|
1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Aldaco-Sarvide F, Pérez-Pérez P,
Cervantes-Sánchez G, Torrecillas-Torres L, Erazo-Valle-Solís AA,
Cabrera-Galeana P, Motola-Kuba D, Anaya P, Rivera-Rivera S and
Cárdenas-Cárdenas E: Mortalidad por cáncer en México: Actualización
2015. Gac Mex Oncol. 17:28–34. 2018.
|
|
3
|
Granados-García V, Flores YN, Pérez R,
Rudolph SE, Lazcano-Ponce E and Salmerón J: Cost of the cervical
cancer screening program at the Mexican social security institute.
Salud Publica Mex. 56:502–510. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Murillo R, Almonte M, Pereira A, Ferrer E,
Gamboa OA, Jerónimo J and Lazcano-Ponce E: Cervical cancer
screening programs in Latin America and the Caribbean. Vaccine. 26
(Suppl 11):L37–L48. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
McCormack M, Kadalayil L, Hackshaw A,
Hall-Craggs MA, Symonds RP, Warwick V, Simonds H, Fernando I,
Hammond M, James L, et al: A phase II study of weekly neoadjuvant
chemotherapy followed by radical chemoradiation for locally
advanced cervical cancer. Br J Cancer. 108:2464–2469. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Gadducci A and Cosio S: Neoadjuvant
chemotherapy in locally advanced cervical cancer: Review of the
literature and perspectives of clinical research. Anticancer Res.
40:4819–4828. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Fernandez-Retana J, Lasa-Gonsebatt F,
Lopez-Urrutia E, Coronel-Martínez J, Cantu De Leon D,
Jacobo-Herrera N, Peralta-Zaragoza O, Perez-Montiel D,
Reynoso-Noveron N, Vazquez-Romo R and Perez-Plasencia C: Transcript
profiling distinguishes complete treatment responders with locally
advanced cervical cancer. Transl Oncol. 8:77–84. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Monk BJ, Enomoto T, Kast WM, McCormack M,
Tan DSP, Wu X and González-Martín A: Integration of immunotherapy
into treatment of cervical cancer: Recent data and ongoing trials.
Cancer Treatment Reviews. 106:1023852022. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Bhatla N, Aoki D, Sharma DN and
Sankaranarayanan R: Cancer of the cervix uteri: 2021 Update. Int J
Gynecol Obstet. 155 (Suppl 1):S28–S44. 2021. View Article : Google Scholar
|
|
10
|
Naga Ch P, Gurram L, Chopra S and
Mahantshetty U: The management of locally advanced cervical cancer.
Curr Opin Oncol. 30:323–329. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Li H, Wu X and Cheng X: Advances in
diagnosis and treatment of metastatic cervical cancer. J Gynecol
Oncol. 27:e432016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Höckel S, Schlenger K, Vaupel P and Höckel
M: Association between host tissue vascularity and the
prognostically relevant tumor vascularity in human cervical cancer.
Int J Oncol. 19:827–832. 2001.PubMed/NCBI
|
|
13
|
Sims LB, Curry KC, Parupalli S, Horner G,
Frieboes HB and Steinbach-Rankins JM: Efficacy of surface-modified
PLGA nanoparticles as a function of cervical cancer Type. Pharm
Res. 36:662019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Sau S, Alsaab HO, Bhise K, Alzhrani R,
Nabil G and Iyer AK: Multifunctional nanoparticles for cancer
immunotherapy: A groundbreaking approach for reprogramming
malfunctioned tumor environment. J Control Release. 274:24–34.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Chaturvedi VK, Singh A, Singh VK and Singh
MP: Cancer nanotechnology: A new revolution for cancer diagnosis
and therapy. Curr Drug Metab. 20:416–429. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Buzea C, Pacheco II and Robbie K:
Nanomaterials and nanoparticles: Sources and toxicity.
