Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
March-2023 Volume 25 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2023 Volume 25 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Ubiquitin C‑terminal hydrolase‑L1: A new cancer marker and therapeutic target with dual effects (Review)

  • Authors:
    • Xiaowei Wang
    • Na Zhang
    • Meihua Li
    • Tao Hong
    • Wei Meng
    • Taohui Ouyang
  • View Affiliations / Copyright

    Affiliations: Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China, Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 123
    |
    Published online on: February 8, 2023
       https://doi.org/10.3892/ol.2023.13709
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ubiquitin C‑terminal hydrolase‑L1 (UCH‑L1), a member of the lesser‑known deubiquitinating enzyme family, has deubiquitinase and ubiquitin (Ub) ligase activity and the role of stabilizing Ub. UCH‑L1 was first discovered in the brain and is associated with regulating cell differentiation, proliferation, transcriptional regulation and numerous other biological processes. UCH‑L1 is predominantly expressed in the brain and serves a role in tumor promotion or inhibition. There is still controversy about the effect of UCH‑L1 dysregulation in cancer and its mechanisms are unknown. Extensive research to investigate the mechanism of UCH‑L1 in different types of cancer is key for the future treatment of UCH‑L1‑associated cancer. The present review details the molecular structure and function of UCH‑L1. The role of UCH‑L1 in different types of cancer is also summarized and how novel treatment targets provide a theoretical foundation in cancer research is discussed.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Kulathu Y and Komander D: Atypical ubiquitylation-the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Bio. 13:508–523. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Eldridge AG and O'Brien T: Therapeutic strategies within the ubiquitin proteasome system. Cell Death Differ. 17:4–13. 2010. View Article : Google Scholar : PubMed/NCBI

3 

Mata-Cantero L, Lobato-Gil S, Aillet F, Lang V and Rodriguez MS: The ubiquitin-proteasome system (UPS) as a cancer drug target: Emerging mechanisms and therapeutics. Springer; Netherlands, Dordrecht: pp. 225–264. 2014

4 

Komander D, Clague MJ and Urbé S: Breaking the chains: Structure and function of the deubiquitinases. Nat Rev Mol Cell Bio. 10:550–563. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Das C, Hoang QQ, Kreinbring CA, Luchansky SJ, Meray RK, Ray SS, Lansbury PT, Ringe D and Petsko GA: Structural basis for conformational plasticity of the Parkinson's disease-associated ubiquitin hydrolase UCH-L1. Proc Natl Acad Sci USA. 103:4675–4680. 2006. View Article : Google Scholar : PubMed/NCBI

6 

Setsuie R and Wada K: The functions of UCH-L1 and its relation to neurodegenerative diseases. Neurochem Int. 51:105–111. 2007. View Article : Google Scholar : PubMed/NCBI

7 

Doran JF, Jackson P, Kynoch PA and Thompson RJ: Isolation of PGP 9.5, a new human neurone-specific protein detected by high-resolution two-dimensional electrophoresis. J Neurochem. 40:1542–1547. 1983. View Article : Google Scholar : PubMed/NCBI

8 

Day INM and Thompson RJ: UCHL1 (PGP 9.5): Neuronal biomarker and ubiquitin system protein. Prog Neurobiol. 90:327–362. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Bishop P, Rocca D and Henley JM: Ubiquitin C-terminal hydrolase L1 (UCH-L1): Structure, distribution and roles in brain function and dysfunction. Biochem J. 473:2453–2462. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Wang KK, Yang Z, Sarkis G, Torres I and Raghavan V: Ubiquitin C-terminal hydrolase-L1 (UCH-L1) as a therapeutic and diagnostic target in neurodegeneration, neurotrauma and neuro-injuries. Expert Opin Ther Targets. 21:627–638. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Gong B and Leznik E: The role of ubiquitin C-terminal hydrolase L1 in neurodegenerative disorders. Drug News Perspect. 20:365–370. 2007. View Article : Google Scholar : PubMed/NCBI

12 

Butterfield DA: Ubiquitin carboxyl-terminal hydrolase L-1 in brain: Focus on its oxidative/nitrosative modification and role in brains of subjects with Alzheimer disease and mild cognitive impairment. Free Radic Biol Med. 177:278–286. 2021. View Article : Google Scholar : PubMed/NCBI

13 

Matuszczak E, Tylicka M, Komarowska MD, Debek W and Hermanowicz A: Ubiquitin carboxy-terminal hydrolase L1-physiology and pathology. Cell Biochem Funct. 38:533–540. 2020. View Article : Google Scholar : PubMed/NCBI

14 

Fang Y and Shen X: Ubiquitin carboxyl-terminal hydrolases: Involvement in cancer progression and clinical implications. Cancer Metast Rev. 36:669–682. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Fang Y, Fu D and Shen X: The potential role of ubiquitin c-terminal hydrolases in oncogenesis. Biochim Biophys Acta. 1806:1–6. 2010.PubMed/NCBI

16 

Ning K, Wang T, Sun X, Zhang P, Chen Y, Jin J and Hua D: UCH-L1-containing exosomes mediate chemotherapeutic resistance transfer in breast cancer. J Surg Oncol. 115:932–940. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Luo Y, He J, Yang C, Orange M, Ren X, Blair N, Tan T, Yang JM and Zhu H: UCH-L1 promotes invasion of breast cancer cells through activating Akt signaling pathway. J Cell Biochem. 119:691–700. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Sharma A, Liu H, Tobar-Tosse F, Chand Dakal T, Ludwig M, Holz FG, Loeffler KU, Wüllner U and Herwig-Carl MC: Ubiquitin carboxyl-terminal hydrolases (UCHs): Potential mediators for cancer and neurodegeneration. Int J Mol Sci. 21:39102020. View Article : Google Scholar : PubMed/NCBI

