Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
March-2023 Volume 25 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2023 Volume 25 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Roles of TGF‑β signalling pathway‑related lncRNAs in cancer (Review)

  • Authors:
    • Zhizhong Hu
    • Yitong Liu
    • Meiqi Liu
    • Yang Zhang
    • Chengkun Wang
  • View Affiliations / Copyright

    Affiliations: Cancer Research Institute, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
    Copyright: © Hu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 107
    |
    Published online on: February 2, 2023
       https://doi.org/10.3892/ol.2023.13693
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Long non‑coding RNAs (lncRNAs) are a class of RNAs that are >200 nucleotides in length that do not have the ability to be translated into protein but are associated with numerous diseases, including cancer. The involvement of lncRNAs in the signalling of certain signalling pathways can promote tumour progression; these pathways include the transforming growth factor (TGF)‑β signalling pathway, which is related to tumour development. The expression of lncRNAs in various tumour tissues is specific, and their interaction with the TGF‑β signalling pathway indicates that they may serve as new tumour markers and therapeutic targets. The present review summarized the role of TGF‑β pathway‑associated lncRNAs in regulating tumorigenesis in different types of cancer and their effects on the TGF‑β signalling pathway.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Dahariya S, Paddibhatla I, Kumar S, Raghuwanshi S, Pallepati A and Gutti RK: Long non-coding RNA: Classification, biogenesis and functions in blood cells. Mol Immunol. 112:82–92. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Zhang H, Chen Z, Wang X, Huang Z, He Z and Chen Y: Long non-coding RNA: A new player in cancer. J Hematol Oncol. 6:372013. View Article : Google Scholar : PubMed/NCBI

3 

Bhat AA, Younes SN, Raza SS, Zarif L, Nisar S, Ahmed I, Mir R, Kumar S, Sharawat SK, Hashem S, et al: Role of non-coding RNA networks in leukemia progression, metastasis and drug resistance. Mol Cancer. 19:572020. View Article : Google Scholar : PubMed/NCBI

4 

Xu Y, Qiu M, Shen M, Dong S, Ye G, Shi X and Sun M: The emerging regulatory roles of long non-coding RNAs implicated in cancer metabolism. Mol Ther. 29:2209–2218. 2021. View Article : Google Scholar : PubMed/NCBI

5 

Zhu D, Shi C, Jiang Y, Zhu K, Wang X and Feng W: Cisatracurium inhibits the growth and induces apoptosis of ovarian cancer cells by promoting lincRNA-p21. Bioengineered. 12:1505–1516. 2021. View Article : Google Scholar : PubMed/NCBI

6 

Colak S and Ten Dijke P: Targeting TGF-β signaling in cancer. Trends Cancer. 3:56–71. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Ikushima H and Miyazono K: TGF-β signal transduction spreading to a wider field: A broad variety of mechanisms for context-dependent effects of TGF-β. Cell Tissue Res. 347:37–49. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Zhao M, Mishra L and Deng CX: The role of TGF-β/SMAD4 signaling in cancer. Int J Biol Sci. 14:111–123. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Zhang C, Hao Y, Wang Y, Xu J, Teng Y and Yang X: TGF-β/SMAD4-regulated LncRNA-LINP1 inhibits epithelial-mesenchymal transition in lung cancer. Int J Biol Sci. 14:1715–1723. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Lu Z, Chen Z, Li Y, Wang J, Zhang Z, Che Y, Huang J, Sun S, Mao S, Lei Y, et al: TGF-β-induced NKILA inhibits ESCC cell migration and invasion through NF-κB/MMP14 signaling. J Mol Med (Berl). 96:301–313. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Shen X, Hu X, Mao J, Wu Y, Liu H, Shen J, Yu J and Chen W: The long noncoding RNA TUG1 is required for TGF-β/TWIST1/EMT-mediated metastasis in colorectal cancer cells. Cell Death Dis. 11:652020. View Article : Google Scholar : PubMed/NCBI

12 

Tan YT, Lin JF, Li T, Li JJ, Xu RH and Ju HQ: LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun (Lond). 41:109–120. 2021. View Article : Google Scholar : PubMed/NCBI

13 

Zhou B, Yang H, Yang C, Bao YL, Yang SM, Liu J and Xiao YF: Translation of noncoding RNAs and cancer. Cancer Lett. 497:89–99. 2021. View Article : Google Scholar : PubMed/NCBI

14 

Peng WX, Koirala P and Mo YY: LncRNA-mediated regulation of cell signaling in cancer. Oncogene. 36:5661–5667. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Brannan CI, Dees EC, Ingram RS and Tilghman SM: The product of the H19 gene may function as an RNA. Mol Cell Biol. 10:28–36. 1990. View Article : Google Scholar : PubMed/NCBI

16 

Kwok ZH and Tay Y: Long noncoding RNAs: Lincs between human health and disease. Biochem Soc Trans. 45:805–812. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Kong X, Duan Y, Sang Y, Li Y, Zhang H, Liang Y, Liu Y, Zhang N and Yang Q: LncRNA-CDC6 promotes breast cancer progression and function as ceRNA to target CDC6 by sponging microRNA-215. J Cell Physiol. 234:9105–9117. 2019. View Article : Google Scholar : PubMed/NCBI