Biointerphases. 2:MR17–MR71. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zhu L, Zhou Z, Mao H and Yang L: Magnetic
nanoparticles for precision oncology: Theranostic magnetic iron
oxide nanoparticles for image-guided and targeted cancer therapy.
Nanomedicine (Lond). 12:73–87. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Hewish M, Chau I and Cunningham D:
Insulin-like growth factor 1 receptor targeted therapeutics: Novel
compounds and novel treatment strategies for cancer medicine.
Recent Pat Anticancer Drug Discov. 4:54–72. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Codony-Servat J, Cuatrecasas M, Asensio E,
Montironi C, Martínez-Cardús A, Marín-Aguilera M, Horndler C,
Martínez-Balibrea E, Rubini M, Jares P, et al: Nuclear IGF-1R
predicts chemotherapy and targeted therapy resistance in metastatic
colorectal cancer. Br J Cancer. 117:1777–1786. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Wang N, Rayes RF, Elahi SM, Lu Y, Hancock
MA, Massie B, Rowe GE, Aomari H, Hossain S, Durocher Y, et al: The
IGF-Trap: Novel inhibitor of carcinoma growth and metastasis. Mol
Cancer Ther. 14:982–993. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lelbach A, Muzes G and Feher J: The
insulin-like growth factor system: IGFs, IGF-binding proteins and
IGFBP-proteases. Acta Physiol Hung. 92:97–107. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Schaffer A, Koushik A, Trottier H,
Duarte-Franco E, Mansour N, Arseneau J, Provencher D, Gilbert L,
Gotlieb W, Ferenczy A, et al: Insulin-like growth factor-I and risk
of high-grade cervical intraepithelial neoplasia. Cancer Epidemiol
Biomarkers Prev. 16:716–722. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
De Meyts P and Whittaker J: Structural
biology of insulin and IGF1 receptors: Implications for drug
design. Nat Rev Drug Discov. 1:769–783. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Hakuno F and Takahashi SI: IGF1 receptor
signaling pathways. J Mol Endocrinol. 61:T69–T86. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Liefers-Visser JAL, Meijering RAM, Reyners
AKL, van der Zee AGJ and de Jong S: IGF system targeted therapy:
Therapeutic opportunities for ovarian cancer. Cancer Treat Rev.
60:90–99. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Huang Z, Wen Y, Shandilya R, Marks JR,
Berchuck A and Murphy SK: High throughput detection of M6P/IGF2R
intronic hypermethylation and LOH in ovarian cancer. Nucleic Acids
Res. 34:555–563. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Sehat B, Tofigh A, Lin Y, Trocmé E,
Liljedahl U, Lagergren J and Larsson O: SUMOylation mediates the
nuclear translocation and signaling of the IGF-1 receptor. Sci
Signal. 3:ra102010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Brahmkhatri VP, Prasanna C and Atreya HS:
Insulin-like growth factor system in cancer: Novel targeted
therapies. Biomed Res Int. 2015:5380192015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Mathur SP, Mathur RS and Young RC:
Cervical epidermal growth factor-receptor (EGF-R) and serum
insulin-like growth factor II (IGF-II) levels are potential markers
for cervical cancer. Am J Reprod Immunol. 44:222–230. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Bayes-Genis A, Conover CA and Schwartz RS:
The insulin-like growth factor axis: A review of atherosclerosis
and restenosis. Circ Res. 86:125–130. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Blat C, Villaudy J and Binoux M: In vivo
proteolysis of serum insulin-like growth factor (IGF) binding
protein-3 results in increased availability of IGF to target cells.
J Clin Invest. 93:2286–2290. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Rajah R, Katz L, Nunn S, Solberg P, Beers
T and Cohen P: Insulin-like growth factor binding protein (IGFBP)
proteases: Functional regulators of cell growth. Prog Growth Factor
Res. 6:273–284. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Butt AJ and Williams AC: IGFBP-3 and
apoptosis-a licence to kill? Apoptosis. 6:199–205. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Grimberg A, Liu B, Bannerman P, El-Deiry
WS and Cohen P: IGFBP-3 mediates p53-induced apoptosis during serum
starvation. Int J Oncol. 21:327–335. 2002.PubMed/NCBI
|
|
35
|
zur Hausen H: Papillomaviruses and cancer:
From basic studies to clinical application. Nat Rev Cancer.