19 

Ding X, Gu Y, Jin M, Guo X, Xue S, Tan C, Huang J, Yang W, Xue M, Zhou Q, et al: The deubiquitinating enzyme UCHL1 promotes resistance to pemetrexed in non-small cell lung cancer by upregulating thymidylate synthase. Theranostics. 10:6048–6060. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Tokumaru Y, Yamashita K, Kim MS, Park HL, Osada M, Mori M and Sidransky D: The role of PGP9.5 as a tumor suppressor gene in human cancer. Int J Cancer. 123:753–759. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Mandelker DL, Yamashita K, Tokumaru Y, Mimori K, Howard DL, Tanaka Y, Carvalho AL, Jiang WW, Park HL, Kim MS, et al: PGP9.5 promoter methylation is an independent prognostic factor for esophageal squamous cell carcinoma. Cancer Res. 65:4963–4968. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Yamashita K, Park HL, Kim MS, Osada M, Tokumaru Y, Inoue H, Mori M and Sidransky D: PGP9.5 methylation in diffuse-type gastric cancer. Cancer Res. 66:3921–3927. 2006. View Article : Google Scholar : PubMed/NCBI

23 

Okochi-Takada E, Nakazawa K, Wakabayashi M, Mori A, Ichimura S, Yasugi T and Ushijima T: Silencing of the UCHL1 gene in human colorectal and ovarian cancers. Int J Cancer. 119:1338–1344. 2006. View Article : Google Scholar : PubMed/NCBI

24 

Kagara I, Enokida H, Kawakami K, Matsuda R, Toki K, Nishimura H, Chiyomaru T, Tatarano S, Itesako T, Kawamoto K, et al: CpG hypermethylation of the UCHL1 gene promoter is associated with pathogenesis and poor prognosis in renal cell carcinoma. J Urol. 180:343–351. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Yu J, Tao Q, Cheung KF, Jin H, Poon FF, Wang X, Li H, Cheng YY, Röcken C, Ebert MPA, et al: Epigenetic identification of ubiquitin carboxyl-terminal hydrolase L1 as a functional tumor suppressor and biomarker for hepatocellular carcinoma and other digestive tumors. Hepatology. 48:508–518. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Xiang T, Li L, Yin X, Yuan C, Tan C, Su X, Xiong L, Putti TC, Oberst M, Kelly K, et al: The ubiquitin peptidase UCHL1 induces G0/G1 cell cycle arrest and apoptosis through stabilizing p53 and is frequently silenced in breast cancer. PLoS One. 7:e297832012. View Article : Google Scholar : PubMed/NCBI

27 

Finnerty BM, Moore MD, Verma A, Aronova A, Huang S, Edwards DP, Chen Z, Seandel M, Scognamiglio T, Du YN, et al: UCHL1 loss alters the cell-cycle in metastatic pancreatic neuroendocrine tumors. Endocr Relat Cancer. 26:411–423. 2019. View Article : Google Scholar : PubMed/NCBI

28 

Zhao Y, Lei Y, He SW, Li YQ, Wang YQ, Hong XH, Liang YL, Li JY, Chen Y, Luo WJ, et al: Hypermethylation of UCHL1 promotes metastasis of nasopharyngeal carcinoma by suppressing degradation of cortactin (CTTN). Cells. 9:5592020. View Article : Google Scholar : PubMed/NCBI

29 

Liu S, González-Prieto R, Zhang M, Geurink PP, Kooij R, Iyengar PV, van Dinther M, Bos E, Zhang X, Le Dévédec SE, et al: Deubiquitinase activity profiling identifies UCHL1 as a candidate oncoprotein that promotes TGFβ-induced breast cancer metastasis. Clin Cancer Res. 26:1460–1473. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Shimada Y, Kudo Y, Maehara S, Matsubayashi J, Otaki Y, Kajiwara N, Ohira T, Minna JD and Ikeda N: Ubiquitin C-terminal hydrolase-L1 has prognostic relevance and is a therapeutic target for high-grade neuroendocrine lung cancers. Cancer Sci. 111:610–620. 2020. View Article : Google Scholar : PubMed/NCBI

31 

Hussain S, Foreman O, Perkins SL, Witzig TE, Miles RR, van Deursen J and Galardy PJ: The de-ubiquitinase UCH-L1 is an oncogene that drives the development of lymphoma in vivo by deregulating PHLPP1 and Akt signaling. Leukemia. 24:1641–1655. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Howell VM, Gill A, Clarkson A, Nelson AE, Dunne R, Delbridge LW, Robinson BG, Teh BT, Gimm O and Marsh DJ: Accuracy of combined protein gene product 9.5 and parafibromin markers for immunohistochemical diagnosis of parathyroid carcinoma. J Clin Endocrinol Metab. 94:434–441. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Kim HJ, Kim YM, Lim S, Nam YK, Jeong J, Kim HJ and Lee KJ: Ubiquitin C-terminal hydrolase-L1 is a key regulator of tumor cell invasion and metastasis. Oncogene. 28:117–127. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Mastoraki A, Ioannidis E, Patsouris E, Safioleas M and Aroni K: PGP 9.5 expression in cutaneous keratoacanthomas and squamous cell carcinomas. Arch Dermatol Res. 301:653–658. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Zheng S, Qiao G, Min D, Zhang Z, Lin F, Yang Q, Feng T, Tang L, Sun Y, Zhao H, et al: Heterogeneous expression and biological function of ubiquitin carboxy-terminal hydrolase-L1 in osteosarcoma. Cancer Lett. 359:36–46. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Kwan SY, Au-Yeung CL, Yeung TL, Rynne-Vidal A, Wong KK, Risinger JI, Lin HK, Schmandt RE, Yates MS, Mok SC and Lu KH: Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) promotes uterine serous cancer cell proliferation and cell cycle progression. Cancers (Basel). 12:1182020. View Article : Google Scholar : PubMed/NCBI

