|
1
|
Johnson JS, Spakowicz DJ, Hong BY,
Petersen LM, Demkowicz P, Chen L, Leopold SR, Hanson BM, Agresta
HO, Gerstein M, et al: Evaluation of 16S rRNA gene sequencing for
species and strain-level microbiome analysis. Nat Commun.
10:50292019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Rinninella E, Raoul P, Cintoni M,
Franceschi F, Miggiano GAD, Gasbarrini A and Mele MC: What is the
healthy gut microbiota composition? A changing ecosystem across
age, environment, diet, and diseases. Microorganisms. 7:142019.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Einstein MH, Levine NF and Nevadunsky NS:
Menopause and cancers. Endocrinol Metab Clin North Am. 44:603–617.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Wu Y, Sun W, Liu H and Zhang D: Age at
menopause and risk of developing endometrial cancer: A
meta-analysis. Biomed Res Int. 2019:85841302019.PubMed/NCBI
|
|
5
|
Liang Y, Chen M, Qin L, Wan B and Wang H:
A meta-analysis of the relationship between vaginal microecology,
human papillomavirus infection and cervical intraepithelial
neoplasia. Infect Agent Cancer. 14:292019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Gillet E, Meys JF, Verstraelen H, Verhelst
R, De Sutter P, Temmerman M and Vanden Broeck D: Association
between bacterial vaginosis and cervical intraepithelial neoplasia:
Systematic review and meta-analysis. PLoS One. 7:e452012012.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Sepich-Poore GD, Zitvogel L, Straussman R,
Hasty J, Wargo JA and Knight R: The microbiome and human cancer.
Science. 371:eabc45522021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Poore GD, Kopylova E, Zhu Q, Carpenter C,
Fraraccio S, Wandro S, Kosciolek T, Janssen S, Metcalf J, Song SJ,
et al: Microbiome analyses of blood and tissues suggest cancer
diagnostic approach. Nature. 579:567–574. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Witkin SS, Linhares IM and Giraldo P:
Bacterial flora of the female genital tract: function and immune
regulation. Best Pract Res Clin Obstet Gynaecol. 21:347–354. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Lidbeck A and Nord CE: Lactobacilli and
the normal human anaerobic microflora. Clin Infect Dis. 16 (Suppl
4):S181–S187. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Chee WJY, Chew SY and Than LTL: Vaginal
microbiota and the potential of Lactobacillus derivatives in
maintaining vaginal health. Microb Cell Fact. 19:2032020.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wilson JD, Lee RA, Balen AH and Rutherford
AJ: Bacterial vaginal flora in relation to changing oestrogen
levels. Int J Std Aids. 18:308–311. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Barrientos-Duran A, Fuentes-Lopez A, de
Salazar A, Plaza-Diaz J and Garcia F: Reviewing the composition of
vaginal microbiota: Inclusion of nutrition and probiotic factors in
the maintenance of eubiosis. Nutrients. 12:4192020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Ravel J, Gajer P, Abdo Z, Schneider GM,
Koenig SS, McCulle SL, Karlebach S, Gorle R, Russell J, Tacket CO,
et al: Vaginal microbiome of reproductive-age women. Proc Natl Acad
Sci USA. 108 Suppl 1 (Suppl 1):S4680–S4687. 2011. View Article : Google Scholar
|
|
15
|
Gajer P, Brotman RM, Bai G, Sakamoto J,
Schutte UM, Zhong X, Koenig SS, Fu L, Ma ZS, Zhou X, et al:
Temporal dynamics of the human vaginal microbiota. Sci Transl Med.
4:132ra522012. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
De Gregorio PR, Parolin C, Abruzzo A,
Luppi B, Protti M, Mercolini L, Silva JA, Giordani B, Marangoni A,
Nader-Macías MEF and Vitali B: Biosurfactant from vaginal
Lactobacillus crispatus BC1 as a promising agent to
interfere with Candida adhesion. Microb Cell Fact. 19:1332020.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Jung H, Ehlers MM, Peters RPH, Lombaard H,
Redelinghuys MJ, Bezuidenhoudt JE and Kock MM: Growth forms of
Gardnerella spp. and Lactobacillus spp. On vaginal
cells. Front Cell Infect Microbiol. 10:712020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Aldunate M, Tyssen D, Johnson A, Zakir T,
Sonza S, Moench T, Cone R and Tachedjian G: Vaginal concentrations
of lactic acid potently inactivate HIV. J Antimicrob Chemother.