18 

Takeiwa T, Mitobe Y, Ikeda K, Hasegawa K, Horie K and Inoue S: Long intergenic noncoding RNA promotes ovarian cancer growth by modulating apoptosis-related gene expression. Int J Mol Sci. 22:112422021. View Article : Google Scholar : PubMed/NCBI

19 

Huang R, Nie W, Yao K and Chou J: Depletion of the lncRNA RP11-567G11.1 inhibits pancreatic cancer progression. Biomed Pharmacother. 112:1086852019. View Article : Google Scholar : PubMed/NCBI

20 

Xu K, Cai Y, Zhang M, Zou H, Chang Z, Li D, Bai J, Xu J and Li Y: Pan-cancer characterization of expression and clinical relevance of m6A-related tissue-elevated long non-coding RNAs. Mol Cancer. 20:312021. View Article : Google Scholar : PubMed/NCBI

21 

Lin J, Liao S, Liu Z, Li E, Wu X and Zeng W: LncRNA FGD5-AS1 accelerates cell proliferation in pancreatic cancer by regulating miR-520a-3p/KIAA1522 axis. Cancer Biol Ther. 22:257–266. 2021. View Article : Google Scholar : PubMed/NCBI

22 

Sun H, Sun X, Zhang H, Yue A and Sun M: LncRNA-PCAT1 controls the growth, metastasis and drug resistance of human colon cancer cells. J BUON. 25:2180–2185. 2020.PubMed/NCBI

23 

Shang C, Wang W, Liao Y, Chen Y, Liu T, Du Q, Huang J, Liang Y, Liu J, Zhao Y, et al: LNMICC promotes nodal metastasis of cervical cancer by reprogramming fatty acid metabolism. Cancer Re. 78:877–890. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Bhan A, Soleimani M and Mandal SS: Long noncoding RNA and cancer: A new paradigm. Cancer Res. 77:3965–3981. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Ransohoff JD, Wei Y and Khavari PA: The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol. 19:143–157. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Wei GH and Wang X: lncRNA MEG3 inhibit proliferation and metastasis of gastric cancer via p53 signaling pathway. Eur Rev Med Pharmacol Sci. 21:3850–3856. 2017.PubMed/NCBI

27 

Hu W, Wang Z, Li Q, Wang J, Li L and Jiang G: Upregulation of lincRNA-p21 in thoracic aortic aneurysms is involved in the regulation of proliferation and apoptosis of vascular smooth muscle cells by activating TGF-β1 signaling pathway. J Cell Biochem. 120:4113–4120. 2019. View Article : Google Scholar : PubMed/NCBI

28 

Han M, Liao Z, Liu F, Chen X and Zhang B: Modulation of the TGF-β signaling pathway by long noncoding RNA in hepatocellular carcinoma. Biomark Res. 8:702020. View Article : Google Scholar : PubMed/NCBI

29 

Goyal B, Yadav SRM, Awasthee N, Gupta S, Kunnumakkara AB and Gupta SC: Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim Biophys Acta Rev Cancer. 1875:1885022021. View Article : Google Scholar : PubMed/NCBI

30 

Morikawa M, Derynck R and Miyazono K: TGF-β and the TGF-β Family: Context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol. 8:a0218732016. View Article : Google Scholar : PubMed/NCBI

31 

Heldin CH and Moustakas A: Signaling receptors for TGF-β family members. Cold Spring Harb Perspect Biol. 8:a0220532016. View Article : Google Scholar : PubMed/NCBI

32 

Syed V: TGF-β signaling in cancer. J Cell Biochem. 117:1279–1287. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Wrana JL, Attisano L, Wieser R, Ventura F and Massagué J: Mechanism of activation of the TGF-beta receptor. Nature. 370:341–347. 1994. View Article : Google Scholar : PubMed/NCBI

34 

Lan HY: Diverse roles of TGF-β/Smads in renal fibrosis and inflammation. Int J Biol Sci. 7:1056–1067. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Attisano L and Wrana JL: Smads as transcriptional co-modulators. Curr Opin Cell Biol. 12:235–243. 2000. View Article : Google Scholar : PubMed/NCBI

36 

Miyazawa K and Miyazono K: Regulation of TGF-β family signaling by inhibitory smads. Cold Spring Harb Perspect Biol. 9:a0220952017. View Article : Google Scholar : PubMed/NCBI

37 

Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH and Wrana JL: Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell. 6:1365–1375. 2000. View Article : Google Scholar : PubMed/NCBI

38 

Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T and Miyazono K: Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem. 276:12477–12480. 2001. View Article : Google Scholar : PubMed/NCBI

39 

Ogunjimi AA, Briant DJ, Pece-Barbara N, Le Roy C, Di Guglielmo GM, Kavsak P, Rasmussen RK, Seet BT, Sicheri F and Wrana JL: Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol Cell. 19:297–308. 2005. View Article : Google Scholar : PubMed/NCBI