37 

Gu Y, Lv F, Xue M, Chen K, Cheng C, Ding X, Jin M, Xu G, Zhang Y, Wu Z, et al: The deubiquitinating enzyme UCHL1 is a favorable prognostic marker in neuroblastoma as it promotes neuronal differentiation. J Exp Clin Canc Res. 37:2582018. View Article : Google Scholar : PubMed/NCBI

38 

Luchansky SJ, Lansbury PT Jr and Stein RL: Substrate recognition and catalysis by UCH-L1. Biochemistry. 45:14717–14725. 2006. View Article : Google Scholar : PubMed/NCBI

39 

Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, et al: The ubiquitin pathway in Parkinson's disease. Nature. 395:451–452. 1998. View Article : Google Scholar : PubMed/NCBI

40 

Sekiguchi S, Kwon J, Yoshida E, Hamasaki H, Ichinose S, Hideshima M, Kuraoka M, Takahashi A, Ishii Y, Kyuwa S, et al: Localization of ubiquitin C-terminal hydrolase L1 in mouse ova and its function in the plasma membrane to block polyspermy. Am J Pathol. 169:1722–1729. 2006. View Article : Google Scholar : PubMed/NCBI

41 

Day IN and Thompson RJ: Molecular cloning of cDNA coding for human PGP 9.5 protein. A novel cytoplasmic marker for neurones and neuroendocrine cells. FEBS Lett. 210:157–160. 1987. View Article : Google Scholar : PubMed/NCBI

42 

Larsen CN, Krantz BA and Wilkinson KD: Substrate specificity of deubiquitinating enzymes: Ubiquitin C-terminal hydrolases. Biochemistry. 37:3358–3368. 1998. View Article : Google Scholar : PubMed/NCBI

43 

Esteve-Rudd J, Campello L, Herrero MT, Cuenca N and Martin-Nieto J: Expression in the mammalian retina of parkin and UCH-L1, two components of the ubiquitin-proteasome system. Brain Res. 1352:70–82. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Liu Y, Wu J, Wu H, Wang T, Gan H, Zhang X, Liu Y, Li R, Zhao Z, Chen Q, et al: UCH-L1 expression of podocytes in diseased glomeruli and in vitro. J Pathol. 217:642–653. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Johnston SC, Larsen CN, Cook WJ, Wilkinson KD and Hill CP: Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8 A resolution. EMBO J. 16:3787–3796. 1997. View Article : Google Scholar : PubMed/NCBI

46 

Grabbe C, Husnjak K and Dikic I: The spatial and temporal organization of ubiquitin networks. Nat Rev Mol Cell Biol. 12:295–307. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Zhang M, Cai F, Zhang S, Zhang S and Song W: Overexpression of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) delays Alzheimer's progression in vivo. Sci Rep. 4:72982014. View Article : Google Scholar : PubMed/NCBI

48 

Suong DN, Thao DT, Masamitsu Y and Thuoc TL: Ubiquitin carboxyl hydrolase L1 significance for human diseases. Protein Pept Lett. 21:624–630. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Wilkinson KD, Lee KM, Deshpande S, Duerksen-Hughes P, Boss JM and Pohl J: The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science. 246:670–673. 1989. View Article : Google Scholar : PubMed/NCBI

50 

Zhong J, Zhao M, Ma Y, Luo Q, Liu J, Wang J, Yuan X, Sang J and Huang C: UCHL1 acts as a colorectal cancer oncogene via activation of the β-catenin/TCF pathway through its deubiquitinating activity. Int J Mol Med. 30:430–436. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Bheda A, Yue W, Gullapalli A, Whitehurst C, Liu R, Pagano JS and Shackelford J: Positive reciprocal regulation of ubiquitin C-terminal hydrolase L1 and beta-catenin/TCF signaling. PLoS One. 4:e59552009. View Article : Google Scholar : PubMed/NCBI

52 

Takami Y, Nakagami H, Morishita R, Katsuya T, Cui TX, Ichikawa T, Saito Y, Hayashi H, Kikuchi Y, Nishikawa T, et al: Ubiquitin carboxyl-terminal hydrolase L1, a novel deubiquitinating enzyme in the vasculature, attenuates NF-kappaB activation. Arterioscler Thromb Vasc Biol. 27:2184–2190. 2007. View Article : Google Scholar : PubMed/NCBI

53 

Zhang H, Sun Y, Hu R, Luo W, Mao X, Zhao Z, Chen Q and Zhang Z: The regulation of the UCH-L1 gene by transcription factor NF-κB in podocytes. Cell Signal. 25:1574–1585. 2013. View Article : Google Scholar : PubMed/NCBI

