|
1
|
Xiao X, Wang Y, Zou Z, Yang Y, Wang X, Xin
X, Tu S and Li Y: Combination strategies to optimize the efficacy
of chimeric antigen receptor T cell therapy in haematological
malignancies. Front Immunol. 13:9542352022. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Chen W, Yuan Y and Jiang X: Antibody and
antibody fragments for cancer immunotherapy. J Control Release.
328:395–406. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Long AH, Haso WM, Shern JF, Wanhainen KM,
Murgai M, Ingaramo M, Smith JP, Walker AJ, Kohler ME, Venkateshwara
VR, et al: 4-1BB costimulation ameliorates T cell exhaustion
induced by tonic signaling of chimeric antigen receptors. Nat Med.
21:581–590. 2015. View
Article : Google Scholar : PubMed/NCBI
|
|
4
|
Breuning J, Philip B and Brown MH:
Addition of the C-terminus of CD6 to a chimeric antigen receptor
enhances cytotoxicity and does not compromise expression.
Immunology. 156:130–135. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Haddadi MH, Hajizadeh-Saffar E,
Khosravi-Maharlooei M, Basiri M, Negahdari B and Baharvand H:
Autoimmunity as a target for chimeric immune receptor therapy: A
new vision to therapeutic potential. Blood Rev. 41:1006452020.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Jarosz-Biej M, Smolarczyk R, Cichoń T and
Kułach N: Tumor Microenvironment as A ‘Game Changer’ in cancer
radiotherapy. Int J Mol Sci. 20:32122019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Mansouri V, Yazdanpanah N and Rezaei N:
The immunologic aspects of cytokine release syndrome and graft
versus host disease following CAR T cell therapy. Int Rev Immunol.
41:649–668. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Bashiri Dezfouli A, Yazdi M, Pockley AG,
Khosravi M, Kobold S, Wagner E and Multhoff G: NK cells armed with
chimeric antigen receptors (CAR): Roadblocks to successful
development. Cells. 10:33902021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Füchsl F and Krackhardt AM: Paving the way
to solid tumors: Challenges and strategies for adoptively
transferred transgenic T cells in the tumor microenvironment.
Cancers (Basel). 14:41922022. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Brandjes BD and Davila ML: Adding chimeric
antigen receptor-induced killer cells to the medical oncology
shelf. J Clin Invest. 129:5077–5078. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Fujiwara K, Kitaura M, Tsunei A, Kusabuka
H, Ogaki E and Okada N: Structure of the signal transduction domain
in second-generation CAR regulates the input efficiency of CAR
signals. Int J Mol Sci. 22:24762021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Krug C, Birkholz K, Paulus A, Schwenkert
M, Schmidt P, Hoffmann N, Fey G, Abken H, Schuler G,
Schuler-Thurner B, et al: Stability and activity of MCSP-specific
chimeric antigen receptors (CARs) depend on the scFv
antigen-binding domain and the protein backbone. Cancer Immunol
Immunother. 64:1623–1635. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Yadollahvandmiandoab R, Jalalizadeh M,
Buosi K, Garcia-Perdomo HA and Reis LO: Immunogenic cell death role
in urothelial cancer therapy. Curr Oncol. 29:6700–6713. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Sterner RC and Sterner RM: CAR-T cell
therapy: Current limitations and potential strategies. Blood Cancer
J. 11:692021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wang L: Clinical determinants of relapse
following CAR-T therapy for hematologic malignancies: Coupling
active strategies to overcome therapeutic limitations. Curr Res
Transl Med. 70:1033202022. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Haslauer T, Greil R, Zaborsky N and
Geisberger R: CAR T-cell therapy in hematological malignancies. Int
J Mol Sci. 22:89962021. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zhang X, Zhu L, Zhang H, Chen S and Xiao
Y: CAR-T cell therapy in hematological malignancies: Current
opportunities and challenges. Front Immunol. 13:9271532022.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Qin VM, Haynes NM, D'Souza C, Neeson PJ
