Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
July-2023 Volume 26 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2023 Volume 26 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Combination of CAR‑T cell therapy and radiotherapy: Opportunities and challenges in solid tumors (Review)

  • Authors:
    • Liqiang Zhong
    • Yi Li
    • Tobias Achu Muluh
    • Yongsheng Wang
  • View Affiliations / Copyright

    Affiliations: Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China, Department of Oncology, The Second People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
    Copyright: © Zhong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 281
    |
    Published online on: May 16, 2023
       https://doi.org/10.3892/ol.2023.13867
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Chimeric antigen receptor (CAR) T cell therapy has emerged as a new and breakthrough cancer immunotherapy. Although CAR‑T cell therapy has made significant progress clinically in patients with refractory or drug‑resistant hematological malignancies, there are numerous challenges in its application to solid tumor therapy, including antigen escape, severe toxic reactions, abnormal vascularization, tumor hypoxia, insufficient infiltration of CAR‑T cells and immunosuppression. As a conventional mode of anti‑tumor therapy, radiotherapy has shown promising effects in combination with CAR‑T cell therapy by enhancing the specific immunity of endogenous target antigens, which promoted the infiltration and expansion of CAR‑T cells and improved the hypoxic tumor microenvironment. This review focuses on the obstacles to the application of CAR‑T technology in solid tumor therapy, the potential opportunities and challenges of combined radiotherapy and CAR‑T cell therapy, and the review of recent literature to evaluate the best combination for the treatment of solid tumors.
View Figures

Figure 1

View References

1 

Xiao X, Wang Y, Zou Z, Yang Y, Wang X, Xin X, Tu S and Li Y: Combination strategies to optimize the efficacy of chimeric antigen receptor T cell therapy in haematological malignancies. Front Immunol. 13:9542352022. View Article : Google Scholar : PubMed/NCBI

2 

Chen W, Yuan Y and Jiang X: Antibody and antibody fragments for cancer immunotherapy. J Control Release. 328:395–406. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, Smith JP, Walker AJ, Kohler ME, Venkateshwara VR, et al: 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 21:581–590. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Breuning J, Philip B and Brown MH: Addition of the C-terminus of CD6 to a chimeric antigen receptor enhances cytotoxicity and does not compromise expression. Immunology. 156:130–135. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Haddadi MH, Hajizadeh-Saffar E, Khosravi-Maharlooei M, Basiri M, Negahdari B and Baharvand H: Autoimmunity as a target for chimeric immune receptor therapy: A new vision to therapeutic potential. Blood Rev. 41:1006452020. View Article : Google Scholar : PubMed/NCBI

6 

Jarosz-Biej M, Smolarczyk R, Cichoń T and Kułach N: Tumor Microenvironment as A ‘Game Changer’ in cancer radiotherapy. Int J Mol Sci. 20:32122019. View Article : Google Scholar : PubMed/NCBI

7 

Mansouri V, Yazdanpanah N and Rezaei N: The immunologic aspects of cytokine release syndrome and graft versus host disease following CAR T cell therapy. Int Rev Immunol. 41:649–668. 2022. View Article : Google Scholar : PubMed/NCBI

8 

Bashiri Dezfouli A, Yazdi M, Pockley AG, Khosravi M, Kobold S, Wagner E and Multhoff G: NK cells armed with chimeric antigen receptors (CAR): Roadblocks to successful development. Cells. 10:33902021. View Article : Google Scholar : PubMed/NCBI

9 

Füchsl F and Krackhardt AM: Paving the way to solid tumors: Challenges and strategies for adoptively transferred transgenic T cells in the tumor microenvironment. Cancers (Basel). 14:41922022. View Article : Google Scholar : PubMed/NCBI

10 

Brandjes BD and Davila ML: Adding chimeric antigen receptor-induced killer cells to the medical oncology shelf. J Clin Invest. 129:5077–5078. 2019. View Article : Google Scholar : PubMed/NCBI