54 

Nagata A, Itoh F, Sasho A, Sugita K, Suzuki R, Hinata H, Shimoda Y, Suzuki E, Maemoto Y, Inagawa T, et al: The evolutionarily conserved deubiquitinase UBH1/UCH-L1 augments DAF7/TGF-β signaling, inhibits dauer larva formation, and enhances lung tumorigenesis. J Biol Chem. 295:9105–9120. 2020. View Article : Google Scholar : PubMed/NCBI

55 

Liu Y, Fallon L, Lashuel HA, Liu Z and Lansbury PT Jr: The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell. 111:209–218. 2002. View Article : Google Scholar : PubMed/NCBI

56 

Chuma M, Sakamoto M, Yasuda J, Fujii G, Nakanishi K, Tsuchiya A, Ohta T, Asaka M and Hirohashi S: Overexpression of cortactin is involved in motility and metastasis of hepatocellular carcinoma. J Hepatol. 41:629–636. 2004. View Article : Google Scholar : PubMed/NCBI

57 

Osaka H, Wang YL, Takada K, Takizawa S, Setsuie R, Li H, Sato Y, Nishikawa K, Sun YJ, Sakurai M, et al: Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Hum Mol Genet. 12:1945–1958. 2003. View Article : Google Scholar : PubMed/NCBI

58 

Kabuta T, Mitsui T, Takahashi M, Fujiwara Y, Kabuta C, Konya C, Tsuchiya Y, Hatanaka Y, Uchida K, Hohjoh H and Wada K: Ubiquitin C-terminal hydrolase L1 (UCH-L1) acts as a novel potentiator of cyclin-dependent kinases to enhance cell proliferation independently of its hydrolase activity. J Biol Chem. 288:12615–12626. 2013. View Article : Google Scholar : PubMed/NCBI

59 

Hussain S, Bedekovics T, Ali A, Zaid O, May DG, Roux KJ and Galardy PJ: A cysteine near the C-terminus of UCH-L1 is dispensable for catalytic activity but is required to promote AKT phosphorylation, eIF4F assembly, and malignant B-cell survival. Cell Death Discov. 5:1522019. View Article : Google Scholar : PubMed/NCBI

60 

Fulga TA, Elson-Schwab I, Khurana V, Steinhilb ML, Spires TL, Hyman BT and Feany MB: Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol. 9:139–148. 2007. View Article : Google Scholar : PubMed/NCBI

61 

Xie M, Han Y, Yu Q, Wang X, Wang S and Liao X: UCH-L1 inhibition decreases the microtubule-binding function of tau protein. J Alzheimers Dis. 49:353–363. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Yu Q, Zhang H, Li Y, Liu C, Wang S and Liao X: UCH-L1 inhibition suppresses tau aggresome formation during proteasomal impairment. Mol Neurobiol. 55:3812–3821. 2018.PubMed/NCBI

63 

Bheda A, Gullapalli A, Caplow M, Pagano JS and Shackelford J: Ubiquitin editing enzyme UCH L1 and microtubule dynamics: Implication in mitosis. Cell Cycle. 9:980–994. 2010. View Article : Google Scholar : PubMed/NCBI

64 

Seo EY, Jin SP, Sohn KC, Park CH, Lee DH and Chung JH: UCHL1 regulates melanogenesis through controlling MITF stability in human melanocytes. J Invest Dermatol. 137:1757–1765. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Rolén U, Freda E, Xie J, Pfirrmann T, Frisan T and Masucci MG: The ubiquitin C-terminal hydrolase UCH-L1 regulates B-cell proliferation and integrin activation. J Cell Mol Med. 13:1666–1678. 2009. View Article : Google Scholar : PubMed/NCBI

66 

Lohmann F, Sachs M, Meyer TN, Sievert H, Lindenmeyer MT, Wiech T, Cohen CD, Balabanov S, Stahl RA and Meyer-Schwesinger C: UCH-L1 induces podocyte hypertrophy in membranous nephropathy by protein accumulation. Biochim Biophys Acta. 1842:945–958. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Li L, Tao Q, Jin H, van Hasselt A, Poon FF, Wang X, Zeng MS, Jia WH, Zeng YX, Chan AT and Cao Y: The tumor suppressor UCHL1 forms a complex with p53/MDM2/ARF to promote p53 signaling and is frequently silenced in nasopharyngeal carcinoma. Clin Cancer Res. 16:2949–2958. 2010. View Article : Google Scholar : PubMed/NCBI

68 

Goto Y, Zeng L, Yeom CJ, Zhu Y, Morinibu A, Shinomiya K, Kobayashi M, Hirota K, Itasaka S, Yoshimura M, et al: UCHL1 provides diagnostic and antimetastatic strategies due to its deubiquitinating effect on HIF-1α. Nat Commun. 6:61532015. View Article : Google Scholar : PubMed/NCBI

69 

Gu Y, Yang M, Zhao M, Luo Q, Yang L, Peng H, Wang J, Huang SK, Zheng ZX, Yuan XH, et al: The de-ubiquitinase UCHL1 promotes gastric cancer metastasis via the Akt and Erk1/2 pathways. Tumour Biol. 36:8379–8387. 2015. View Article : Google Scholar : PubMed/NCBI

70 

Wang G, Zhang W, Zhou B, Jin C, Wang Z, Yang Y, Wang Z, Chen Y and Feng X: The diagnosis value of promoter methylation of UCHL1 in the serum for progression of gastric cancer. Biomed Res Int. 2015:7410302015. View Article : Google Scholar : PubMed/NCBI

71 

Seliger B, Handke D, Schabel E, Bukur J, Lichtenfels R and Dammann R: Epigenetic control of the ubiquitin carboxyl terminal hydrolase 1 in renal cell carcinoma. J Transl Med. 7:902009. View Article : Google Scholar : PubMed/NCBI