and Zhu JJ: CAR-T plus radiotherapy: A promising combination for
immunosuppressive tumors. Front Immunol. 12:8138322021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kulczycka M, Derlatka K, Tasior J, Lejman
M and Zawitkowska J: CAR T-Cell therapy in children with solid
tumors. J Clin Med. 2:23262023. View Article : Google Scholar
|
|
20
|
Qu J, Mei Q, Chen L and Zhou J: Chimeric
antigen receptor (CAR)-T-cell therapy in non-small-cell lung cancer
(NSCLC): Current status and future perspectives. Cancer Immunol
Immunother. 70:619–631. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Sun Y, Li F, Sonnemann H, Jackson KR,
Talukder AH, Katailiha AS and Lizee G: Evolution of CD8+
T cell receptor (TCR) engineered therapies for the treatment of
cancer. Cells. 10:23792021. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Gu R, Liu F, Zou D, Xu Y, Lu Y, Liu B, Liu
W, Chen X, Liu K, Guo Y, et al: Efficacy and safety of CD19 CAR T
constructed with a new anti-CD19 chimeric antigen receptor in
relapsed or refractory acute lymphoblastic leukemia. J Hematol
Oncol. 13:1222020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Aldoss I and Forman SJ: How I treat adults
with advanced acute lymphoblastic leukemia eligible for
CD19-targeted immunotherapy. Blood. 135:804–813. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Chen YH, Zhang X, Cheng YF, Chen H, Mo XD,
Yan CH, Chen Y, Han W, Sun YQ, Wang Y, et al: Long-term follow-up
of CD19 chimeric antigen receptor T-cell therapy for
relapsed/refractory acute lymphoblastic leukemia after allogeneic
hematopoietic stem cell transplantation. Cytotherapy. 22:755–761.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Xie D, Jin X, Sun R, Zhang M, Wang J,
Xiong X, Zhang X and Zhao M: Relapse mechanism and treatment
strategy after chimeric antigen receptor T-cell therapy in treating
B-cell hematological malignancies. Technol Cancer Res Treat.
21:153303382211184132022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Hamieh M, Dobrin A, Cabriolu A, van der
Stegen SJC, Giavridis T, Mansilla-Soto J, Eyquem J, Zhao Z,
Whitlock BM, Miele MM, et al: CAR T cell trogocytosis and
cooperative killing regulate tumour antigen escape. Nature.
568:112–116. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ledererova A, Dostalova L, Kozlova V,
Peschelova H, Ladungova A, Culen M, Loja T, Verner J, Pospisilova
S, Smida M and Mancikova V: Hypermethylation of CD19 promoter
enables antigen-negative escape to CART-19 in vivo and in vitro. J
Immunother Cancer. 9:e0023522021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Salter AI, Pont MJ and Riddell SR:
Chimeric antigen receptor-modified T cells: CD19 and the road
beyond. Blood. 131:2621–2629. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Sun C, Dotti G and Savoldo B: Utilizing
cell-based therapeutics to overcome immune evasion in hematologic
malignancies. Blood. 127:3350–3359. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Vander Mause ER, Atanackovic D, Lim CS and
Luetkens T: Roadmap to affinity-tuned antibodies for enhanced
chimeric antigen receptor T cell function and selectivity. Trends
Biotechnol. 40:875–890. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Weiss T, Weller M, Guckenberger M, Sentman
CL and Roth P: NKG2D-based CAR T cells and radiotherapy exert
synergistic efficacy in glioblastoma. Cancer Res. 78:1031–1043.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Luan C, Zhou J, Wang H, Ma X, Long Z,
Cheng X, Chen X, Huang Z, Zhang D, Xia R and Ge J: Case report:
Local cytokine release syndrome in an acute lymphoblastic leukemia
patient after treatment with chimeric antigen receptor T-cell
therapy: A possible model, literature review and perspective. Front
Immunol. 12:7071912021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Dos Santos DMC, Rejeski K, Winkelmann M,
Liu L, Trinkner P, Günther S, Bücklein VL, Blumenberg V, Schmidt C,
Kunz WG, et al: Increased visceral fat distribution and body
composition impact cytokine release syndrome onset and severity