11 

Fujiwara K, Kitaura M, Tsunei A, Kusabuka H, Ogaki E and Okada N: Structure of the signal transduction domain in second-generation CAR regulates the input efficiency of CAR signals. Int J Mol Sci. 22:24762021. View Article : Google Scholar : PubMed/NCBI

12 

Krug C, Birkholz K, Paulus A, Schwenkert M, Schmidt P, Hoffmann N, Fey G, Abken H, Schuler G, Schuler-Thurner B, et al: Stability and activity of MCSP-specific chimeric antigen receptors (CARs) depend on the scFv antigen-binding domain and the protein backbone. Cancer Immunol Immunother. 64:1623–1635. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Yadollahvandmiandoab R, Jalalizadeh M, Buosi K, Garcia-Perdomo HA and Reis LO: Immunogenic cell death role in urothelial cancer therapy. Curr Oncol. 29:6700–6713. 2022. View Article : Google Scholar : PubMed/NCBI

14 

Sterner RC and Sterner RM: CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 11:692021. View Article : Google Scholar : PubMed/NCBI

15 

Wang L: Clinical determinants of relapse following CAR-T therapy for hematologic malignancies: Coupling active strategies to overcome therapeutic limitations. Curr Res Transl Med. 70:1033202022. View Article : Google Scholar : PubMed/NCBI

16 

Haslauer T, Greil R, Zaborsky N and Geisberger R: CAR T-cell therapy in hematological malignancies. Int J Mol Sci. 22:89962021. View Article : Google Scholar : PubMed/NCBI

17 

Zhang X, Zhu L, Zhang H, Chen S and Xiao Y: CAR-T cell therapy in hematological malignancies: Current opportunities and challenges. Front Immunol. 13:9271532022. View Article : Google Scholar : PubMed/NCBI

18 

Qin VM, Haynes NM, D'Souza C, Neeson PJ and Zhu JJ: CAR-T plus radiotherapy: A promising combination for immunosuppressive tumors. Front Immunol. 12:8138322021. View Article : Google Scholar : PubMed/NCBI

19 

Kulczycka M, Derlatka K, Tasior J, Lejman M and Zawitkowska J: CAR T-Cell therapy in children with solid tumors. J Clin Med. 2:23262023. View Article : Google Scholar

20 

Qu J, Mei Q, Chen L and Zhou J: Chimeric antigen receptor (CAR)-T-cell therapy in non-small-cell lung cancer (NSCLC): Current status and future perspectives. Cancer Immunol Immunother. 70:619–631. 2021. View Article : Google Scholar : PubMed/NCBI

21 

Sun Y, Li F, Sonnemann H, Jackson KR, Talukder AH, Katailiha AS and Lizee G: Evolution of CD8+ T cell receptor (TCR) engineered therapies for the treatment of cancer. Cells. 10:23792021. View Article : Google Scholar : PubMed/NCBI

22 

Gu R, Liu F, Zou D, Xu Y, Lu Y, Liu B, Liu W, Chen X, Liu K, Guo Y, et al: Efficacy and safety of CD19 CAR T constructed with a new anti-CD19 chimeric antigen receptor in relapsed or refractory acute lymphoblastic leukemia. J Hematol Oncol. 13:1222020. View Article : Google Scholar : PubMed/NCBI

23 

Aldoss I and Forman SJ: How I treat adults with advanced acute lymphoblastic leukemia eligible for CD19-targeted immunotherapy. Blood. 135:804–813. 2020. View Article : Google Scholar : PubMed/NCBI

24 

Chen YH, Zhang X, Cheng YF, Chen H, Mo XD, Yan CH, Chen Y, Han W, Sun YQ, Wang Y, et al: Long-term follow-up of CD19 chimeric antigen receptor T-cell therapy for relapsed/refractory acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation. Cytotherapy. 22:755–761. 2020. View Article : Google Scholar : PubMed/NCBI