40 

Komuro A, Imamura T, Saitoh M, Yoshida Y, Yamori T, Miyazono K and Miyazawa K: Negative regulation of transforming growth factor-beta (TGF-beta) signaling by WW domain-containing protein 1 (WWP1). Oncogene. 23:6914–6923. 2004. View Article : Google Scholar : PubMed/NCBI

41 

Zhang Y, Alexander PB and Wang XF: TGF-β family signaling in the control of cell proliferation and survival. Cold Spring Harb Perspect Biol. 9:a0221452017. View Article : Google Scholar : PubMed/NCBI

42 

Peng D, Fu M, Wang M, Wei Y and Wei X: Targeting TGF-β signal transduction for fibrosis and cancer therapy. Molecular Cancer. 21:1042022. View Article : Google Scholar : PubMed/NCBI

43 

Moustakas A and Heldin CH: Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 98:1512–1520. 2007. View Article : Google Scholar : PubMed/NCBI

44 

Xie F, Ling L, van Dam H, Zhou F and Zhang L: TGF-β signaling in cancer metastasis. Acta Biochim Biophys Sin (Shanghai). 50:121–132. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Ma S, Li X, Wang X, Cheng L, Li Z, Zhang C, Ye Z and Qian Q: Current progress in CAR-T cell therapy for solid tumors. Int J Biol Sci. 15:2548–2560. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Shen X and Zhao B: Efficacy of PD-1 or PD-L1 inhibitors and PD-L1 expression status in cancer: Meta-analysis. BMJ. 362:k35292018. View Article : Google Scholar : PubMed/NCBI

47 

Biller LH and Schrag D: Diagnosis and treatment of metastatic colorectal cancer: A review. JAMA. 325:669–685. 2021. View Article : Google Scholar : PubMed/NCBI

48 

Harada S and Morlote D: Molecular pathology of colorectal cancer. Adv Anat Pathol. 27:20–26. 2020. View Article : Google Scholar : PubMed/NCBI

49 

Wu N, Jiang M, Liu H, Chu Y, Wang D, Cao J, Wang Z, Xie X, Han Y and Xu B: LINC00941 promotes CRC metastasis through preventing SMAD4 protein degradation and activating the TGF-β/SMAD2/3 signaling pathway. Cell Death Differ. 28:219–232. 2021. View Article : Google Scholar : PubMed/NCBI

50 

Schwarzmueller L, Bril O, Vermeulen L and Léveillé N: Emerging role and therapeutic potential of lncRNAs in colorectal cancer. Cancers (Basel). 12:38432020. View Article : Google Scholar : PubMed/NCBI

51 

Wang X, Lai Q, He J, Li Q, Ding J, Lan Z, Gu C, Yan Q, Fang Y, Zhao X and Liu S: LncRNA SNHG6 promotes proliferation, invasion and migration in colorectal cancer cells by activating TGF-beta/Smad signaling pathway via targeting UPF1 and inducing EMT via regulation of ZEB1. Int J Med Sci. 16:51–59. 2019. View Article : Google Scholar : PubMed/NCBI

52 

Javanmard AR, Dokanehiifard S, Bohlooli M and Soltani BM: LOC646329 long non-coding RNA sponges miR-29b-1 and regulates TGFβ signaling in colorectal cancer. J Cancer Res Clin Oncol. 146:1205–1215. 2020. View Article : Google Scholar : PubMed/NCBI

53 

Zhan J, Tong J and Fu Q: Long non-coding RNA LINC00858 promotes TP53-wild-type colorectal cancer progression by regulating the microRNA-25-3p/SMAD7 axis. Oncol Rep. 43:1267–1277. 2020.PubMed/NCBI

54 

Li Q, Yue W, Li M, Jiang Z, Hou Z, Liu W, Ma N, Gan W, Li Y, Zhou T, et al: Downregulating Long Non-coding RNAs CTBP1-AS2 inhibits colorectal cancer development by modulating the miR-93-5p/TGF-β/SMAD2/3 pathway. Front Oncol. 11:6266202021. View Article : Google Scholar : PubMed/NCBI

55 

Luo K, Geng J, Zhang Q, Xu Y, Zhou X, Huang Z, Shi KQ, Pan C and Wu J: LncRNA CASC9 interacts with CPSF3 to regulate TGF-β signaling in colorectal cancer. J Exp Clin Cancer Res. 38:2492019. View Article : Google Scholar : PubMed/NCBI

56 

Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A and Roberts LR: A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 16:589–604. 2019. View Article : Google Scholar : PubMed/NCBI

57 

Laube R, Sabih AH, Strasser SI, Lim L, Cigolini M and Liu K: Palliative care in hepatocellular carcinoma. J Gastroenterol Hepatol. 36:618–628. 2021. View Article : Google Scholar : PubMed/NCBI

58 

Huang WJ, Tian XP, Bi SX, Zhang SR, He TS, Song LY, Yun JP, Zhou ZG, Yu RM and Li M: The β-catenin/TCF-4-LINC01278-miR-1258-Smad2/3 axis promotes hepatocellular carcinoma metastasis. Oncogene. 39:4538–4550. 2020. View Article : Google Scholar : PubMed/NCBI