after CD19 chimeric antigen receptor T-cell therapy in advanced
B-cell malignancies. Haematologica. 107:2096–2107. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Yan Z, Zhang H, Cao J, Zhang C, Liu H,
Huang H, Cheng H, Qiao J, Wang Y, Wang Y, et al: Characteristics
and risk factors of cytokine release syndrome in chimeric antigen
receptor T cell treatment. Front Immunol. 12:6113662021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Giavridis T, van der Stegen SJC, Eyquem J,
Hamieh M, Piersigilli A and Sadelain M: CAR T cell-induced cytokine
release syndrome is mediated by macrophages and abated by IL-1
blockade. Nat Med. 24:731–738. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wright CM, LaRiviere MJ, Baron JA, Uche C,
Xiao Y, Arscott WT, Anstadt EJ, Barsky AR, Miller D, LaRose MI, et
al: Bridging radiation therapy before commercial chimeric antigen
receptor T-cell therapy for relapsed or refractory aggressive
B-cell lymphoma. Int J Radiat Oncol Biol Phys. 108:178–188. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Dong R, Jiang S, Chen Y, Ma Y, Sun L, Xing
C, Zhang S and Yu K: Prognostic significance of cytokine release
syndrome in B cell hematological malignancies patients after
chimeric antigen receptor T cell therapy. J Interferon Cytokine
Res. 41:469–476. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Strati P, Ahmed S, Kebriaei P, Nastoupil
LJ, Claussen CM, Watson G, Horowitz SB, Brown ART, Do B, Rodriguez
MA, et al: Clinical efficacy of anakinra to mitigate CAR T-cell
therapy-associated toxicity in large B-cell lymphoma. Blood Adv.
4:3123–3127. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Norelli M, Camisa B, Barbiera G, Falcone
L, Purevdorj A, Genua M, Sanvito F, Ponzoni M, Doglioni C,
Cristofori P, et al: Monocyte-derived IL-1 and IL-6 are
differentially required for cytokine-release syndrome and
neurotoxicity due to CAR T cells. Nat Med. 24:739–748. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Li H and Zhao Y: Increasing the safety and
efficacy of chimeric antigen receptor T cell therapy. Protein Cell.
8:573–589. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Sagnella SM, White AL, Yeo D, Saxena P,
van Zandwijk N and Rasko JEJ: Locoregional delivery of CAR-T cells
in the clinic. Pharmacol Res. 182:1063292022. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Duan Y, Chen R, Huang Y, Meng X, Chen J,
Liao C, Liao C, Tang Y, Zhou C, Gao X and Sun J: Tuning the
ignition of CAR: Optimizing the affinity of scFv to improve CAR-T
therapy. Cell Mol Life Sci. 79:142021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kosti P, Opzoomer JW, Larios-Martinez KI,
Henley-Smith R, Scudamore CL, Okesola M, Taher MYM, Davies DM,
Muliaditan T, Larcombe-Young D, et al: Hypoxia-sensing CAR T cells
provide safety and efficacy in treating solid tumors. Cell Rep Med.
2:1002272021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Liu G, Rui W, Zhao X and Lin X: Enhancing
CAR-T cell efficacy in solid tumors by targeting the tumor
microenvironment. Cell Mol Immunol. 18:1085–1095. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Rodriguez-Garcia A, Palazon A,
Noguera-Ortega E, Powell DJ and Guedan S: CAR-T cells Hit the tumor
microenvironment: Strategies to overcome tumor escape. Front
Immunol. 11:11092020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Majidpoor J and Mortezaee K: Angiogenesis
as a hallmark of solid tumors-clinical perspectives. Cell Oncol
(Dordr). 44:715–737. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
He H, Liao Q, Zhao C, Zhu C, Feng M, Liu
Z, Jiang L, Zhang L, Ding X, Yuan M, et al: Conditioned CAR-T cells
by hypoxia-inducible transcription amplification (HiTA) system
significantly enhances systemic safety and retains antitumor
efficacy. J Immunother Cancer. 9:e0027552021. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ando Y, Siegler EL, Ta HP, Cinay GE, Zhou
H, Gorrell KA, Au H, Jarvis BM, Wang P and Shen K: Evaluating CAR-T
cell therapy in a Hypoxic 3D tumor model. Adv Healthc Mater.