68:2015–2025. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Tamarelle J, Thiebaut ACM, de Barbeyrac B,
Bebear C, Ravel J and Delarocque-Astagneau E: The vaginal
microbiota and its association with human papillomavirus, Chlamydia
trachomatis, Neisseria gonorrhoeae and Mycoplasma genitalium
infections: A systematic review and meta-analysis. Clin Microbiol
Infect. 25:35–47. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Witkin SS and Linhares IM: Why do
lactobacilli dominate the human vaginal microbiota? BJOG.
124:606–611. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Kyrgiou M, Mitra A and Moscicki AB: Does
the vaginal microbiota play a role in the development of cervical
cancer? Transl Res. 179:168–182. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ilhan ZE, Laniewski P, Thomas N, Roe DJ,
Chase DM and Herbst-Kralovetz MM: Deciphering the complex interplay
between microbiota, HPV, inflammation and cancer through
cervicovaginal metabolic profiling. EBioMedicine. 44:675–690. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Vornhagen J, Armistead B, Santana-Ufret V,
Gendrin C, Merillat S, Coleman M, Quach P, Boldenow E, Alishetti V,
Leonhard-Melief C, et al: Group B streptococcus exploits vaginal
epithelial exfoliation for ascending infection. J Clin Invest.
128:1985–1999. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Scillato M, Spitale A, Mongelli G,
Privitera GF, Mangano K, Cianci A, Stefani S and Santagati M:
Antimicrobial properties of Lactobacillus cell-free
supernatants against multidrug-resistant urogenital pathogens.
Microbiologyopen. 10:e11732021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Chen Y, Qiu X, Wang W, Li D, Wu A, Hong Z,
Di W and Qiu L: Human papillomavirus infection and cervical
intraepithelial neoplasia progression are associated with increased
vaginal microbiome diversity in a Chinese cohort. BMC Infect Dis.
20:6292020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Mitra A, MacIntyre DA, Marchesi JR, Lee
YS, Bennett PR and Kyrgiou M: The vaginal microbiota, human
papillomavirus infection and cervical intraepithelial neoplasia:
what do we know and where are we going next? Microbiome. 4:582016.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Onderdonk AB, Delaney ML and Fichorova RN:
The human microbiome during Bacterial Vaginosis. Clin Microbiol
Rev. 29:223–238. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Mitchell C and Marrazzo J: Bacterial
vaginosis and the cervicovaginal immune response. Am J Reprod
Immunol. 71:555–563. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Doerflinger SY, Throop AL and
Herbst-Kralovetz MM: Bacteria in the vaginal microbiome alter the
innate immune response and barrier properties of the human vaginal
epithelia in a species-specific manner. J Infect Dis.
209:1989–1999. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wang Z, Xiao R, Huang J, Qin X, Hu D, Guo
E, Liu C, Lu F, You L, Sun C and Chen G: The diversity of vaginal
microbiota predicts neoadjuvant chemotherapy responsiveness in
locally advanced cervical cancer. Microb Ecol. 84:302–313. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Klatt NR, Cheu R, Birse K, Zevin AS,
Perner M, Noël-Romas L, Grobler A, Westmacott G, Xie IY, Butler J,
et al: Vaginal bacteria modify HIV tenofovir microbicide efficacy
in African women. Science. 356:938–945. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wang KD, Xu DJ, Wang BY, Yan DH, Lv Z and
Su JR: Inhibitory effect of vaginal Lactobacillus
supernatants on cervical cancer cells. Probiotics Antimicrob
Proteins. 10:236–242. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Motevaseli E, Shirzad M, Akrami SM,
Mousavi AS, Mirsalehian A and Modarressi MH: Normal and tumour
cervical cells respond differently to vaginal lactobacilli,
independent of pH and lactate. J Med Microbiol. 62((Pt 7)):
1065–1072. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Sungur T, Aslim B, Karaaslan C and Aktas
B: Impact of Exopolysaccharides (EPSs) of Lactobacillus
gasseri strains isolated from human vagina on cervical tumor
cells (HeLa). Anaerobe. 47:137–144. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Palma E, Recine N, Domenici L, Giorgini M,
Pierangeli A and Panici PB: Long-term Lactobacillus
rhamnosus BMX 54 application to restore a balanced vaginal
ecosystem: A promising solution against HPV-infection. BMC Infect
Dis. 18:132018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Gosmann C, Anahtar MN, Handley SA,
Farcasanu M, Abu-Ali G, Bowman BA, Padavattan N, Desai C, Droit L,
Moodley A, et al: Lactobacillus-Deficient cervicovaginal
bacterial communities are associated with increased HIV Acquisition
in Young South African Women. Immunity. 46:29–37. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Kalia N, Singh J and Kaur M: Microbiota in
vaginal health and pathogenesis of recurrent vulvovaginal
infections: A critical review. Ann Clin Microbiol Antimicrob.