2:342–350. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
36
|
Scheffner M, Werness BA, Huibregtse JM,
Levine AJ and Howley PM: The E6 oncoprotein encoded by human
papillomavirus types 16 and 18 promotes the degradation of p53.
Cell. 63:1129–1136. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Boyer SN, Wazer DE and Band V: E7 protein
of human papilloma virus-16 induces degradation of retinoblastoma
protein through the ubiquitin-proteasome pathway. Cancer Res.
56:4620–4624. 1996.PubMed/NCBI
|
|
38
|
Jones DL, Thompson DA and Münger K:
Destabilization of the RB tumor suppressor protein and
stabilization of p53 contribute to HPV type 16 E7-induced
apoptosis. Virology. 239:97–107. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kuramoto H, Hongo A, Liu YX, Ojima Y,
Nakamura K, Seki N, Kodama J and Hiramatsu Y: Immunohistochemical
evaluation of insulin-like growth factor I receptor status in
cervical cancer specimens. Acta Med Okayama. 62:251–259.
2008.PubMed/NCBI
|
|
40
|
Aleksic T, Chitnis MM, Perestenko OV, Gao
S, Thomas PH, Turner GD, Protheroe AS, Howarth M and Macaulay VM:
Type 1 insulin-like growth factor receptor translocates to the
nucleus of human tumor cells. Cancer Res. 70:6412–6419. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Moreno-Acosta P, Vallard A, Carrillo S,
Gamboa O, Romero-Rojas A, Molano M, Acosta J, Mayorga D, Rancoule
C, Garcia MA, et al: Biomarkers of resistance to radiation therapy:
A prospective study in cervical carcinoma. Radiat Oncol.
12:1202017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Takeda T, Komatsu M, Chiwaki F,
Komatsuzaki R, Nakamura K, Tsuji K, Kobayashi Y, Tominaga E, Ono M,
Banno K, et al: Upregulation of IGF2R evades lysosomal
dysfunction-induced apoptosis of cervical cancer cells via
transport of cathepsins. Cell Death Dis. 10:8762019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Scagliotti GV and Novello S: The role of
the insulin-like growth factor signaling pathway in non-small cell
lung cancer and other solid tumors. Cancer Treat Rev. 38:292–302.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
You L, Liu C, Tang H, Liao Y and Fu S:
Advances in targeting insulin-like growth factor signaling pathway
in cancer treatment. Curr Pharm Des. 20:2899–2911. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Fu S, Tang H, Liao Y, Xu Q, Liu C, Deng Y,
Wang J, Wang J and Fu X: Expression and clinical significance of
insulin-like growth factor 1 in lung cancer tissues and
perioperative circulation from patients with non-small-cell lung
cancer. Curr Oncol. 23:12–19. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Durzyńska J: IGF axis and other factors in
HPV-related and HPV-unrelated carcinogenesis (review). Oncol Rep.
32:2295–2306. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Pickard A, Durzynska J, McCance DJ and
Barton ER: The IGF axis in HPV associated cancers. Mutat Res Rev
Mutat Res. 772:67–77. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wu X, Tortolero-Luna G, Zhao H, Phatak D,
Spitz MR and Follen M: Serum levels of insulin-like growth factor I
and risk of squamous intraepithelial lesions of the cervix. Clin
Cancer Res. 9:3356–3361. 2003.PubMed/NCBI
|
|
49
|
Shen MR, Hsu YM, Hsu KF, Chen YF, Tang MJ
and Chou CY: Insulin-like growth factor 1 is a potent stimulator of
cervical cancer cell invasiveness and proliferation that is
modulated by alphavbeta3 integrin signaling. Carcinogenesis.