25 

Xie D, Jin X, Sun R, Zhang M, Wang J, Xiong X, Zhang X and Zhao M: Relapse mechanism and treatment strategy after chimeric antigen receptor T-cell therapy in treating B-cell hematological malignancies. Technol Cancer Res Treat. 21:153303382211184132022. View Article : Google Scholar : PubMed/NCBI

26 

Hamieh M, Dobrin A, Cabriolu A, van der Stegen SJC, Giavridis T, Mansilla-Soto J, Eyquem J, Zhao Z, Whitlock BM, Miele MM, et al: CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature. 568:112–116. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Ledererova A, Dostalova L, Kozlova V, Peschelova H, Ladungova A, Culen M, Loja T, Verner J, Pospisilova S, Smida M and Mancikova V: Hypermethylation of CD19 promoter enables antigen-negative escape to CART-19 in vivo and in vitro. J Immunother Cancer. 9:e0023522021. View Article : Google Scholar : PubMed/NCBI

28 

Salter AI, Pont MJ and Riddell SR: Chimeric antigen receptor-modified T cells: CD19 and the road beyond. Blood. 131:2621–2629. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Sun C, Dotti G and Savoldo B: Utilizing cell-based therapeutics to overcome immune evasion in hematologic malignancies. Blood. 127:3350–3359. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Vander Mause ER, Atanackovic D, Lim CS and Luetkens T: Roadmap to affinity-tuned antibodies for enhanced chimeric antigen receptor T cell function and selectivity. Trends Biotechnol. 40:875–890. 2022. View Article : Google Scholar : PubMed/NCBI

31 

Weiss T, Weller M, Guckenberger M, Sentman CL and Roth P: NKG2D-based CAR T cells and radiotherapy exert synergistic efficacy in glioblastoma. Cancer Res. 78:1031–1043. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Luan C, Zhou J, Wang H, Ma X, Long Z, Cheng X, Chen X, Huang Z, Zhang D, Xia R and Ge J: Case report: Local cytokine release syndrome in an acute lymphoblastic leukemia patient after treatment with chimeric antigen receptor T-cell therapy: A possible model, literature review and perspective. Front Immunol. 12:7071912021. View Article : Google Scholar : PubMed/NCBI

33 

Dos Santos DMC, Rejeski K, Winkelmann M, Liu L, Trinkner P, Günther S, Bücklein VL, Blumenberg V, Schmidt C, Kunz WG, et al: Increased visceral fat distribution and body composition impact cytokine release syndrome onset and severity after CD19 chimeric antigen receptor T-cell therapy in advanced B-cell malignancies. Haematologica. 107:2096–2107. 2022. View Article : Google Scholar : PubMed/NCBI

34 

Yan Z, Zhang H, Cao J, Zhang C, Liu H, Huang H, Cheng H, Qiao J, Wang Y, Wang Y, et al: Characteristics and risk factors of cytokine release syndrome in chimeric antigen receptor T cell treatment. Front Immunol. 12:6113662021. View Article : Google Scholar : PubMed/NCBI

35 

Giavridis T, van der Stegen SJC, Eyquem J, Hamieh M, Piersigilli A and Sadelain M: CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 24:731–738. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Wright CM, LaRiviere MJ, Baron JA, Uche C, Xiao Y, Arscott WT, Anstadt EJ, Barsky AR, Miller D, LaRose MI, et al: Bridging radiation therapy before commercial chimeric antigen receptor T-cell therapy for relapsed or refractory aggressive B-cell lymphoma. Int J Radiat Oncol Biol Phys. 108:178–188. 2020. View Article : Google Scholar : PubMed/NCBI

37 

Dong R, Jiang S, Chen Y, Ma Y, Sun L, Xing C, Zhang S and Yu K: Prognostic significance of cytokine release syndrome in B cell hematological malignancies patients after chimeric antigen receptor T cell therapy. J Interferon Cytokine Res. 41:469–476. 2021. View Article : Google Scholar : PubMed/NCBI

