the ERK and AKT pathways in human colon cancer cells via
CYR61. Cancer Res Treat. 48:1141–1153. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Koelink PJ, Hawinkels LJAC, Wiercinska E,
Sier CF, Ten Dijke P, Lamers CB, Hommes DW and Verspaget HW:
5-Aminosalicylic acid inhibits TGF-beta1 signalling in colorectal
cancer cells. Cancer Lett. 287:82–90. 2010. View Article : Google Scholar : PubMed/NCBI
|