8:e19000012019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Karin N: The multiple faces of CXCL12
(SDF-1alpha) in the regulation of immunity during health and
disease. J Leukoc Biol. 88:463–473. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Park JA, Wang L and Cheung NV: Modulating
tumor infiltrating myeloid cells to enhance bispecific
antibody-driven T cell infiltration and anti-tumor response. J
Hematol Oncol. 14:1422021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Jiang A, Qin Y and Springer TA: Loss of
LRRC33-dependent TGFβ1 activation enhances antitumor immunity and
checkpoint blockade therapy. Cancer Immunol Res. 10:453–467. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Siewe N and Friedman A: TGF-β inhibition
can overcome cancer primary resistance to PD-1 blockade: A
mathematical model. PLoS One. 16:e02526202021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Jorquera-Cordero C, Lara P, Cruz LJ,
Schomann T, van Hofslot A, de Carvalho TG, Guedes PMDM, Creemers L,
Koning RI, Chan AB and de Araujo Junior RF: Extracellular vesicles
from M1-polarized macrophages combined with hyaluronic acid and a
β-blocker potentiate Doxorubicin's antitumor activity by
downregulating tumor-associated macrophages in breast cancer.
Pharmaceutics. 14:10682022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kos K, Salvagno C, Wellenstein MD, Aslam
MA, Meijer DA, Hau CS, Vrijland K, Kaldenbach D, Raeven EAM,
Schmittnaegel M, et al: Tumor-associated macrophages promote
intratumoral conversion of conventional CD4+ T cells into
regulatory T cells via PD-1 signalling. Oncoimmunology.
11:20632252022. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Farhood B, Khodamoradi E,
Hoseini-Ghahfarokhi M, Motevaseli E, Mirtavoos-Mahyari H, Eleojo
Musa A, Leojo Musa A and Najafi M: TGF-β in radiotherapy:
Mechanisms of tumor resistance and normal tissues injury. Pharmacol
Res. 155:1047452020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Donlon NE, Power R, Hayes C, Reynolds JV
and Lysaght J: Radiotherapy, immunotherapy, and the tumour
microenvironment: Turning an immunosuppressive milieu into a
therapeutic opportunity. Cancer Lett. 502:84–96. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ashrafizadeh M, Farhood B, Eleojo Musa A,
Taeb S and Najafi M: Damage-associated molecular patterns in tumor
radiotherapy. Int Immunopharmacol. 86:1067612020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Mittal A, Nenwani M, Sarangi I, Achreja A,
Lawrence TS and Nagrath D: Radiotherapy-induced metabolic hallmarks
in the tumor microenvironment. Trends Cancer. 8:855–869. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Olivares-Urbano MA, Griñán-Lisón C,
Marchal JA and Núñez MI: CSC Radioresistance: A therapeutic
challenge to improve radiotherapy effectiveness in cancer. Cells.
9:16512020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Minn I, Rowe SP and Pomper MG: Enhancing
CAR T-cell therapy through cellular imaging and radiotherapy.
Lancet Oncol. 20:e443–e451. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Sim AJ, Jain MD, Figura NB, Chavez JC,
Shah BD, Khimani F, Lazaryan A, Krivenko G, Davila ML, Liu HD, et
al: Radiation therapy as a bridging strategy for CAR T cell therapy
with axicabtagene ciloleucel in diffuse large B-cell lymphoma. Int
J Radiat Oncol Biol Phys. 105:1012–1021. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Oertel M and Eich HT: Bridging before CAR
T-cell therapy-a new opportunity for radiotherapy? Strahlenther
Onkol. 197:1154–1156. 2021.(In German). View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Shi LZ and Bonner JA: Bridging
radiotherapy to immunotherapy: The IFN-JAK-STAT axis. Int J Mol
Sci. 22:122952021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Singh AK and McGuirk JP: CAR T cells:
Continuation in a revolution of immunotherapy. Lancet Oncol.