19:52020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Borgogna JC, Shardell MD, Santori EK,
Nelson TM, Rath JM, Glover ED, Ravel J, Gravitt PE, Yeoman CJ and
Brotman RM: The vaginal metabolome and microbiota of cervical
HPV-positive and HPV-negative women: A cross-sectional analysis.
BJOG. 127:182–192. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wei ZT, Chen HL, Wang CF, Yang GL, Han SM
and Zhang SL: Depiction of vaginal microbiota in women with
high-risk human papillomavirus infection. Front Public Health.
8:5872982021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Uttley L, Whiteman BL, Woods HB, Harnan S,
Philips ST and Cree IA; Early Cancer Detection Consortium, :
Building the evidence base of blood-based biomarkers for early
detection of cancer: A rapid systematic mapping review.
EBioMedicine. 10:164–173. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Papageorgis P, Ozturk S, Lambert AW,
Neophytou CM, Tzatsos A, Wong CK, Thiagalingam S and Constantinou
AI: Targeting IL13Ralpha2 activates STAT6-TP63 pathway to suppress
breast cancer lung metastasis. Breast Cancer Res. 17:982015.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Fang L, Lu W, Choi HH, Yeung SC, Tung JY,
Hsiao CD, Fuentes-Mattei E, Menter D, Chen C, Wang L, et al:
ERK2-Dependent phosphorylation of CSN6 is critical in colorectal
cancer development. Cancer Cell. 28:183–197. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Laniewski P, Cui H, Roe DJ, Barnes D,
Goulder A, Monk BJ, Greenspan DL, Chase DM and Herbst-Kralovetz MM:
Features of the cervicovaginal microenvironment drive cancer
biomarker signatures in patients across cervical carcinogenesis.
Sci Rep. 9:73332019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
De Seta F, Campisciano G, Zanotta N, Ricci
G and Comar M: The vaginal community state types microbiome-immune
network as key factor for bacterial vaginosis and aerobic
vaginitis. Front Microbiol. 10:24512019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Recine N, Palma E, Domenici L, Giorgini M,
Imperiale L, Sassu C, Musella A, Marchetti C, Muzii L and Benedetti
Panici P: Restoring vaginal microbiota: Biological control of
bacterial vaginosis. A prospective case-control study using
Lactobacillus rhamnosus BMX 54 as adjuvant treatment against
bacterial vaginosis. Arch Gynecol Obstet. 293:101–107. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
De Alberti D, Russo R, Terruzzi F, Nobile
V and Ouwehand AC: Lactobacilli vaginal colonisation after oral
consumption of Respecta((R)) complex: A randomised controlled pilot
study. Arch Gynecol Obstet. 292:861–867. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
de Vrese M, Laue C, Papazova E, Petricevic
L and Schrezenmeir J: Impact of oral administration of four
Lactobacillus strains on Nugent score-systematic review and
meta-analysis. Benef Microbes. 10:483–496. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lev-Sagie A, Goldman-Wohl D, Cohen Y,
Dori-Bachash M, Leshem A, Mor U, Strahilevitz J, Moses AE, Shapiro
H, Yagel S and Elinav E: Vaginal microbiome transplantation in
women with intractable bacterial vaginosis. Nat Med. 25:1500–1504.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Molijn A, Jenkins D, Chen W, Zhang X,
Pirog E, Enqi W, Liu B, Schmidt J, Cui J, Qiao Y, et al: The
complex relationship between human papillomavirus and cervical
adenocarcinoma. Int J Cancer. 138:409–416. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ho GY, Bierman R, Beardsley L, Chang CJ
and Burk RD: Natural history of cervicovaginal papillomavirus
infection in young women. N Engl J Med. 338:423–428. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Holly EA: Cervical intraepithelial
neoplasia, cervical cancer, and HPV. Annu Rev Public Health.