27:962–971. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Steller MA, Delgado CH, Bartels CJ,
Woodworth CD and Zou Z: Overexpression of the insulin-like growth
factor-1 receptor and autocrine stimulation in human cervical
cancer cells. Cancer Res. 56:1761–1765. 1996.PubMed/NCBI
|
|
51
|
van der Veeken J, Oliveira S, Schiffelers
RM, Storm G, van Bergen En Henegouwen PM and Roovers RC: Crosstalk
between epidermal growth factor receptor- and insulin-like growth
factor-1 receptor signaling: Implications for cancer therapy. Curr
Cancer Drug Targets. 9:748–760. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Pickard A, McDade SS, McFarland M,
McCluggage WG, Wheeler CM and McCance DJ: HPV16 down-regulates the
insulin-like growth factor binding protein 2 to promote epithelial
invasion in organotypic cultures. PLoS Pathog. 11:e10049882015.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Kaur G, Balasubramaniam SD and Lee YJ:
IGFBP-2 in cervical cancer development. Exp Mol Pathol.
113:1043622020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Schütt BS, Langkamp M, Rauschnabel U,
Ranke MB and Elmlinger MW: Integrin-mediated action of insulin-like
growth factor binding protein-2 in tumor cells. J Mol Endocrinol.
32:859–868. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Berger AJ, Baege A, Guillemette T, Deeds
J, Meyer R, Disbrow G and Schlegel R and Schlegel R: Insulin-like
growth factor-binding protein 3 expression increases during
immortalization of cervical keratinocytes by human papillomavirus
type 16 E6 and E7 proteins. Am J Pathol. 161:603–610. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Mannhardt B, Weinzimer SA, Wagner M,
Fiedler M, Cohen P, Jansen-Dürr P and Zwerschke W: Human
papillomavirus type 16 E7 oncoprotein binds and inactivates
growth-inhibitory insulin-like growth factor binding protein 3. Mol
Cell Biol. 20:6483–6495. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Baxter RC: Nuclear actions of insulin-like
growth factor binding protein-3. Gene. 569:7–13. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Seligson DB, Yu H, Tze S, Said J, Pantuck
AJ, Cohen P and Lee KW: IGFBP-3 nuclear localization predicts human
prostate cancer recurrence. Horm Cancer. 4:12–23. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Arcaro A: Targeting the insulin-like
growth factor-1 receptor in human cancer. Front Pharmacol.
4:302013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
King ER and Wong KK: Insulin-like growth
factor: Current concepts and new developments in cancer therapy.
Recent Pat Anticancer Drug Discov. 7:14–30. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Navarro M and Baserga R: Limited
redundancy of survival signals from the type 1 insulin-like growth
factor receptor. Endocrinology. 142:1073–1081. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Park S, Chapuis N, Tamburini J, Bardet V,
Cornillet-Lefebvre P, Willems L, Green A, Mayeux P, Lacombe C and
Bouscary D: Role of the PI3K/AKT and mTOR signaling pathways in
acute myeloid leukemia. Haematologica. 95:819–828. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Qu X, Wu Z, Dong W, Zhang T, Wang L, Pang
Z, Ma W and Du J: Update of IGF-1 receptor inhibitor (ganitumab,
dalotuzumab, cixutumumab, teprotumumab and figitumumab) effects on
cancer therapy. Oncotarget. 8:29501–29518. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Chen YM, Qi S, Perrino S, Hashimoto M and
Brodt P: Targeting the IGF-axis for cancer therapy: Development and
validation of an IGF-Trap as a potential drug. Cells. 9:10982020.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Holash J, Davis S, Papadopoulos N, Croll
SD, Ho L, Russell M, Boland P, Leidich R, Hylton D, Burova E, et
al: VEGF-Trap: A VEGF blocker with potent antitumor effects. Proc
Natl Acad Sci USA. 99:11393–11398. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Messori A, Santarlasci B and Vaiani M: New
drugs for rheumatoid arthritis. N Engl J Med. 351:937–938. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hoffman HM, Throne ML, Amar NJ, Sebai M,
Kivitz AJ, Kavanaugh A, Weinstein SP, Belomestnov P, Yancopoulos
GD, Stahl N and Mellis SJ: Efficacy and safety of rilonacept
(interleukin-1 Trap) in patients with cryopyrin-associated periodic
syndromes: Results from two sequential placebo-controlled studies.