21:e168–e178. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Rodriguez-Ruiz ME, Garasa S, Rodriguez I,
Solorzano JL, Barbes B, Yanguas A, Teijeira A, Etxeberria I, Aristu
JJ, Halin C, et al: Intercellular adhesion Molecule-1 and vascular
cell adhesion molecule are induced by ionizing radiation on
lymphatic endothelium. Int J Radiat Oncol Biol Phys. 97:389–400.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Liu Z, Zhao Q, Zheng Z, Liu S, Meng L,
Dong L and Jiang X: Vascular normalization in immunotherapy: A
promising mechanisms combined with radiotherapy. Biomed
Pharmacother. 139:1116072021. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hauth F, Ho AY, Ferrone S and Duda DG:
Radiotherapy to enhance chimeric antigen receptor T-cell
therapeutic efficacy in solid tumors: A narrative review. JAMA
Oncol. 7:1051–1059. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Li L, Yue HC, Han YW, Liu W, Xiong LG and
Zhang JW: Relationship between the invasion of lymphocytes and
cytokines in the tumor microenvironment and the interval after
single brachytherapy hypofractionated radiotherapy and conventional
fractionation radiotherapy in non-small cell lung Cancer. BMC
Cancer. 20:8932020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Lan Y, Moustafa M, Knoll M, Xu C, Furkel
J, Lazorchak A, Yeung TL, Hasheminasab SM, Jenkins MH, Meister S,
et al: Simultaneous targeting of TGF-β/PD-L1 synergizes with
radiotherapy by reprogramming the tumor microenvironment to
overcome immune evasion. Cancer Cell. 39:1388–403.e10. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Prakash H, Klug F, Nadella V, Mazumdar V,
Schmitz-Winnenthal H and Umansky L: Low doses of gamma irradiation
potentially modifies immunosuppressive tumor microenvironment by
retuning tumor-associated macrophages: Lesson from insulinoma.
Carcinogenesis. 37:301–313. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Li CG, He MR, Wu FL, Li YJ and Sun AM: Akt
promotes irradiation-induced regulatory T-cell survival in
hepatocellular carcinoma. Am J Med Sci. 346:123–127. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ji D, Song C, Li Y, Xia J, Wu Y, Jia J,
Cui X, Yu S and Gu J: Combination of radiotherapy and suppression
of Tregs enhances abscopal antitumor effect and inhibits metastasis
in rectal cancer. J Immunother Cancer. 8:e0008262020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zammarchi F, Havenith K, Bertelli F,
Vijayakrishnan B, Chivers S and van Berkel PH: CD25-targeted
antibody-drug conjugate depletes regulatory T cells and eliminates
established syngeneic tumors via antitumor immunity. J Immunother
Cancer. 8:e0008602020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Sia J, Hagekyriakou J, Chindris I,
Albarakati H, Leong T, Schlenker R, Keam SP, Williams SG, Neeson
PJ, Johnstone RW and Haynes NM: Regulatory T cells shape the
differential impact of radiation dose-fractionation schedules on
host innate and adaptive antitumor immune defenses. Int J Radiat
Oncol Biol Phys. 111:502–514. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Huang Z, Dewanjee S, Chakraborty P, Jha
NK, Dey A, Gangopadhyay M, Chen XY, Wang J and Jha SK: CAR T cells:
Engineered immune cells to treat brain cancers and beyond. Mol
Cancer. 22:222023. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Laurent PA, Morel D, Meziani L, Depil S
and Deutsch E: Radiotherapy as a means to increase the efficacy of
T-cell therapy in solid tumors. Oncoimmunology. 12:21580132023.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Demaria S, Guha C, Schoenfeld J, Morris Z,
Monjazeb A, Sikora A, Crittenden M, Shiao S, Khleif S, Gupta S, et
al: Radiation dose and fraction in immunotherapy: One-size regimen
does not fit all settings, so how does one choose? J Immunother
Cancer. 9:e0020382021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Pocaterra A, Catucci M and Mondino A:
Adoptive T cell therapy of solid tumors: Time to team up with