17:69–84. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Norenhag J, Du J, Olovsson M, Verstraelen
H, Engstrand L and Brusselaers N: The vaginal microbiota, human
papillomavirus and cervical dysplasia: A systematic review and
network meta-analysis. BJOG. 127:171–180. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lee JE, Lee S, Lee H, Song YM, Lee K, Han
MJ, Sung J and Ko G: Association of the vaginal microbiota with
human papillomavirus infection in a Korean twin cohort. PLoS One.
8:e635142013. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Yang Q, Wang Y, Wei X, Zhu J, Wang X, Xie
X and Lu W: The alterations of vaginal microbiome in HPV16
infection as identified by shotgun metagenomic sequencing. Front
Cell Infect Microbiol. 10:2862020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhang Z, Li T, Zhang D, Zong X, Bai H, Bi
H and Liu Z: Distinction between vaginal and cervical microbiota in
high-risk human papilloma virus-infected women in China. BMC
Microbiol. 21:902021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Egawa N and Doorbar J: The low-risk
papillomaviruses. Virus Res. 231:119–127. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Vanska S, Luostarinen T, Lagheden C,
Eklund C, Kleppe SN, Andrae B, Sparén P, Sundström K, Lehtinen M
and Dillner J: Differing age-specific cervical cancer incidence
between different types of human papillomavirus: Implications for
predicting the impact of elimination programs. Am J Epidemiol.
190:506–514. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Huang X, Li C, Li F, Zhao J, Wan X and
Wang K: Cervicovaginal microbiota composition correlates with the
acquisition of high-risk human papillomavirus types. Int J Cancer.
143:621–634. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Brotman RM, Shardell MD, Gajer P, Tracy
JK, Zenilman JM, Ravel J and Gravitt PE: Interplay between the
temporal dynamics of the vaginal microbiota and human
papillomavirus detection. J Infect Dis. 210:1723–1733. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Di Paola M, Sani C, Clemente AM, Iossa A,
Perissi E, Castronovo G, Tanturli M, Rivero D, Cozzolino F,
Cavalieri D, et al: Characterization of cervico-vaginal microbiota
in women developing persistent high-risk Human Papillomavirus
infection. Sci Rep. 7:102002017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Mei L, Wang T, Chen Y, Wei D, Zhang Y, Cui
T, Meng J, Zhang X, Liu Y, Ding L and Niu X: Dysbiosis of vaginal
microbiota associated with persistent high-risk human papilloma
virus infection. J Transl Med. 20:122022. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Lv P, Zhao F, Xu X, Xu J, Wang Q and Zhao
Z: Correlation between common lower genital tract microbes and
high-risk human papillomavirus infection. Can J Infect Dis Med
Microbiol. 2019:96781042019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Torcia MG: Interplay among vaginal
microbiome, immune response and sexually transmitted viral
infections. Int J Mol Sci. 20:2262019. View Article : Google Scholar
|
|
64
|
Mitra A, MacIntyre DA, Lee YS, Smith A,
Marchesi JR, Lehne B, Bhatia R, Lyons D, Paraskevaidis E, Li JV, et
al: Cervical intraepithelial neoplasia disease progression is
associated with increased vaginal microbiome diversity. Sci Rep.
5:168652015. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Mitra A, MacIntyre DA, Ntritsos G, Smith
A, Tsilidis KK, Marchesi JR, Bennett PR, Moscicki AB and Kyrgiou M:
The vaginal microbiota associates with the regression of untreated
cervical intraepithelial neoplasia 2 lesions. Nat Commun.
11:19992020. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Tango CN, Seo SS, Kwon M, Lee DO, Chang HK
and Kim MK: Taxonomic and functional differences in cervical
microbiome associated with cervical cancer development. Sci Rep.