Arthritis Rheum. 58:2443–2452. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Lindzen M, Carvalho S, Starr A,
Ben-Chetrit N, Pradeep CR, Köstler WJ, Rabinkov A, Lavi S, Bacus SS
and Yarden Y: A recombinant decoy comprising EGFR and ErbB-4
inhibits tumor growth and metastasis. Oncogene. 31:3505–3515. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Samani AA, Chevet E, Fallavollita L,
Galipeau J and Brodt P: Loss of tumorigenicity and metastatic
potential in carcinoma cells expressing the extracellular domain of
the type 1 insulin-like growth factor receptor. Cancer Res.
64:3380–3385. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wang N, Lu Y, Pinard M, Pilotte A, Gilbert
R, Massie B and Brodt P: Sustained production of a soluble IGF-I
receptor by gutless adenovirus-transduced host cells protects from
tumor growth in the liver. Cancer Gene Ther. 20:229–236. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Vaniotis G, Moffett S, Sulea T, Wang N,
Elahi SM, Lessard E, Baardsnes J, Perrino S, Durocher Y, Frystyk J,
et al: Enhanced anti-metastatic bioactivity of an IGF-TRAP
re-engineered to improve physicochemical properties. Sci Rep.
8:173612018. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Sadick MD, Intintoli A, Quarmby V, McCoy
A, Canova-Davis E and Ling V: Kinase receptor activation (KIRA): A
rapid and accurate alternative to end-point bioassays. J Pharm
Biomed Anal. 19:883–891. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Bulte JWM and Kraitchman DL: Iron oxide MR
contrast agents for molecular and cellular imaging. NMR Biomed.
17:484–499. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Miller-Kleinhenz JM, Bozeman EN and Yang
L: Targeted nanoparticles for image-guided treatment of
triple-negative breast cancer: Clinical significance and
technological advances. Wiley Interdiscip Rev Nanomed
Nanobiotechnol. 7:797–816. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Yang L, Cao Z, Sajja HK, Mao H, Wang L,
Geng H, Xu H, Jiang T, Wood WC, Nie S and Wang YA: Development of
receptor targeted magnetic iron oxide nanoparticles for efficient
drug delivery and tumor imaging. J Biomed Nanotechnol. 4:439–449.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zhou H, Qian W, Uckun FM, Zhou Z, Wang L,
Wang A, Mao H and Yang L: IGF-1 receptor targeted nanoparticles for
image-guided therapy of stroma-rich and drug resistant human
cancer. Proc SPIE Int Soc Opt Eng. Apr 17–2016.(Epub ahead of
print).
|
|
77
|
Yu MK, Park J and Jon S: Targeting
strategies for multifunctional nanoparticles in cancer imaging and
therapy. Theranostics. 2:3–44. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Gao X and Matsui H: Peptide-based
nanotubes and their applications in bionanotechnology. Adv Mater.