immunogenic chemo/radiotherapy. Curr Opin Immunol. 74:53–59. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Ratnayake G, Reinwald S, Edwards J, Wong
N, Yu D, Ward R, Smith R, Haydon A, Au PM, van Zelm MC and Senthi
S: Blood T-cell profiling in metastatic melanoma patients as a
marker for response to immune checkpoint inhibitors combined with
radiotherapy. Radiother Oncol. 173:299–305. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
DeSelm C, Palomba ML, Yahalom J, Hamieh M,
Eyquem J, Rajasekhar VK and Sadelain M: Low-dose radiation
conditioning enables CAR T cells to mitigate antigen escape. Mol
Ther. 26:2542–2552. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Klug F, Prakash H, Huber PE, Seibel T,
Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L, et
al: Low-dose irradiation programs macrophage differentiation to an
iNOS+/M1 phenotype that orchestrates effective T cell
immunotherapy. Cancer Cell. 24:589–602. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Morris EC, Neelapu SS, Giavridis T and
Sadelain M: Cytokine release syndrome and associated neurotoxicity
in cancer immunotherapy. Nat Rev Immunol. 22:85–96. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Xia N, Haopeng P, Gong JU, Lu J, Chen Z,
Zheng Y, Wang Z, Sun YU, Yang Z, Hoffman RM and Liu F:
Robo1-specific CAR-NK immunotherapy enhances efficacy of 125I seed
brachytherapy in an orthotopic mouse model of human pancreatic
carcinoma. Anticancer Res. 39:5919–5925. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Kulzer L, Rubner Y, Deloch L, Allgäuer A,
Frey B, Fietkau R, Dörrie J, Schaft N and Gaipl US: Norm- and
hypo-fractionated radiotherapy is capable of activating human
dendritic cells. J Immunotoxicol. 11:328–336. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Marcus D, Lieverse RIY, Klein C, Abdollahi
A, Lambin P, Dubois LJ and Yaromina A: Charged particle and
conventional radiotherapy: Current implications as partner for
immunotherapy. Cancers (Basel). 13:14682021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Kadauke S, Myers RM, Li Y, Aplenc R,
Baniewicz D, Barrett DM, Barz Leahy A, Callahan C, Dolan JG,
Fitzgerald JC, et al: Risk-adapted preemptive tocilizumab to
prevent severe cytokine release syndrome after CTL019 for pediatric
B-cell acute lymphoblastic leukemia: A prospective clinical trial.
J Clin Oncol. 39:920–930. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wang Z, Chen C, Wang L, Jia Y and Qin Y:
Chimeric antigen receptor T-cell therapy for multiple myeloma.
Front Immunol. 13:10505222022. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Fang PQ, Gunther JR, Wu SY, Dabaja BS,
Nastoupil LJ, Ahmed S, Neelapu SS and Pinnix CC: Radiation and CAR
T-cell therapy in lymphoma: Future frontiers and potential
opportunities for synergy. Front Oncol. 11:6486552021. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Qu C, Ping N, Kang L, Liu H, Qin S, Wu Q,
Chen X, Zhou M, Xia F, Ye A, et al: Radiation priming chimeric
antigen receptor T-cell therapy in Relapsed/Refractory diffuse
large B-cell lymphoma with high tumor burden. J Immunother.
43:32–37. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Muroyama Y, Nirschl TR, Kochel CM,
Lopez-Bujanda Z, Theodros D, Mao W, Carrera-Haro MA, Ghasemzadeh A,
Marciscano AE, Velarde E, et al: Stereotactic radiotherapy
increases functionally suppressive regulatory T cells in the tumor
microenvironment. Cancer Immunol Res. 5:992–1004. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Guha P, Heatherton KR, O'Connell KP,
Alexander IS and Katz SC: Assessing the future of solid tumor
immunotherapy. Biomedicines. 10:6552022. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Huan T, Li H and Tang B: Radiotherapy plus
CAR-T cell therapy to date: A note for cautions optimism? Front
Immunol. 13:10335122022. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
DeSelm C: The current and future role of
radiation therapy in the era of CAR T-cell salvage. Br J Radiol.