38 

Strati P, Ahmed S, Kebriaei P, Nastoupil LJ, Claussen CM, Watson G, Horowitz SB, Brown ART, Do B, Rodriguez MA, et al: Clinical efficacy of anakinra to mitigate CAR T-cell therapy-associated toxicity in large B-cell lymphoma. Blood Adv. 4:3123–3127. 2020. View Article : Google Scholar : PubMed/NCBI

39 

Norelli M, Camisa B, Barbiera G, Falcone L, Purevdorj A, Genua M, Sanvito F, Ponzoni M, Doglioni C, Cristofori P, et al: Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 24:739–748. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Li H and Zhao Y: Increasing the safety and efficacy of chimeric antigen receptor T cell therapy. Protein Cell. 8:573–589. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Sagnella SM, White AL, Yeo D, Saxena P, van Zandwijk N and Rasko JEJ: Locoregional delivery of CAR-T cells in the clinic. Pharmacol Res. 182:1063292022. View Article : Google Scholar : PubMed/NCBI

42 

Duan Y, Chen R, Huang Y, Meng X, Chen J, Liao C, Liao C, Tang Y, Zhou C, Gao X and Sun J: Tuning the ignition of CAR: Optimizing the affinity of scFv to improve CAR-T therapy. Cell Mol Life Sci. 79:142021. View Article : Google Scholar : PubMed/NCBI

43 

Kosti P, Opzoomer JW, Larios-Martinez KI, Henley-Smith R, Scudamore CL, Okesola M, Taher MYM, Davies DM, Muliaditan T, Larcombe-Young D, et al: Hypoxia-sensing CAR T cells provide safety and efficacy in treating solid tumors. Cell Rep Med. 2:1002272021. View Article : Google Scholar : PubMed/NCBI

44 

Liu G, Rui W, Zhao X and Lin X: Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment. Cell Mol Immunol. 18:1085–1095. 2021. View Article : Google Scholar : PubMed/NCBI

45 

Rodriguez-Garcia A, Palazon A, Noguera-Ortega E, Powell DJ and Guedan S: CAR-T cells Hit the tumor microenvironment: Strategies to overcome tumor escape. Front Immunol. 11:11092020. View Article : Google Scholar : PubMed/NCBI

46 

Majidpoor J and Mortezaee K: Angiogenesis as a hallmark of solid tumors-clinical perspectives. Cell Oncol (Dordr). 44:715–737. 2021. View Article : Google Scholar : PubMed/NCBI

47 

He H, Liao Q, Zhao C, Zhu C, Feng M, Liu Z, Jiang L, Zhang L, Ding X, Yuan M, et al: Conditioned CAR-T cells by hypoxia-inducible transcription amplification (HiTA) system significantly enhances systemic safety and retains antitumor efficacy. J Immunother Cancer. 9:e0027552021. View Article : Google Scholar : PubMed/NCBI

48 

Ando Y, Siegler EL, Ta HP, Cinay GE, Zhou H, Gorrell KA, Au H, Jarvis BM, Wang P and Shen K: Evaluating CAR-T cell therapy in a Hypoxic 3D tumor model. Adv Healthc Mater. 8:e19000012019. View Article : Google Scholar : PubMed/NCBI

49 

Karin N: The multiple faces of CXCL12 (SDF-1alpha) in the regulation of immunity during health and disease. J Leukoc Biol. 88:463–473. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Park JA, Wang L and Cheung NV: Modulating tumor infiltrating myeloid cells to enhance bispecific antibody-driven T cell infiltration and anti-tumor response. J Hematol Oncol. 14:1422021. View Article : Google Scholar : PubMed/NCBI

51 

Jiang A, Qin Y and Springer TA: Loss of LRRC33-dependent TGFβ1 activation enhances antitumor immunity and checkpoint blockade therapy. Cancer Immunol Res. 10:453–467. 2022. View Article : Google Scholar : PubMed/NCBI