10:97202020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wu S, Ding X, Kong Y, Acharya S, Wu H,
Huang C, Liang Y, Nong X and Chen H: The feature of cervical
microbiota associated with the progression of cervical cancer among
reproductive females. Gynecol Oncol. 163:348–357. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Łaniewski P, Barnes D, Goulder A, Cui H,
Roe DJ, Chase DM and Herbst-Kralovetz MM: Linking cervicovaginal
immune signatures, HPV and microbiota composition in cervical
carcinogenesis in non-Hispanic and Hispanic women. Sci Rep.
8:75932018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Mitra A, MacIntyre DA, Paraskevaidi M,
Moscicki AB, Mahajan V, Smith A, Lee YS, Lyons D, Paraskevaidis E,
Marchesi JR, et al: The vaginal microbiota and innate immunity
after local excisional treatment for cervical intraepithelial
neoplasia. Genome Med. 13:1762021. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhang H, Lu J, Lu Y, Cai Q, Liu H and Xu
C: Cervical microbiome is altered in cervical intraepithelial
neoplasia after loop electrosurgical excision procedure in China.
Sci Rep. 8:49232018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Parkin DM, Bray F, Ferlay J and Pisani P:
Global Cancer Statistics, 2002. CA Cancer J Clin. 55:74–108. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Audirac-Chalifour A, Torres-Poveda K,
Bahena-Roman M, Tellez-Sosa J, Martinez-Barnetche J,
Cortina-Ceballos B, López-Estrada G, Delgado-Romero K,
Burguete-García AI, Cantú D, et al: Cervical microbiome and
cytokine profile at various stages of cervical cancer: A pilot
study. PLoS One. 11:e01532742016. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Kang GU, Jung DR, Lee YH, Jeon SY, Han HS,
Chong GO and Shin JH: Potential association between vaginal
microbiota and cervical carcinogenesis in Korean Women: A cohort
study. Microorganisms. 9:2942021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Carlson KJ, Skates SJ and Singer DE:
Screening for ovarian cancer. Ann Intern Med. 121:124–132. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Coburn SB, Bray F, Sherman ME and Trabert
B: International patterns and trends in ovarian cancer incidence,
overall and by histologic subtype. Int J Cancer. 140:2451–2460.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Nené NR, Reisel D, Leimbach A, Franchi D,
Jones A, Evans I, Knapp S, Ryan A, Ghazali S, Timms JF, et al:
Association between the cervicovaginal microbiome, BRCA1 mutation
status, and risk of ovarian cancer: A case-control study. Lancet
Oncol. 20:1171–1182. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Morikawa A, Kawabata A, Shirahige K,
Akiyama T, Okamoto A and Sutani T: Altered cervicovaginal
microbiota in premenopausal ovarian cancer patients. Gene.
811:1460832022. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Ely LK and Truong M: The role of
opportunistic bilateral salpingectomy vs tubal occlusion or
ligation for ovarian cancer prophylaxis. J Minim Invasive Gynecol.
24:371–378. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Cibula D, Widschwendter M, Majek O and
Dusek L: Tubal ligation and the risk of ovarian cancer: Review and
meta-analysis. Hum Reprod Update. 17:55–67. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Yoon SH, Kim SN, Shim SH, Kang SB and Lee
SJ: Bilateral salpingectomy can reduce the risk of ovarian cancer
in the general population: A meta-analysis. Eur J Cancer. 55:38–46.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Jacobson D, Moore K, Gunderson C, Rowland
M, Austin R, Honap TP, Xu J and Warinner C: Shifts in gut and
vaginal microbiomes are associated with cancer recurrence time in
women with ovarian cancer. PeerJ. 9:e115742021. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wong-Rolle A, Wei HK, Zhao C and Jin C:
Unexpected guests in the tumor microenvironment: Microbiome in
cancer. Protein Cell. 12:426–435. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Amant F, Moerman P, Neven P, Timmerman D,
Van Limbergen E and Vergote I: Endometrial cancer. Lancet Oncol.