72 

Mitsui Y, Shiina H, Hiraki M, Arichi N, Hiraoka T, Sumura M, Honda S, Yasumoto H and Igawa M: Tumor suppressor function of PGP9.5 is associated with epigenetic regulation in prostate cancer-novel predictor of biochemical recurrence after radical surgery. Cancer Epidemiol Biomarkers Prev. 21:487–496. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Brait M, Maldonado L, Noordhuis MG, Begum S, Loyo M, Poeta ML, Barbosa A, Fazio VM, Angioli R, Rabitti C, et al: Association of promoter methylation of VGF and PGP9.5 with ovarian cancer progression. PLoS One. 8:e708782013. View Article : Google Scholar : PubMed/NCBI

74 

Abdelmaksoud-Dammak R, Saadallah-Kallel A, Miladi-Abdennadher I, Ayedi L, Khabir A, Sallemi-Boudawara T, Frikha M, Daoud J and Mokdad-Gargouri R: CpG methylation of ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) and P53 mutation pattern in sporadic colorectal cancer. Tumour Biol. 37:1707–1714. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Nanok C, Jearanaikoon P, Proungvitaya S and Limpaiboon T: Aberrant methylation of HTATIP2 and UCHL1 as a predictive biomarker for cholangiocarcinoma. Mol Med Rep. 17:4145–4153. 2018.PubMed/NCBI

76 

Jaferian S, Soleymaninejad M and Daraee H: Verapamil (VER) enhances the cytotoxic effects of docetaxel and vinblastine combined therapy against non-small cell lung cancer cell lines. Drug Res (Stuttg). 68:146–152. 2018. View Article : Google Scholar : PubMed/NCBI

77 

Ge N, Yang GS, Zhang TY, Chang N, Kang YH, Zhou Q and Fan PS: Upregulation of KCNMA1 facilitates the reversal effect of verapamil on the chemoresistance to cisplatin of esophageal squamous cell carcinoma cells. Eur Rev Med Pharmacol Sci. 25:1869–1880. 2021.PubMed/NCBI

78 

Li P, Zhong D and Gong PY: Synergistic effect of paclitaxel and verapamil to overcome multi-drug resistance in breast cancer cells. Biochem Biophys Res Commun. 516:183–188. 2019. View Article : Google Scholar : PubMed/NCBI

79 

Yang G, Fan G, Zhang T, Ma K, Huang J, Liu M, Teng X, Xu K, Fan P and Cheng D: Upregulation of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) mediates the reversal effect of verapamil on chemo-resistance to adriamycin of hepatocellular carcinoma. Med Sci Monit. 24:2072–2082. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Wang WJ, Li QQ, Xu JD, Cao XX, Li HX, Tang F, Chen Q, Yang JM, Xu ZD and Liu XP: Over-expression of ubiquitin carboxy terminal hydrolase-L1 induces apoptosis in breast cancer cells. Int J Oncol. 33:1037–1045. 2008.PubMed/NCBI

81 

Maroufi F, Maali A, Abdollahpour-Alitappeh M, Ahmadi MH and Azad M: CRISPR-mediated modification of DNA methylation pattern in the new era of cancer therapy. Epigenomics. 12:1845–1859. 2020. View Article : Google Scholar : PubMed/NCBI

82 

Moore MD, Finnerty B, Gray KD, Hoda R, Liu Y, Soong L, Beninato T, Rao R, Zarnegar R and Fahey TJ III: Decreased UCHL1 expression as a cytologic biomarker for aggressive behavior in pancreatic neuroendocrine tumors. Surgery. 163:226–231. 2018. View Article : Google Scholar : PubMed/NCBI

83 

Scully OJ, Bay BH, Yip G and Yu Y: Breast cancer metastasis. Cancer Genomics Proteomics. 9:311–320. 2012.PubMed/NCBI

84 

Miyoshi Y, Nakayama S, Torikoshi Y, Tanaka S, Ishihara H, Taguchi T, Tamaki Y and Noguchi S: High expression of ubiquitin carboxy-terminal hydrolase-L1 and -L3 mRNA predicts early recurrence in patients with invasive breast cancer. Cancer Sci. 97:523–529. 2006. View Article : Google Scholar : PubMed/NCBI

85 

Schröder C, Milde-Langosch K, Gebauer F, Schmid K, Mueller V, Wirtz RM, Meyer-Schwesinger C, Schlüter H, Sauter G and Schumacher U: Prognostic relevance of ubiquitin C-terminal hydrolase L1 (UCH-L1) mRNA and protein expression in breast cancer patients. J Cancer Res Clin. 139:1745–1755. 2013. View Article : Google Scholar : PubMed/NCBI

86 

Wang W, Zou L, Zhou D, Zhou Z, Tang F, Xu Z and Liu X: Overexpression of ubiquitin carboxyl terminal hydrolase-L1 enhances multidrug resistance and invasion/metastasis in breast cancer by activating the MAPK/Erk signaling pathway. Mol Carcinog. 55:1329–1342. 2016. View Article : Google Scholar : PubMed/NCBI

87 

Dongre A and Weinberg RA: New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 20:69–84. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Jin Y, Zhang W, Xu J, Wang H, Zhang Z, Chu C, Liu X and Zou Q: UCH-L1 involved in regulating the degradation of EGFR and promoting malignant properties in drug-resistant breast cancer. Int J Clin Exp Patho. 8:12500–12508. 2015.PubMed/NCBI