52 

Siewe N and Friedman A: TGF-β inhibition can overcome cancer primary resistance to PD-1 blockade: A mathematical model. PLoS One. 16:e02526202021. View Article : Google Scholar : PubMed/NCBI

53 

Jorquera-Cordero C, Lara P, Cruz LJ, Schomann T, van Hofslot A, de Carvalho TG, Guedes PMDM, Creemers L, Koning RI, Chan AB and de Araujo Junior RF: Extracellular vesicles from M1-polarized macrophages combined with hyaluronic acid and a β-blocker potentiate Doxorubicin's antitumor activity by downregulating tumor-associated macrophages in breast cancer. Pharmaceutics. 14:10682022. View Article : Google Scholar : PubMed/NCBI

54 

Kos K, Salvagno C, Wellenstein MD, Aslam MA, Meijer DA, Hau CS, Vrijland K, Kaldenbach D, Raeven EAM, Schmittnaegel M, et al: Tumor-associated macrophages promote intratumoral conversion of conventional CD4+ T cells into regulatory T cells via PD-1 signalling. Oncoimmunology. 11:20632252022. View Article : Google Scholar : PubMed/NCBI

55 

Farhood B, Khodamoradi E, Hoseini-Ghahfarokhi M, Motevaseli E, Mirtavoos-Mahyari H, Eleojo Musa A, Leojo Musa A and Najafi M: TGF-β in radiotherapy: Mechanisms of tumor resistance and normal tissues injury. Pharmacol Res. 155:1047452020. View Article : Google Scholar : PubMed/NCBI

56 

Donlon NE, Power R, Hayes C, Reynolds JV and Lysaght J: Radiotherapy, immunotherapy, and the tumour microenvironment: Turning an immunosuppressive milieu into a therapeutic opportunity. Cancer Lett. 502:84–96. 2021. View Article : Google Scholar : PubMed/NCBI

57 

Ashrafizadeh M, Farhood B, Eleojo Musa A, Taeb S and Najafi M: Damage-associated molecular patterns in tumor radiotherapy. Int Immunopharmacol. 86:1067612020. View Article : Google Scholar : PubMed/NCBI

58 

Mittal A, Nenwani M, Sarangi I, Achreja A, Lawrence TS and Nagrath D: Radiotherapy-induced metabolic hallmarks in the tumor microenvironment. Trends Cancer. 8:855–869. 2022. View Article : Google Scholar : PubMed/NCBI

59 

Olivares-Urbano MA, Griñán-Lisón C, Marchal JA and Núñez MI: CSC Radioresistance: A therapeutic challenge to improve radiotherapy effectiveness in cancer. Cells. 9:16512020. View Article : Google Scholar : PubMed/NCBI

60 

Minn I, Rowe SP and Pomper MG: Enhancing CAR T-cell therapy through cellular imaging and radiotherapy. Lancet Oncol. 20:e443–e451. 2019. View Article : Google Scholar : PubMed/NCBI

61 

Sim AJ, Jain MD, Figura NB, Chavez JC, Shah BD, Khimani F, Lazaryan A, Krivenko G, Davila ML, Liu HD, et al: Radiation therapy as a bridging strategy for CAR T cell therapy with axicabtagene ciloleucel in diffuse large B-cell lymphoma. Int J Radiat Oncol Biol Phys. 105:1012–1021. 2019. View Article : Google Scholar : PubMed/NCBI

62 

Oertel M and Eich HT: Bridging before CAR T-cell therapy-a new opportunity for radiotherapy? Strahlenther Onkol. 197:1154–1156. 2021.(In German). View Article : Google Scholar : PubMed/NCBI

63 

Shi LZ and Bonner JA: Bridging radiotherapy to immunotherapy: The IFN-JAK-STAT axis. Int J Mol Sci. 22:122952021. View Article : Google Scholar : PubMed/NCBI