94:202100982021. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Chitadze G and Kabelitz D: Immune
surveillance in glioblastoma: Role of the NKG2D system and novel
cell-based therapeutic approaches. Scand J Immunol. 96:e132012022.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Rana PS, Murphy EV, Kort J and Driscoll
JJ: Road testing new CAR design strategies in multiple myeloma.
Front Immunol. 13:9571572022. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Ashrafizadeh M, Farhood B, Eleojo Musa A,
Taeb S, Rezaeyan A and Najafi M: Abscopal effect in
radioimmunotherapy. Int Immunopharmacol. 85:1066632020. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Mortezaee K: Enriched cancer stem cells,
dense stroma, and cold immunity: Interrelated events in pancreatic
cancer. J Biochem Mol Toxicol. 35:e227082021. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Belkahla S, Brualla JM, Fayd'herbe de
Maudave A, Falvo P, Allende-Vega N, Constantinides M, Khan AUH,
Coenon L, Alexia C, Mitola G, et al: The metabolism of cells
regulates their sensitivity to NK cells depending on p53 status.
Sci Rep. 12:32342022. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Murty S, Haile ST, Beinat C, Aalipour A,
Alam IS, Murty T, Shaffer TM, Patel CB, Graves EE, Mackall CL and
Gambhir SS: Intravital imaging reveals synergistic effect of CAR
T-cells and radiation therapy in a preclinical immunocompetent
glioblastoma model. Oncoimmunology. 9:17573602020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Herrera FG, Ronet C, Ochoa de Olza M,
Barras D, Crespo I, Andreatta M, Corria-Osorio J, Spill A,
Benedetti F, Genolet R, et al: Low-dose radiotherapy reverses tumor
immune desertification and resistance to immunotherapy. Cancer
Discov. 12:108–133. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Westin JR, Kersten MJ, Salles G, Abramson
JS, Schuster SJ, Locke FL and Andreadis C: Efficacy and safety of
CD19-directed CAR-T cell therapies in patients with
relapsed/refractory aggressive B-cell lymphomas: Observations from
the JULIET, ZUMA-1, and TRANSCEND trials. Am J Hematol.
96:1295–1312. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Raje N, Berdeja J, Lin Y, Siegel D,
Jagannath S, Madduri D, Liedtke M, Rosenblatt J, Maus MV, Turka A,
et al: Anti-BCMA CAR T-cell therapy bb2121 in relapsed or
refractory multiple myeloma. N Engl J Med. 380:1726–1737. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Smith EL, Mailankody S, Staehr M, Wang X,
Senechal B, Purdon TJ, Daniyan AF, Geyer MB, Goldberg AD, Mead E,
et al: BCMA-targeted CAR T-cell therapy plus radiotherapy for the
treatment of refractory myeloma reveals potential synergy. Cancer
Immunol Res. 7:1047–1053. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Ababneh HS, Abramson JS, Johnson PC and
Patel CG: Assessing the role of radiotherapy in patients with
refractory or relapsed high-grade B-cell lymphomas treated with CAR
T-cell therapy. Radiother Oncol. 175:65–72. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Saifi O, Breen WG, Lester SC, Rule WG,
Stish B, Rosenthal A, Munoz J, Herchko SM, Murthy HS, Lin Y, et al:
Does bridging radiation therapy affect the pattern of failure after
CAR T-cell therapy in non-Hodgkin lymphoma? Radiother Oncol.
166:171–179. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Fan J, Adams A, Sieg N, Heger JM, Gödel P,
Kutsch N, Kaul D, Teichert M, von Tresckow B, Bücklein V, et al:
Potential synergy between radiotherapy and CAR T-cells-a
multicentric analysis of the role of radiotherapy in the
combination of CAR T cell therapy. Radiother Oncol. 183:1095802023.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Abramson JS: Anti-CD19 CAR T-cell therapy
for B-cell Non-Hodgkin lymphoma. Transfus Med Rev. 34:29–33. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Mohanty R, Chowdhury CR, Arega S, Sen P,
Ganguly P and Ganguly N: CAR T cell therapy: A new era for cancer
treatment (Review). Oncol Rep. 42:2183–2195. 2019.PubMed/NCBI
|