59 

Wu YH, Yu B, Chen WX, Ai X, Zhang W, Dong W and Shao YJ: Downregulation of lncRNA SBF2-AS1 inhibits hepatocellular carcinoma proliferation and migration by regulating the miR-361-5p/TGF-β1 signaling pathway. Aging (Albany NY). 13:19260–19271. 2021. View Article : Google Scholar : PubMed/NCBI

60 

Li Y, Liu G, Li X, Dong H, Xiao W and Lu S: Long non-coding RNA SBF2-AS1 promotes hepatocellular carcinoma progression through regulation of miR-140-5p-TGFBR1 pathway. Biochem Biophys Res Commun. 503:2826–2832. 2018. View Article : Google Scholar : PubMed/NCBI

61 

Li Y, Guo D, Ren M, Zhao Y, Wang X, Chen Y, Liu Y, Lu G and He S: Long non-coding RNA SNAI3-AS1 promotes the proliferation and metastasis of hepatocellular carcinoma by regulating the UPF1/Smad7 signalling pathway. J Cell Mol Med. 23:6271–6282. 2019. View Article : Google Scholar : PubMed/NCBI

62 

Yang X, Cai JB, Peng R, Wei CY, Lu JC, Gao C, Shen ZZ, Zhang PF, Huang XY, Ke AW, et al: The long noncoding RNA NORAD enhances the TGF-β pathway to promote hepatocellular carcinoma progression by targeting miR-202-5p. J Cell Physiol. 234:12051–12060. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Hu ML, Wang XY and Chen WM: TGF-β1 upregulates the expression of lncRNA UCA1 and its downstream HXK2 to promote the growth of hepatocellular carcinoma. Eur Rev Med Pharmacol Sci. 22:4846–4854. 2018.PubMed/NCBI

64 

Dong H, Zhang Y, Xu Y, Ma R, Liu L, Luo C and Jiang W: Downregulation of long non-coding RNA MEG3 promotes proliferation, migration, and invasion of human hepatocellular carcinoma cells by upregulating TGF-β1. Acta Biochim Biophys Sin (Shanghai). 51:645–652. 2019. View Article : Google Scholar : PubMed/NCBI

65 

Chen Z, Xiang L, Li L, Ou H, Fang Y, Xu Y, Liu Q, Hu Z, Huang Y, Li X and Yang D: TGF-β1 induced deficiency of linc00261 promotes epithelial-mesenchymal-transition and stemness of hepatocellular carcinoma via modulating SMAD3. J Transl Med. 20:752022. View Article : Google Scholar : PubMed/NCBI

66 

Zhang L, Niu H, Ma J, Yuan BY, Chen YH, Zhuang Y, Chen GW, Zeng ZC and Xiang ZL: The molecular mechanism of LncRNA34a-mediated regulation of bone metastasis in hepatocellular carcinoma. Mol Cancer. 18:1202019. View Article : Google Scholar : PubMed/NCBI

67 

Wang Y, Yang L, Dong X, Yang X, Zhang X, Liu Z, Zhao X and Wen T: Overexpression of NNT-AS1 activates TGF-β signaling to decrease tumor CD4 lymphocyte infiltration in hepatocellular carcinoma. Biomed Res Int. 2020:82165412020. View Article : Google Scholar : PubMed/NCBI

68 

Tayob N, Kanwal F, Alsarraj A, Hernaez R and El-Serag HB: The performance of AFP, AFP-3, DCP as biomarkers for detection of hepatocellular carcinoma (HCC): A Phase 3 Biomarker Study in the United States. Clin Gastroenterol Hepatol. Feb 3–2022.doi: 10.1016/j.cgh.2022.01.047 (Epub ahead of print).

69 

Smyth EC, Nilsson M, Grabsch HI, van Grieken NC and Lordick F: Gastric cancer. Lancet. 396:635–648. 2020. View Article : Google Scholar : PubMed/NCBI

70 

Thrift AP and El-Serag HB: Burden of gastric cancer. Clin Gastroenterol Hepatol. 18:534–542. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Zhang X and Wu J: LINC00665 promotes cell proliferation, invasion, and metastasis by activating the TGF-β pathway in gastric cancer. Pathol Res Pract. 224:1534922021. View Article : Google Scholar : PubMed/NCBI

72 

Fu M, Huang Z, Zang X, Pan L, Liang W, Chen J, Qian H, Xu W, Jiang P and Zhang X: Long noncoding RNA LINC00978 promotes cancer growth and acts as a diagnostic biomarker in gastric cancer. Cell Prolif. 51:e124252018. View Article : Google Scholar : PubMed/NCBI

73 

Moreau JM, Velegraki M, Bolyard C, Rosenblum MD and Li Z: Transforming growth factor-β1 in regulatory T cell biology. Sci Immunol. 7:eabi46132022. View Article : Google Scholar : PubMed/NCBI

74 

Xiong G, Yang L, Chen Y and Fan Z: Linc-POU3F3 promotes cell proliferation in gastric cancer via increasing T-reg distribution. Am J Transl Res. 7:2262–2269. 2015.PubMed/NCBI