89 

Li QQ, Wang WJ, Xu JD, Cao XX, Chen Q, Yang JM and Xu ZD: Up-regulation of CD147 and matrix metalloproteinase-2, −9 induced by P-glycoprotein substrates in multidrug resistant breast cancer cells. Cancer Sci. 98:1767–1774. 2007. View Article : Google Scholar : PubMed/NCBI

90 

Chen XS, Wang KS, Guo W, Li LY, Yu P, Sun XY, Wang HY, Guan YD, Tao YG, Ding BN, et al: UCH-L1-mediated down-regulation of estrogen receptor α contributes to insensitivity to endocrine therapy for breast cancer. Theranostics. 10:1833–1848. 2020. View Article : Google Scholar : PubMed/NCBI

91 

Rochefort H, Glondu M, Sahla ME, Platet N and Garcia M: How to target estrogen receptor-negative breast cancer? Endocr Relat Cancer. 10:261–266. 2003. View Article : Google Scholar : PubMed/NCBI

92 

Mondal M, Conole D, Nautiyal J and Tate EW: UCHL1 as a novel target in breast cancer: Emerging insights from cell and chemical biology. Br J Cancer. 126:24–33. 2022. View Article : Google Scholar : PubMed/NCBI

93 

Yu J, Yu S, Jia M, Sun PL and Gao H: Ubiquitin C-terminal hydrolase-L1 expression in non-small-cell lung cancer and its association with clinicopathological features and prognosis. Virchows Arch. 480:577–585. 2022. View Article : Google Scholar : PubMed/NCBI

94 

Sanmamed MF and Chen L: A paradigm shift in cancer immunotherapy: From enhancement to normalization. Cell. 175:313–326. 2018. View Article : Google Scholar : PubMed/NCBI

95 

Mao R, Tan X, Xiao Y, Wang X, Wei Z, Wang J, Wang X, Zhou H, Zhang L and Shi Y: Ubiquitin C-terminal hydrolase L1 promotes expression of programmed cell death-ligand 1 in non-small-cell lung cancer cells. Cancer Sci. 111:3174–3183. 2020. View Article : Google Scholar : PubMed/NCBI

96 

Hussain S, Bedekovics T, Liu Q, Hu W, Jeon H, Johnson SH, Vasmatzis G, May DG, Roux KJ and Galardy PJ: UCH-L1 bypasses mTOR to promote protein biosynthesis and is required for MYC-driven lymphomagenesis in mice. Blood. 132:2564–2574. 2018. View Article : Google Scholar : PubMed/NCBI

97 

Bedekovics T, Hussain S, Feldman AL and Galardy PJ: UCH-L1 is induced in germinal center B cells and identifies patients with aggressive germinal center diffuse large B-cell lymphoma. Blood. 127:1564–1574. 2016. View Article : Google Scholar : PubMed/NCBI

98 

Sui R and Piao HZ: UCHL1 enhances the malignant development of glioma via targeting GAS2. Eur Rev Med Pharmacol Sci. 24:6195–6203. 2020.PubMed/NCBI

99 

Nakao K, Hirakawa T, Suwa H, Kogure K, Ikeda S, Yamashita S, Minegishi T and Kishi H: High expression of ubiquitin C-terminal hydrolase L1 Is associated with poor prognosis in endometrial cancer patients. Int J Gynecol Cancer. 28:675–683. 2018. View Article : Google Scholar : PubMed/NCBI

100 

Jang MJ, Baek SH and Kim JH: UCH-L1 promotes cancer metastasis in prostate cancer cells through EMT induction. Cancer Lett. 302:128–135. 2011. View Article : Google Scholar : PubMed/NCBI

101 

Rashid M, Zadeh LR, Baradaran B, Molavi O, Ghesmati Z, Sabzichi M and Ramezani F: Up-down regulation of HIF-1α in cancer progression. Gene. 798:1457962021. View Article : Google Scholar : PubMed/NCBI

102 

Li X, Hattori A, Takahashi S, Goto Y, Harada H and Kakeya H: Ubiquitin carboxyl-terminal hydrolase L1 promotes hypoxia-inducible factor 1-dependent tumor cell malignancy in spheroid models. Cancer Sci. 111:239–252. 2020. View Article : Google Scholar : PubMed/NCBI

103 

Kobayashi E, Hwang D, Bheda-Malge A, Whitehurst CB, Kabanov AV, Kondo S, Aga M, Yoshizaki T, Pagano JS, Sokolsky M and Shakelford J: Inhibition of UCH-L1 deubiquitinating activity with two forms of LDN-57444 has anti-invasive effects in metastatic carcinoma cells. Int J Mol Sci. 20:37332019. View Article : Google Scholar : PubMed/NCBI

104 

Liu Y, Lashuel HA, Choi S, Xing X, Case A, Ni J, Yeh LA, Cuny GD, Stein RL and Lansbury PT Jr: Discovery of inhibitors that elucidate the role of UCH-L1 activity in the H1299 lung cancer cell line. Chem Biol. 10:837–846. 2003. View Article : Google Scholar : PubMed/NCBI

105 

Hussain S, Bedekovics T, Chesi M, Bergsagel PL and Galardy PJ: UCHL1 is a biomarker of aggressive multiple myeloma required for disease progression. Oncotarget. 6:40704–40718. 2015. View Article : Google Scholar : PubMed/NCBI

106 

D'Arcy P, Wang X and Linder S: Deubiquitinase inhibition as a cancer therapeutic strategy. Pharmacol Ther. 147:32–54. 2015. View Article : Google Scholar : PubMed/NCBI