64 

Singh AK and McGuirk JP: CAR T cells: Continuation in a revolution of immunotherapy. Lancet Oncol. 21:e168–e178. 2020. View Article : Google Scholar : PubMed/NCBI

65 

Rodriguez-Ruiz ME, Garasa S, Rodriguez I, Solorzano JL, Barbes B, Yanguas A, Teijeira A, Etxeberria I, Aristu JJ, Halin C, et al: Intercellular adhesion Molecule-1 and vascular cell adhesion molecule are induced by ionizing radiation on lymphatic endothelium. Int J Radiat Oncol Biol Phys. 97:389–400. 2017. View Article : Google Scholar : PubMed/NCBI

66 

Liu Z, Zhao Q, Zheng Z, Liu S, Meng L, Dong L and Jiang X: Vascular normalization in immunotherapy: A promising mechanisms combined with radiotherapy. Biomed Pharmacother. 139:1116072021. View Article : Google Scholar : PubMed/NCBI

67 

Hauth F, Ho AY, Ferrone S and Duda DG: Radiotherapy to enhance chimeric antigen receptor T-cell therapeutic efficacy in solid tumors: A narrative review. JAMA Oncol. 7:1051–1059. 2021. View Article : Google Scholar : PubMed/NCBI

68 

Li L, Yue HC, Han YW, Liu W, Xiong LG and Zhang JW: Relationship between the invasion of lymphocytes and cytokines in the tumor microenvironment and the interval after single brachytherapy hypofractionated radiotherapy and conventional fractionation radiotherapy in non-small cell lung Cancer. BMC Cancer. 20:8932020. View Article : Google Scholar : PubMed/NCBI

69 

Lan Y, Moustafa M, Knoll M, Xu C, Furkel J, Lazorchak A, Yeung TL, Hasheminasab SM, Jenkins MH, Meister S, et al: Simultaneous targeting of TGF-β/PD-L1 synergizes with radiotherapy by reprogramming the tumor microenvironment to overcome immune evasion. Cancer Cell. 39:1388–403.e10. 2021. View Article : Google Scholar : PubMed/NCBI

70 

Prakash H, Klug F, Nadella V, Mazumdar V, Schmitz-Winnenthal H and Umansky L: Low doses of gamma irradiation potentially modifies immunosuppressive tumor microenvironment by retuning tumor-associated macrophages: Lesson from insulinoma. Carcinogenesis. 37:301–313. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Li CG, He MR, Wu FL, Li YJ and Sun AM: Akt promotes irradiation-induced regulatory T-cell survival in hepatocellular carcinoma. Am J Med Sci. 346:123–127. 2013. View Article : Google Scholar : PubMed/NCBI

72 

Ji D, Song C, Li Y, Xia J, Wu Y, Jia J, Cui X, Yu S and Gu J: Combination of radiotherapy and suppression of Tregs enhances abscopal antitumor effect and inhibits metastasis in rectal cancer. J Immunother Cancer. 8:e0008262020. View Article : Google Scholar : PubMed/NCBI

73 

Zammarchi F, Havenith K, Bertelli F, Vijayakrishnan B, Chivers S and van Berkel PH: CD25-targeted antibody-drug conjugate depletes regulatory T cells and eliminates established syngeneic tumors via antitumor immunity. J Immunother Cancer. 8:e0008602020. View Article : Google Scholar : PubMed/NCBI

74 

Sia J, Hagekyriakou J, Chindris I, Albarakati H, Leong T, Schlenker R, Keam SP, Williams SG, Neeson PJ, Johnstone RW and Haynes NM: Regulatory T cells shape the differential impact of radiation dose-fractionation schedules on host innate and adaptive antitumor immune defenses. Int J Radiat Oncol Biol Phys. 111:502–514. 2021. View Article : Google Scholar : PubMed/NCBI