75 

Huang D, Zhang K, Zheng W, Zhang R, Chen J, Du N, Xia Y, Long Y, Gu Y, Xu J and Deng M: Long noncoding RNA SGO1-AS1 inactivates TGFβ signaling by facilitating TGFB1/2 mRNA decay and inhibits gastric carcinoma metastasis. J Exp Clin Cancer Res. 40:3422021. View Article : Google Scholar : PubMed/NCBI

76 

Sakai S, Ohhata T, Kitagawa K, Uchida C, Aoshima T, Niida H, Suzuki T, Inoue Y, Miyazawa K and Kitagawa M: Long Noncoding RNA ELIT-1 Acts as a Smad3 cofactor to facilitate TGFβ/Smad signaling and promote epithelial-mesenchymal transition. Cancer Res. 79:2821–2838. 2019. View Article : Google Scholar : PubMed/NCBI

77 

Su J, Chen D, Ruan Y, Tian Y, Lv K, Zhou X, Ying D and Lu Y: LncRNA MBNL1-AS1 represses gastric cancer progression via the TGF-β pathway by modulating miR-424-5p/Smad7 axis. Bioengineered. 13:6978–6995. 2022. View Article : Google Scholar : PubMed/NCBI

78 

Li H, Wang M, Zhou H, Lu S and Zhang B: Long Noncoding RNA EBLN3P promotes the progression of liver cancer via alteration of microRNA-144-3p/DOCK4 signal. Cancer Manag Res. 12:9339–9349. 2020. View Article : Google Scholar : PubMed/NCBI

79 

Fahad Ullah M: Breast cancer: Current perspectives on the disease status. Adv Exp Med Biol. 1152:51–64. 2019. View Article : Google Scholar : PubMed/NCBI

80 

Januškevičienė I and Petrikaitė V: Heterogeneity of breast cancer: The importance of interaction between different tumor cell populations. Life Sci. 239:1170092019. View Article : Google Scholar : PubMed/NCBI

81 

Zhang Y, Zhu M, Sun Y, Li W, Wang Y and Yu W: Upregulation of lncRNA CASC2 suppresses cell proliferation and metastasis of breast cancer via inactivation of the TGF-β signaling pathway. Oncol Res. 27:379–387. 2019. View Article : Google Scholar : PubMed/NCBI

82 

Wu ZJ, Li Y, Wu YZ, Wang Y, Nian WQ, Wang LL, Li LC, Luo HL and Wang DL: Long non-coding RNA CCAT2 promotes the breast cancer growth and metastasis by regulating TGF-β signaling pathway. Eur Rev Med Pharmacol Sci. 21:706–714. 2017.PubMed/NCBI

83 

Hou L, Tu J, Cheng F, Yang H, Yu F, Wang M, Liu J, Fan J and Zhou G: Long noncoding RNA ROR promotes breast cancer by regulating the TGF-β pathway. Cancer Cell International. 18:1422018. View Article : Google Scholar : PubMed/NCBI

84 

Wang CL, Li JC, Zhou CX, Ma CN, Wang DF, Wo LL, He M, Yin Q, He JR and Zhao Q: Long non-coding RNA ARHGAP5-AS1 inhibits migration of breast cancer cell via stabilizing SMAD7 protein. Breast Cancer Res Treat. 189:607–619. 2021. View Article : Google Scholar : PubMed/NCBI

85 

Ni K, Huang Z, Zhu Y, Xue D, Jin Q, Zhang C and Gu C: The lncRNA ADAMTS9-AS2 regulates RPL22 to modulate TNBC progression controlling the TGF-β signaling pathway. Front Oncol. 11:6544722021. View Article : Google Scholar : PubMed/NCBI

86 

Mota MSV, Jackson WP, Bailey SK, Vayalil P, Landar A, Rostas JW III, Mulekar MS, Samant RS and Shevde LA: Deficiency of tumor suppressor Merlin facilitates metabolic adaptation by co-operative engagement of SMAD–Hippo signaling in breast cancer. Carcinogenesis. 39:1165–1175. 2018. View Article : Google Scholar : PubMed/NCBI

87 

Bo H, Zhang W, Zhong X, Chen J, Liu Y, Cheong KL, Fan R and Tang S: LINC00467, driven by copy number amplification and DNA demethylation, is associated with oxidative lipid metabolism and immune infiltration in breast cancer. Oxid Med Cell Longev. 2021:45863192021. View Article : Google Scholar : PubMed/NCBI

88 

Zhang X, Wang M, Sun H, Zhu T and Wang X: Downregulation of LINC00894-002 contributes to tamoxifen resistance by enhancing the TGF-β signaling pathway. Biochemistry (Mosc). 83:603–611. 2018. View Article : Google Scholar : PubMed/NCBI

89 

Tang L, Chen Y, Chen H, Jiang P, Yan L, Mo D, Tang X and Yan F: DCST1-AS1 Promotes TGF-β-induced epithelial-mesenchymal transition and enhances chemoresistance in triple-negative breast cancer cells via ANXA1. Front Oncol. 10:2802020. View Article : Google Scholar : PubMed/NCBI