366:491–505. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Kim S, Seo H, Rahim MA, Lee S, Kim YS and
Song HY: Changes in the microbiome of vaginal fluid after menopause
in Korean Women. J Microbiol Biotechnol. 31:1490–1500. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Shardell M, Gravitt PE, Burke AE, Ravel J
and Brotman RM: Association of vaginal microbiota with signs and
symptoms of the genitourinary syndrome of menopause across
reproductive stages. J Gerontol A Biol Sci Med Sci. 76:1542–1550.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Brotman RM, Shardell MD, Gajer P, Fadrosh
D, Chang K, Silver MI, Viscidi RP, Burke AE, Ravel J and Gravitt
PE: Association between the vaginal microbiota, menopause status,
and signs of vulvovaginal atrophy. Menopause. 21:450–458. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Suarez SS and Pacey AA: Sperm transport in
the female reproductive tract. Hum Reprod Update. 12:23–37. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Hansen LK, Becher N, Bastholm S, Glavind
J, Ramsing M, Kim CJ, Romero R, Jensen JS and Uldbjerg N: The
cervical mucus plug inhibits, but does not block, the passage of
ascending bacteria from the vagina during pregnancy. Acta Obstet
Gynecol Scand. 93:102–108. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Zervomanolakis I, Ott HW, Hadziomerovic D,
Mattle V, Seeber BE, Virgolini I, Heute D, Kissler S, Leyendecker G
and Wildt L: Physiology of upward transport in the human female
genital tract. Ann N Y Acad Sci. 1101:1–20. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Garcia-Grau I, Simon C and Moreno I:
Uterine microbiome-low biomass and high expectationsdagger. Biol
Reprod. 101:1102–1114. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Mitchell CM, Haick A, Nkwopara E, Garcia
R, Rendi M, Agnew K, Fredricks DN and Eschenbach D: Colonization of
the upper genital tract by vaginal bacterial species in nonpregnant
women. Am J Obstet Gynecol. 212:611e1–9. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Chen C, Song X, Wei W, Zhong H, Dai J, Lan
Z, Li F, Yu X, Feng Q, Wang Z, et al: The microbiota continuum
along the female reproductive tract and its relation to
uterine-related diseases. Nat Commun. 8:8752017. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Furukawa T, Jisaki F, Sakamuro D, Takegami
T and Murayama T: Detection of human cytomegalovirus genome in
uterus tissue. Arch Viro. 135:265–277. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Tobiasch E, Rabreau M, Geletneky K,
Laruë-Charlus S, Severin F, Becker N and Schlehofer JR: Detection
of adeno-associated virus DNA in human genital tissue and in
material from spontaneous abortion. J Med Viro. 44:215–222. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Komaroff AL, Rizzo R and Ecker JL: Human
Herpesviruses 6A and 6B in reproductive diseases. Front Immunol.
12:6489452021. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Callan T, Woodcock S and Huston WM:
Ascension of Chlamydia is moderated by uterine peristalsis and the
neutrophil response to infection. PLoS Comput Biol.
17:e10093652021. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Paavonen J, Aine R, Teisala K, Heinonen
PK, Punnonen R, Lehtinen M, Miettinen A and Grönroos P: Chlamydial
endometritis. J Clin Pathol. 38:726–732. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Moreno I, Cicinelli E, Garcia-Grau I,
Gonzalez-Monfort M, Bau D, Vilella F, De Ziegler D, Resta L,
Valbuena D and Simon C: The diagnosis of chronic endometritis in
infertile asymptomatic women: A comparative study of histology,
microbial cultures, hysteroscopy, and molecular microbiology. Am J
Obstet Gynecol. 218:602e1–e16. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Smith JR, Wells C, Jolly M, Shah P, Savage
M, Reginald P and Kitchen VS: Is endometrial infection with Candida
albicans a cause of recurrent vaginal thrush? Genitourin Med.
69:295–296. 1993.PubMed/NCBI
|
|
100
|
Walther-António MR, Chen J, Multinu F,
Hokenstad A, Distad TJ, Cheek EH, Keeney GL, Creedon DJ, Nelson H,
Mariani A and Chia N: Potential contribution of the uterine
microbiome in the development of endometrial cancer. Genome Med.
8:1222016. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Walsh DM, Hokenstad AN, Chen J, Sung J,
Jenkins GD, Chia N, Nelson H, Mariani A and Walther-António MRS:
Postmenopause as a key factor in the composition of the endometrial
cancer microbiome (ECbiome). Sci Rep. 9:192132019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Milde-Langosch K, Becker G and Löning T:
Human papillomavirus and c-myc/c-erbB2 in uterine and vulvar
lesions. Virchows Arch A Pathol Anat Histopathol. 419:479–485.