107 

Mermerian AH, Case A, Stein RL and Cuny GD: Structure-activity relationship, kinetic mechanism, and selectivity for a new class of ubiquitin C-terminal hydrolase-L1 (UCH-L1) inhibitors. Bioorg Med Chem Lett. 17:3729–3732. 2007. View Article : Google Scholar : PubMed/NCBI

108 

Panyain N, Godinat A, Thawani AR, Lachiondo-Ortega S, Mason K, Elkhalifa S, Smith LM, Harrigan JA and Tate EW: Activity-based protein profiling reveals deubiquitinase and aldehyde dehydrogenase targets of a cyanopyrrolidine probe. RSC Med Chem. 12:1935–1943. 2021. View Article : Google Scholar : PubMed/NCBI

109 

Krabill AD, Chen H, Hussain S, Feng C, Abdullah A, Das C, Aryal UK, Post CB, Wendt MK, Galardy PJ and Flaherty DP: Ubiquitin C-terminal hydrolase L1: Biochemical and cellular characterization of a covalent cyanopyrrolidine-based inhibitor. Chembiochem. 21:712–722. 2020. View Article : Google Scholar : PubMed/NCBI

110 

Kooij R, Liu S, Sapmaz A, Xin BT, Janssen GMC, van Veelen PA, Ovaa H, Dijke PT and Geurink PP: Small-molecule activity-based probe for monitoring ubiquitin C-terminal hydrolase L1 (UCHL1) activity in live cells and zebrafish embryos. J Am Chem Soc. 142:16825–16841. 2020. View Article : Google Scholar : PubMed/NCBI

111 

Berkers CR, van Leeuwen FW, Groothuis TA, Peperzak V, van Tilburg EW, Borst J, Neefjes JJ and Ovaa H: Profiling proteasome activity in tissue with fluorescent probes. Mol Pharm. 4:739–748. 2007. View Article : Google Scholar : PubMed/NCBI

112 

Panyain N, Godinat A, Lanyon-Hogg T, Lachiondo-Ortega S, Will EJ, Soudy C, Mondal M, Mason K, Elkhalifa S, Smith LM, et al: Discovery of a potent and selective covalent inhibitor and activity-based probe for the deubiquitylating enzyme UCHL1, with antifibrotic activity. J Am Chem Soc. 142:12020–12026. 2020. View Article : Google Scholar : PubMed/NCBI

113 

Roy B, Zhao J, Yang C, Luo W, Xiong T, Li Y, Fang X, Gao G, Singh CO, Madsen L, et al: CRISPR/cascade 9-mediated genome editing-challenges and opportunities. Front Genet. 9:2402018. View Article : Google Scholar : PubMed/NCBI

114 

Takano T, Miyauchi A, Matsuzuka F, Yoshida H, Nakata Y, Kuma K and Amino N: PGP9.5 mRNA could contribute to the molecular-based diagnosis of medullary thyroid carcinoma. Eur J Cancer. 40:614–618. 2004. View Article : Google Scholar : PubMed/NCBI

115 

Sabapathy K and Lane DP: Therapeutic targeting of p53: All mutants are equal, but some mutants are more equal than others. Nat Rev Clin Oncol. 15:13–30. 2018. View Article : Google Scholar : PubMed/NCBI

116 

Chibaya L, Karim B, Zhang H and Jones SN: Mdm2 phosphorylation by Akt regulates the p53 response to oxidative stress to promote cell proliferation and tumorigenesis. Proc Natl Acad Sci USA. 118:e20031931182021. View Article : Google Scholar : PubMed/NCBI

117 

De S, Campbell C, Venkitaraman AR and Esposito A: Pulsatile MAPK signaling modulates p53 activity to control cell fate decisions at the G2 checkpoint for DNA damage. Cell Rep. 30:2083–2093.e5. 2020. View Article : Google Scholar : PubMed/NCBI

118 

Brinkmann K, Zigrino P, Witt A, Schell M, Ackermann L, Broxtermann P, Schüll S, Andree M, Coutelle O, Yazdanpanah B, et al: Ubiquitin C-terminal hydrolase-L1 potentiates cancer chemosensitivity by stabilizing NOXA. Cell Rep. 3:881–891. 2013. View Article : Google Scholar : PubMed/NCBI

119 

Kabuta T, Setsuie R, Mitsui T, Kinugawa A, Sakurai M, Aoki S, Uchida K and Wada K: Aberrant molecular properties shared by familial Parkinson's disease-associated mutant UCH-L1 and carbonyl-modified UCH-L1. Hum Mol Genet. 17:1482–1496. 2008. View Article : Google Scholar : PubMed/NCBI

120 

Kabuta T, Furuta A, Aoki S, Furuta K and Wada K: Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy. J Biol Chem. 283:23731–23738. 2008. View Article : Google Scholar : PubMed/NCBI

121 

Nishikawa K, Li H, Kawamura R, Osaka H, Wang YL, Hara Y, Hirokawa T, Manago Y, Amano T, Noda M, et al: Alterations of structure and hydrolase activity of parkinsonism-associated human ubiquitin carboxyl-terminal hydrolase L1 variants. Biochem Biophys Res Commun. 304:176–183. 2003. View Article : Google Scholar : PubMed/NCBI

122 

Duffy MJ, Synnott NC and Crown J: Mutant p53 in breast cancer: Potential as a therapeutic target and biomarker. Breast Cancer Res Treat. 170:213–219. 2018. View Article : Google Scholar : PubMed/NCBI