90 

Ren Y, Jia HH, Xu YQ, Zhou X, Zhao XH, Wang YF, Song X, Zhu ZY, Sun T, Dou Y, et al: Paracrine and epigenetic control of CAF-induced metastasis: The role of HOTAIR stimulated by TGF-ß1 secretion. Mol Cancer. 17:52018. View Article : Google Scholar : PubMed/NCBI

91 

Toumazis I, Bastani M, Han SS and Plevritis SK: Risk-based lung cancer screening: A systematic review. Lung Cancer. 147:154–186. 2020. View Article : Google Scholar : PubMed/NCBI

92 

Nooreldeen R and Bach H: Current and future development in lung cancer diagnosis. Int J Mol Sci. 22:86612021. View Article : Google Scholar : PubMed/NCBI

93 

Wang S, Lan F and Xia Y: lncRA ANCR inhibits non-small cell lung cancer cell migration and invasion by inactivating TGF-β pathway. Med Sci Monit. 24:6002–6009. 2018. View Article : Google Scholar : PubMed/NCBI

94 

Su WZ and Yuan X: LncRNA GASL1 inhibits tumor growth of non-small cell lung cancer by inactivating TGF-β pathway. Eur Rev Med Pharmacol Sci. 22:7282–7288. 2018.PubMed/NCBI

95 

Lu Z, Li Y, Wang J, Che Y, Sun S, Huang J, Chen Z and He J: Long non-coding RNA NKILA inhibits migration and invasion of non-small cell lung cancer via NF-κB/Snail pathway. J Exp Clin Cancer Res. 36:542017. View Article : Google Scholar : PubMed/NCBI

96 

Xu L, Liu W, Li T, Hu Y, Wang Y, Huang L, Wang Y, Shao S, Liu X and Zhan Q: Long non-coding RNA SMASR inhibits the EMT by negatively regulating TGF-β/Smad signaling pathway in lung cancer. Oncogene. 40:3578–3592. 2021. View Article : Google Scholar : PubMed/NCBI

97 

Wang X, Zhang G, Cheng Z, Dai L, Jia L, Jing X, Wang H, Zhang R, Liu M, Jiang T, et al: Knockdown of LncRNA-XIST suppresses proliferation and TGF-β1-induced EMT in NSCLC through the Notch-1 pathway by regulation of miR-137. Genet Test Mol Biomarkers. 220:333–342. 2018. View Article : Google Scholar : PubMed/NCBI

98 

Ni J, Zhang X, Li J, Zheng Z, Zhang J, Zhao W and Liu L: Tumour-derived exosomal lncRNA-SOX2OT promotes bone metastasis of non-small cell lung cancer by targeting the miRNA-194-5p/RAC1 signalling axis in osteoclasts. Cell Death Dis. 12:6622021. View Article : Google Scholar : PubMed/NCBI

99 

Shi J, Li J, Yang S, Hu X, Chen J, Feng J, Shi T, He Y, Mei Z, He W, et al: LncRNA SNHG3 is activated by E2F1 and promotes proliferation and migration of non-small-cell lung cancer cells through activating TGF-β pathway and IL-6/JAK2/STAT3 pathway. J Cell Physiol. 235:2891–2900. 2020. View Article : Google Scholar : PubMed/NCBI

100 

Zhu L, Liu Y, Tang H and Wang P: FOXP3 activated-LINC01232 accelerates the stemness of non-small cell lung carcinoma by activating TGF-β signaling pathway and recruiting IGF2BP2 to stabilize TGFBR1. Exp Cell Res. 413:1130242022. View Article : Google Scholar : PubMed/NCBI

101 

Lu Z, Li Y, Che Y, Huang J, Sun S, Mao S, Lei Y, Li N, Sun N and He J: The TGFβ-induced lncRNA TBILA promotes non-small cell lung cancer progression in vitro and in vivo via cis-regulating HGAL and activating S100A7/JAB1 signaling. Cancer Lett. 432:156–168. 2018. View Article : Google Scholar : PubMed/NCBI

102 

Jiang L, Wang R, Fang L, Ge X, Chen L, Zhou M, Zhou Y, Xiong W, Hu Y, Tang X, et al: HCP5 is a SMAD3-responsive long non-coding RNA that promotes lung adenocarcinoma metastasis via miR-203/SNAI axis. Theranostics. 9:2460–2474. 2019. View Article : Google Scholar : PubMed/NCBI

103 

Chen Y, Gao H and Li Y: Inhibition of LncRNA FOXD3-AS1 suppresses the aggressive biological behaviors of thyroid cancer via elevating miR-296-5p and inactivating TGF-β1/Smads signaling pathway. Mol Cell Endocrinol. 500:1106342020. View Article : Google Scholar : PubMed/NCBI

104 

Zhao JJ, Hao S, Wang LL, Hu CY, Zhang S, Guo LJ, Zhang G, Gao B, Jiang Y, Tian WG and Luo DL: Long non-coding RNA ANRIL promotes the invasion and metastasis of thyroid cancer cells through TGF-β/Smad signaling pathway. Oncotarget. 7:57903–57918. 2016. View Article : Google Scholar : PubMed/NCBI