17:2037–2050. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Kibbey MM, Jameson MJ, Eaton EM and
Rosenzweig SA: Insulin-like growth factor binding protein-2:
Contributions of the C-terminal domain to insulin-like growth
factor-1 binding. Mol Pharmacol. 69:833–845. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Binkert C, Landwehr J, Mary JL, Schwander
J and Heinrich G: Cloning, sequence analysis and expression of a
cDNA encoding a novel insulin-like growth factor binding protein
(IGFBP-2). EMBO J. 8:2497–2502. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Asampille G, Verma BK, Swain M, Shettar A,
Rosenzweig SA, Kondaiah P and Atreya HS: An ultra-stable
redox-controlled self-assembling polypeptide nanotube for targeted
imaging and therapy in cancer. J Nanobiotechnology. 16:1012018.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Swain M, Thirupathi R, Krishnarjuna B,
Eaton EM, Kibbey MM, Rosenzweig SA and Atreya HS: Spontaneous and
reversible self-assembly of a polypeptide fragment of insulin-like
growth factor binding protein-2 into fluorescent nanotubular
structures. Chem Commun (Camb). 46:216–218. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Arnaout MA, Mahalingam B and Xiong JP:
Integrin structure, allostery, and bidirectional signaling. Annu
Rev Cell Dev Biol. 21:381–410. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Bellis SL: Advantages of RGD peptides for
directing cell association with biomaterials. Biomaterials.
32:4205–4210. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Pedroza-Torres A, López-Urrutia E,
García-Castillo V, Jacobo-Herrera N, Herrera LA, Peralta-Zaragoza
O, López-Camarillo C, De Leon DC, Fernández-Retana J, Cerna-Cortés
JF and Pérez-Plasencia C: MicroRNAs in cervical cancer: Evidences
for a miRNA profile deregulated by HPV and its impact on
radio-resistance. Molecules. 19:6263–6281. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Fernandez-Retana J, Zamudio-Meza H,
Rodriguez-Morales M, Pedroza-Torres A, Isla-Ortiz D, Herrera L,
Jacobo-Herrera N, Peralta-Zaragoza O, López-Camarillo C,
Morales-Gonzalez F, et al: Gene signature based on
degradome-related genes can predict distal metastasis in cervical
cancer patients. Tumour Biol. Jun 22–2017.(Epub ahead of print).
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Cuggino JC, Molina M, Wedepohl S,
Igarzabal CIA, Calderón M and Gugliotta LM: Responsive nanogels for
application as smart carriers in endocytic pH-triggered drug
delivery systems. Eur Polym J. 78:14–24. 2016. View Article : Google Scholar
|
|
88
|
Patel SG, Sayers EJ, He L, Narayan R,
Williams TL, Mills EM, Allemann RK, Luk LYP, Jones AT and Tsai YH:
Cell-penetrating peptide sequence and modification dependent uptake
and subcellular distribution of green florescent protein in
different cell lines. Sci Rep. 9:62982019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Poshteh Shirani M, Rezaei B, Khayamian T,
Dinari M, Karami K, Mehri-Lighvan Z, Hosseini Shamili F, Ramazani M
and Alibolandi M: Folate receptor-targeted multimodal fluorescence
mesosilica nanoparticles for imaging, delivery palladium complex
and in vitro G-quadruplex DNA interaction. J Biomol Struct Dyn.
36:4156–4169. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Tomitaka A, Arami H, Huang Z, Raymond A,
Rodriguez E, Cai Y, Febo M, Takemura Y and Nair M: Hybrid
magneto-plasmonic liposomes for multimodal image-guided and
brain-targeted HIV treatment. Nanoscale. 10:184–194. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Trujillo-Nolasco M, Cruz-Nova P,
Ferro-Flores G, Gibbens-Bandala B, Morales-Avila E, Aranda-Lara L,
Vargas M and Ocampo-García B: Development of
177Lu-DN(C19)-CXCR4 ligand nanosystem for combinatorial
therapy in pancreatic cancer. J Biomed Nanotechnol. 17:263–278.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Wei T, Chen C, Liu J, Liu C, Posocco P,
Liu X, Cheng Q, Huo S, Liang Z, Fermeglia M, et al: Anticancer drug
nanomicelles formed by self-assembling amphiphilic dendrimer to
combat cancer drug resistance. Proc Natl Acad Sci USA.
112:2978–2983. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Sun H, Li Y, Yu S and Liu J: Hierarchical
self-assembly of proteins through rationally designed
supramolecular interfaces. Front Bioeng Biotechnol. 8:2952020.
View Article : Google Scholar : PubMed/NCBI
|