1991. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Yang HJ, Liu VW, Tsang PC, Yip AM, Ng TY,
Cheung AN and Ngan HY: Comparison of human papillomavirus DNA
levels in gynecological cancers: Implication for cancer
development. Tumour Biol. 24:310–316. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Olesen TB, Svahn MF, Faber MT,
Duun-Henriksen AK, Junge J, Norrild B and Kjaer SK: Prevalence of
human papillomavirus in endometrial cancer: A systematic review and
meta-analysis. Gynecol Oncol. 134:206–215. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Abu-Lubad MA, Jarajreh DA, Helaly GF,
Alzoubi HM, Haddadin WJ, Dabobash MD, Albataineh EM, Aqel AA and
Alnawaiseh NA: Human papillomavirus as an independent risk factor
of invasive cervical and endometrial carcinomas in Jordan. J Infect
Public Health. 13:613–618. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Jiang XF, Tang QL, Zou Y, Xu L, Zeng H,
Chi C, Jiang JR and Zhang BZ: Does HBV infection increase risk of
endometrial carcinoma? Asian Pac J Cancer Prev. 15:713–716. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Benharroch D, Klinkovich I, Piura B,
Shaco-Levy R and Gopas J: Evidence of measles virus antigens and
RNA in endometrial cancer. Eur J Obstet Gynecol Reprod Biol.
147:206–209. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Tsementzi D, Pena-Gonzalez A, Bai J, Hu
YJ, Patel P, Shelton J, Dolan M, Arluck J, Khanna N, Conrad L, et
al: Comparison of vaginal microbiota in gynecologic cancer patients
pre- and post-radiation therapy and healthy women. Cancer Med.
9:3714–3724. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Nejman D, Livyatan I, Fuks G, Gavert N,
Zwang Y, Geller LT, Rotter-Maskowitz A, Weiser R, Mallel G, Gigi E,
et al: The human tumor microbiome is composed of tumor
type-specific intracellular bacteria. Science. 368:973–980. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Tzeng A, Sangwan N, Jia M, Liu CC, Keslar
KS, Downs-Kelly E, Fairchild RL, Al-Hilli Z, Grobmyer SR and Eng C:
Human breast microbiome correlates with prognostic features and
immunological signatures in breast cancer. Genome Med. 13:602021.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Ma J, Gnanasekar A, Lee A, Li WT, Haas M,
Wang-Rodriguez J, Chang EY, Rajasekaran M and Ongkeko WM: Influence
of intratumor microbiome on clinical outcome and immune processes
in prostate cancer. Cancers (Basel). 12:25242020. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Pushalkar S, Hundeyin M, Daley D,
Zambirinis CP, Kurz E, Mishra A, Mohan N, Aykut B, Usyk M, Torres
LE, et al: The pancreatic cancer microbiome promotes oncogenesis by
induction of innate and adaptive immune suppression. Cancer Discov.
8:403–416. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Gnanasekar A, Castaneda G, Iyangar A,
Magesh S, Perez D, Chakladar J, Li WT, Bouvet M, Chang EY and
Ongkeko WM: The intratumor microbiome predicts prognosis across
gender and subtypes in papillary thyroid carcinoma. Comput Struct
Biotechnol J. 19:1986–1997. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Kostic AD, Gevers D, Pedamallu CS, Michaud
M, Duke F, Earl AM, Ojesina AI, Jung J, Bass AJ, Tabernero J, et
al: Genomic analysis identifies association of Fusobacterium with
colorectal carcinoma. Genome Res. 22:292–298. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Del Castillo E, Meier R, Chung M, Koestler
DC, Chen T, Paster BJ, Charpentier KP, Kelsey KT, Izard J and
Michaud DS: The microbiomes of pancreatic and duodenum tissue
overlap and are highly subject specific but differ between
pancreatic cancer and noncancer subjects. Cancer Epidemiol
Biomarkers Prev. 28:370–383. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Banerjee S, Tian T, Wei Z, Shih N, Feldman
MD, Alwine JC, Coukos G and Robertson ES: The ovarian cancer
oncobiome. Oncotarget. 8:36225–36245. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Zhang PP, Zhou L, Cao JS, Li YP, Zeng Z,