105 

Zhou H, Sun Z, Li S, Wang X and Zhou X: LncRNA SPRY4-IT was concerned with the poor prognosis and contributed to the progression of thyroid cancer. Cancer Gene Ther. 25:39–46. 2018. View Article : Google Scholar : PubMed/NCBI

106 

Ju W, Luo X and Zhang N: LncRNA NEF inhibits migration and invasion of HPV-negative cervical squamous cell carcinoma by inhibiting TGF-β pathway. Biosci Rep. 39:BSR201808782019. View Article : Google Scholar : PubMed/NCBI

107 

Cao L, Jin H, Zheng Y, Mao Y, Fu Z, Li X and Dong L: DANCR-mediated microRNA-665 regulates proliferation and metastasis of cervical cancer through the ERK/SMAD pathway. Cancer Sci. 110:913–925. 2019. View Article : Google Scholar : PubMed/NCBI

108 

Feng S, Liu W, Bai X, Pan W, Jia Z, Zhang S, Zhu Y and Tan W: LncRNA-CTS promotes metastasis and epithelial-to-mesenchymal transition through regulating miR-505/ZEB2 axis in cervical cancer. Cancer Lett. 465:105–117. 2019. View Article : Google Scholar : PubMed/NCBI

109 

Mao S, Jin J, Li Z and Yang W: Knockdown of long non-coding RNA ANRIL inhibits the proliferation and promotes the apoptosis of Burkitt lymphoma cells through the TGF-β1 signaling pathway. Mol Med Rep. 23:1462021. View Article : Google Scholar : PubMed/NCBI

110 

Li Z, Liu H, Zhong Q, Wu J and Tang Z: LncRNA UCA1 is necessary for TGF-β-induced epithelial-mesenchymal transition and stemness via acting as a ceRNA for Slug in glioma cells. FEBS Open Bio. 8:1855–1865. 2018. View Article : Google Scholar : PubMed/NCBI

111 

Li Z, Li M, Xia P, Wang L and Lu Z: Targeting long non-coding RNA PVT1/TGF-β/Smad by p53 prevents glioma progression. Cancer Biol Ther. 23:225–233. 2022. View Article : Google Scholar : PubMed/NCBI

112 

Ma J, Kong FF, Yang D, Yang H, Wang C, Cong R and Ma XX: lncRNA MIR210HG promotes the progression of endometrial cancer by sponging miR-337-3p/137 via the HMGA2-TGF-β/Wnt pathway. Mol Ther Nucleic Acids. 24:905–922. 2021. View Article : Google Scholar : PubMed/NCBI

113 

Weng W, Liu C, Li G, Ruan Q, Li H, Lin N and Chen G: Long non-coding RNA SNHG16 functions as a tumor activator by sponging miR-373-3p to regulate the TGF-β-R2/SMAD pathway in prostate cancer. Mol Med Rep. 24:8432021. View Article : Google Scholar : PubMed/NCBI

114 

Zhang X, Feng W, Zhang J, Ge L, Zhang Y, Jiang X, Peng W, Wang D, Gong A and Xu M: Long non-coding RNA PVT1 promotes epithelial-mesenchymal transition via the TGF-β/Smad pathway in pancreatic cancer cells. Oncol Rep. 40:1093–1102. 2018.PubMed/NCBI

115 

Papoutsoglou P, Rodrigues-Junior DM, Morén A, Bergman A, Pontén F, Coulouarn C, Caja L, Heldin CH and Moustakas A: The noncoding MIR100HG RNA enhances the autocrine function of transforming growth factor β signaling. Oncogene. 40:3748–3765. 2021. View Article : Google Scholar : PubMed/NCBI

116 

Zhou B, Guo W, Sun C, Zhang B and Zheng F: Linc00462 promotes pancreatic cancer invasiveness through the miR-665/TGFBR1-TGFBR2/SMAD2/3 pathway. Cell Death Dis. 9:7062018. View Article : Google Scholar : PubMed/NCBI

117 

Wu Y, Gu W, Han X and Jin Z: LncRNA PVT1 promotes the progression of ovarian cancer by activating TGF-β pathway via miR-148a-3p/AGO1 axis. J Cell Mol Med. 25:8229–8243. 2021. View Article : Google Scholar : PubMed/NCBI

118 

Huang P, Qi B, Yao H, Zhang L, Li Y and Li Q: Knockdown of DANCR suppressed the biological behaviors of ovarian cancer cells treated with transforming growth factor-β (TGF-β) by sponging MiR-214. Med Sci Monit. 26:e9227602020. View Article : Google Scholar : PubMed/NCBI

119 

Shi H, Xie J, Wang K, Li W, Yin L, Wang G, Wu Z, Ni J, Mao W, Guo C and Peng B: LINC01451 drives epithelial-mesenchymal transition and progression in bladder cancer cells via LIN28/TGF-β/Smad pathway. Cell Signal. 81:1099322021. View Article : Google Scholar : PubMed/NCBI

120 

Zhuang J, Shen L, Yang L, Huang X, Lu Q, Cui Y, Zheng X, Zhao X, Zhang D, Huang R, et al: TGFβ1 promotes gemcitabine resistance through regulating the LncRNA-LET/NF90/miR-145 signaling axis in bladder cancer. Theranostics. 7:3053–3067. 2017. View Article : Google Scholar : PubMed/NCBI