123 

Sporikova Z, Koudelakova V, Trojanec R and Hajduch M: Genetic markers in triple-negative breast cancer. Clin Breast Cancer. 18:e841–e850. 2018. View Article : Google Scholar : PubMed/NCBI

124 

Bazarian JJ, Biberthaler P, Welch RD, Lewis LM, Barzo P, Bogner-Flatz V, Gunnar Brolinson P, Büki A, Chen JY, Christenson RH, et al: Serum GFAP and UCH-L1 for prediction of absence of intracranial injuries on head CT (ALERT-TBI): A multicentre observational study. Lancet Neurol. 17:782–789. 2018. View Article : Google Scholar : PubMed/NCBI

125 

Meyer-Schwesinger C, Meyer TN, Sievert H, Hoxha E, Sachs M, Klupp EM, Münster S, Balabanov S, Carrier L, Helmchen U, et al: Ubiquitin C-terminal hydrolase-l1 activity induces polyubiquitin accumulation in podocytes and increases proteinuria in rat membranous nephropathy. Am J Pathol. 178:2044–2057. 2011. View Article : Google Scholar : PubMed/NCBI

126 

Fang Y, Li F, Qi C, Mao X, Xu Y, Zhao Z, Wu H and Zhang Z: Plakoglobin is involved in cytoskeletal rearrangement of podocytes under the regulation of UCH-L1. Biochem Biophys Res Commun. 529:112–118. 2020. View Article : Google Scholar : PubMed/NCBI

127 

Cui JH and Xie X: UCH-L1 expressed by podocytes: A potentially therapeutic target for lupus nephritis? Inflammation. 40:657–665. 2017. View Article : Google Scholar : PubMed/NCBI

128 

Xu Y, Gao H, Hu Y, Fang Y, Qi C, Huang J, Cai X, Wu H, Ding X and Zhang Z: High glucose-induced apoptosis and necroptosis in podocytes is regulated by UCHL1 via RIPK1/RIPK3 pathway. Exp Cell Res. 382:1114632019. View Article : Google Scholar : PubMed/NCBI

129 

Ichikawa T, Li J, Dong X, Potts JD, Tang D, Li DQ, Li DS and Cui T: Ubiquitin carboxyl terminal hydrolase L1 negatively regulates TNFalpha-mediated vascular smooth muscle cell proliferation via suppressing ERK activation. Biochem Biophys Res Commun. 391:852–856. 2010. View Article : Google Scholar : PubMed/NCBI

130 

Gao X, Wu L, Wang K, Zhou X, Duan M, Wang X, Zhang Z and Liu X: Ubiquitin carboxyl terminal hydrolase L1 attenuates TNF-α-mediated vascular smooth muscle cell migration through suppression of NF-κB activation. Int Heart J. 59:1409–1415. 2018. View Article : Google Scholar : PubMed/NCBI

131 

Bi HL, Zhang XL, Zhang YL, Xie X, Xia YL, Du J and Li HH: The deubiquitinase UCHL1 regulates cardiac hypertrophy by stabilizing epidermal growth factor receptor. Sci Adv. 6:eaax48262020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang X, Zhang N, Li M, Hong T, Meng W and Ouyang T: Ubiquitin C‑terminal hydrolase‑L1: A new cancer marker and therapeutic target with dual effects (Review). Oncol Lett 25: 123, 2023.
APA
Wang, X., Zhang, N., Li, M., Hong, T., Meng, W., & Ouyang, T. (2023). Ubiquitin C‑terminal hydrolase‑L1: A new cancer marker and therapeutic target with dual effects (Review). Oncology Letters, 25, 123. https://doi.org/10.3892/ol.2023.13709
MLA
Wang, X., Zhang, N., Li, M., Hong, T., Meng, W., Ouyang, T."Ubiquitin C‑terminal hydrolase‑L1: A new cancer marker and therapeutic target with dual effects (Review)". Oncology Letters 25.3 (2023): 123.
Chicago
Wang, X., Zhang, N., Li, M., Hong, T., Meng, W., Ouyang, T."Ubiquitin C‑terminal hydrolase‑L1: A new cancer marker and therapeutic target with dual effects (Review)". Oncology Letters 25, no. 3 (2023): 123. https://doi.org/10.3892/ol.2023.13709
Copy and paste a formatted citation
x
Spandidos Publications style
Wang X, Zhang N, Li M, Hong T, Meng W and Ouyang T: Ubiquitin C‑terminal hydrolase‑L1: A new cancer marker and therapeutic target with dual effects (Review). Oncol Lett 25: 123, 2023.
APA
Wang, X., Zhang, N., Li, M., Hong, T., Meng, W., & Ouyang, T. (2023). Ubiquitin C‑terminal hydrolase‑L1: A new cancer marker and therapeutic target with dual effects (Review). Oncology Letters, 25, 123. https://doi.org/10.3892/ol.2023.13709
MLA
Wang, X., Zhang, N., Li, M., Hong, T., Meng, W., Ouyang, T."Ubiquitin C‑terminal hydrolase‑L1: A new cancer marker and therapeutic target with dual effects (Review)". Oncology Letters 25.3 (2023): 123.
Chicago
Wang, X., Zhang, N., Li, M., Hong, T., Meng, W., Ouyang, T."Ubiquitin C‑terminal hydrolase‑L1: A new cancer marker and therapeutic target with dual effects (Review)". Oncology Letters 25, no. 3 (2023): 123. https://doi.org/10.3892/ol.2023.13709
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team