Sun N, Shen L, Zhu HY, Ruan Y, Zha WT, et al: Possible epithelial
ovarian cancer association with HPV18 or HPV33 Infection. Asian Pac
J Cancer Prev. 17:2959–2964. 2016.PubMed/NCBI
|
|
118
|
Hassan ZK, Hafez MM, Kamel MM and Zekri
AR: Human papillomavirus genotypes and methylation of CADM1, PAX1,
MAL and ADCYAP1 genes in epithelial ovarian cancer patients. Asian
Pac J Cancer Prev. 18:169–176. 2017.PubMed/NCBI
|
|
119
|
Shanmughapriya S, Senthilkumar G,
Vinodhini K, Das BC, Vasanthi N and Natarajaseenivasan K: Viral and
bacterial aetiologies of epithelial ovarian cancer. Eur J Clin
Microbiol Infect Dis. 31:2311–2317. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Jonsson S, Oda H, Lundin E, Olsson J and
Idahl A: Chlamydia trachomatis, Chlamydial heat shock protein 60
and anti-chlamydial antibodies in women with epithelial ovarian
tumors. Transl Oncol. 11:546–551. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Idahl A, Lundin E, Elgh F, Jurstrand M,
Moller JK, Marklund I, Lindgren P and Ottander U: Chlamydia
trachomatis, Mycoplasma genitalium, Neisseria gonorrhoeae, human
papillomavirus, and polyomavirus are not detectable in human tissue
with epithelial ovarian cancer, borderline tumor, or benign
conditions. Am J Obstet Gynecol. 202:71e1–6. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Zhou B, Sun C, Huang J, Xia M, Guo E, Li
N, Lu H, Shan W, Wu Y, Li Y, et al: The biodiversity composition of
microbiome in ovarian carcinoma patients. Sci Rep. 9:16912019.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Wang Q, Zhao L, Han L, Fu G, Tuo X, Ma S,
Li Q, Wang Y, Liang D, Tang M, et al: The differential distribution
of bacteria between cancerous and noncancerous ovarian tissues in
situ. J Ovarian Res. 13:82020. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Brewster WR, Burkett WC, Ko EM, Bae-Jump
V, Nicole McCoy A and Keku TO: An evaluation of the microbiota of
the upper reproductive tract of women with and without epithelial
ovarian cancer. Gynecol Oncol Rep. 42:1010172022. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Moreno I, Codoñer FM, Vilella F, Valbuena
D, Martinez-Blanch JF, Jimenez-Almazán J, Alonso R, Alamá P, Remohí
J, Pellicer A, et al: Evidence that the endometrial microbiota has
an effect on implantation success or failure. Am J Obstet Gynecol.
216:684–703. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Kyono K, Hashimoto T, Nagai Y and Sakuraba
Y: Analysis of endometrial microbiota by 16S ribosomal RNA gene
sequencing among infertile patients: a single-center pilot study.
Reprod Med Biol. 17:297–306. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Wang L, Yang J, Su H, Shi L, Chen B and
Zhang S: Endometrial microbiota from endometrial cancer and paired
pericancer tissues in postmenopausal women: Differences and
clinical relevance. Menopause. 29:1168–1175. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Lu W, He F, Lin Z, Liu S, Tang L, Huang Y
and Hu Z: Dysbiosis of the endometrial microbiota and its
association with inflammatory cytokines in endometrial cancer. Int
J Cancer. 148:1708–1716. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Caselli E, Soffritti I, D'Accolti M, Piva
I, Greco P and Bonaccorsi G: Atopobium vaginae and porphyromonas
somerae induce proinflammatory cytokines expression in endometrial
cells: A possible implication for endometrial cancer? Cancer Manag
Res. 11:8571–8575. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Deligdisch L, Marin T, Lee AT, Etkind P,
Holland JF, Melana S and Pogo BG: Human mammary tumor virus (HMTV)
in endometrial carcinoma. Int J Gynecol Cancer. 23:1423–1428. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Li C, Gu Y, He Q, Huang J, Song Y, Wan X
and Li Y: Integrated analysis of microbiome and transcriptome data
reveals the interplay between commensal bacteria and fibrin
degradation in endometrial cancer. Front Cell Infect Microbiol.
11:7485582021. View Article : Google Scholar : PubMed/NCBI
|