121 

Zheng C, Li R, Zheng S, Fang H, Xu M and Zhong L: LINC00174 facilitates cell proliferation, cell migration and tumor growth of osteosarcoma regulating the TGF-β/SMAD signaling pathway and upregulating SSH2 expression. Front Mol Biosci. 8:6977732021. View Article : Google Scholar : PubMed/NCBI

122 

Huarte M: The emerging role of lncRNAs in cancer. Nat Med. 21:1253–1261. 2015. View Article : Google Scholar : PubMed/NCBI

123 

Tzavlaki K and Moustakas A: TGF-β signaling. Biomolecules. 10:4872020. View Article : Google Scholar : PubMed/NCBI

124 

Lai XN, Li J, Tang LB, Chen WT, Zhang L and Xiong LX: MiRNAs and LncRNAs: Dual roles in TGF-β signaling-regulated metastasis in lung cancer. Int J Mol Sci. 21:11932020. View Article : Google Scholar : PubMed/NCBI

125 

Fan Y, Shen B, Tan M, Mu X, Qin Y, Zhang F and Liu Y: TGF-β-induced upregulation of malat1 promotes bladder cancer metastasis by associating with suz12. Clin Cancer Res. 20:1531–1541. 2014. View Article : Google Scholar : PubMed/NCBI

126 

Zhang M, Weng W, Zhang Q, Wu Y, Ni S, Tan C, Xu M, Sun H, Liu C, Wei P and Du X: The lncRNA NEAT1 activates Wnt/β-catenin signaling and promotes colorectal cancer progression via interacting with DDX5. J Hematol Oncol. 11:1132018. View Article : Google Scholar : PubMed/NCBI

127 

Tao S, Chen Q, Lin C and Dong H: Linc00514 promotes breast cancer metastasis and M2 polarization of tumor-associated macrophages via Jagged1-mediated notch signaling pathway. J Exp Clin Cancer Res. 39:1912020. View Article : Google Scholar : PubMed/NCBI

128 

Akbari A, Ghahremani MH, Mobini GR, Abastabar M, Akhtari J, Bolhassani M and Heidari M: Down-regulation of miR-135b in colon adenocarcinoma induced by a TGF-β receptor I kinase inhibitor (SD-208). Iran J Basic Med Sci. 18:856–861. 2015.PubMed/NCBI

129 

Han S, Bui NT, Ho MT, Kim YM, Cho M and Shin DB: Dexamethasone inhibits TGF-β1-induced cell migration by regulating the ERK and AKT pathways in human colon cancer cells via CYR61. Cancer Res Treat. 48:1141–1153. 2016. View Article : Google Scholar : PubMed/NCBI

130 

Koelink PJ, Hawinkels LJAC, Wiercinska E, Sier CF, Ten Dijke P, Lamers CB, Hommes DW and Verspaget HW: 5-Aminosalicylic acid inhibits TGF-beta1 signalling in colorectal cancer cells. Cancer Lett. 287:82–90. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Hu Z, Liu Y, Liu M, Zhang Y and Wang C: Roles of TGF‑β signalling pathway‑related lncRNAs in cancer (Review). Oncol Lett 25: 107, 2023.
APA
Hu, Z., Liu, Y., Liu, M., Zhang, Y., & Wang, C. (2023). Roles of TGF‑β signalling pathway‑related lncRNAs in cancer (Review). Oncology Letters, 25, 107. https://doi.org/10.3892/ol.2023.13693
MLA
Hu, Z., Liu, Y., Liu, M., Zhang, Y., Wang, C."Roles of TGF‑β signalling pathway‑related lncRNAs in cancer (Review)". Oncology Letters 25.3 (2023): 107.
Chicago
Hu, Z., Liu, Y., Liu, M., Zhang, Y., Wang, C."Roles of TGF‑β signalling pathway‑related lncRNAs in cancer (Review)". Oncology Letters 25, no. 3 (2023): 107. https://doi.org/10.3892/ol.2023.13693
Copy and paste a formatted citation
x
Spandidos Publications style
Hu Z, Liu Y, Liu M, Zhang Y and Wang C: Roles of TGF‑β signalling pathway‑related lncRNAs in cancer (Review). Oncol Lett 25: 107, 2023.
APA
Hu, Z., Liu, Y., Liu, M., Zhang, Y., & Wang, C. (2023). Roles of TGF‑β signalling pathway‑related lncRNAs in cancer (Review). Oncology Letters, 25, 107. https://doi.org/10.3892/ol.2023.13693
MLA
Hu, Z., Liu, Y., Liu, M., Zhang, Y., Wang, C."Roles of TGF‑β signalling pathway‑related lncRNAs in cancer (Review)". Oncology Letters 25.3 (2023): 107.
Chicago
Hu, Z., Liu, Y., Liu, M., Zhang, Y., Wang, C."Roles of TGF‑β signalling pathway‑related lncRNAs in cancer (Review)". Oncology Letters 25, no. 3 (2023): 107. https://doi.org/10.3892/ol.2023.13693
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team