75 

Huang Z, Dewanjee S, Chakraborty P, Jha NK, Dey A, Gangopadhyay M, Chen XY, Wang J and Jha SK: CAR T cells: Engineered immune cells to treat brain cancers and beyond. Mol Cancer. 22:222023. View Article : Google Scholar : PubMed/NCBI

76 

Laurent PA, Morel D, Meziani L, Depil S and Deutsch E: Radiotherapy as a means to increase the efficacy of T-cell therapy in solid tumors. Oncoimmunology. 12:21580132023. View Article : Google Scholar : PubMed/NCBI

77 

Demaria S, Guha C, Schoenfeld J, Morris Z, Monjazeb A, Sikora A, Crittenden M, Shiao S, Khleif S, Gupta S, et al: Radiation dose and fraction in immunotherapy: One-size regimen does not fit all settings, so how does one choose? J Immunother Cancer. 9:e0020382021. View Article : Google Scholar : PubMed/NCBI

78 

Pocaterra A, Catucci M and Mondino A: Adoptive T cell therapy of solid tumors: Time to team up with immunogenic chemo/radiotherapy. Curr Opin Immunol. 74:53–59. 2022. View Article : Google Scholar : PubMed/NCBI

79 

Ratnayake G, Reinwald S, Edwards J, Wong N, Yu D, Ward R, Smith R, Haydon A, Au PM, van Zelm MC and Senthi S: Blood T-cell profiling in metastatic melanoma patients as a marker for response to immune checkpoint inhibitors combined with radiotherapy. Radiother Oncol. 173:299–305. 2022. View Article : Google Scholar : PubMed/NCBI

80 

DeSelm C, Palomba ML, Yahalom J, Hamieh M, Eyquem J, Rajasekhar VK and Sadelain M: Low-dose radiation conditioning enables CAR T cells to mitigate antigen escape. Mol Ther. 26:2542–2552. 2018. View Article : Google Scholar : PubMed/NCBI

81 

Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L, et al: Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. 24:589–602. 2013. View Article : Google Scholar : PubMed/NCBI

82 

Morris EC, Neelapu SS, Giavridis T and Sadelain M: Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol. 22:85–96. 2022. View Article : Google Scholar : PubMed/NCBI

83 

Xia N, Haopeng P, Gong JU, Lu J, Chen Z, Zheng Y, Wang Z, Sun YU, Yang Z, Hoffman RM and Liu F: Robo1-specific CAR-NK immunotherapy enhances efficacy of 125I seed brachytherapy in an orthotopic mouse model of human pancreatic carcinoma. Anticancer Res. 39:5919–5925. 2019. View Article : Google Scholar : PubMed/NCBI

84 

Kulzer L, Rubner Y, Deloch L, Allgäuer A, Frey B, Fietkau R, Dörrie J, Schaft N and Gaipl US: Norm- and hypo-fractionated radiotherapy is capable of activating human dendritic cells. J Immunotoxicol. 11:328–336. 2014. View Article : Google Scholar : PubMed/NCBI

85 

Marcus D, Lieverse RIY, Klein C, Abdollahi A, Lambin P, Dubois LJ and Yaromina A: Charged particle and conventional radiotherapy: Current implications as partner for immunotherapy. Cancers (Basel). 13:14682021. View Article : Google Scholar : PubMed/NCBI

86 

Kadauke S, Myers RM, Li Y, Aplenc R, Baniewicz D, Barrett DM, Barz Leahy A, Callahan C, Dolan JG, Fitzgerald JC, et al: Risk-adapted preemptive tocilizumab to prevent severe cytokine release syndrome after CTL019 for pediatric B-cell acute lymphoblastic leukemia: A prospective clinical trial. J Clin Oncol. 39:920–930. 2021. View Article : Google Scholar : PubMed/NCBI

87 

Wang Z, Chen C, Wang L, Jia Y and Qin Y: Chimeric antigen receptor T-cell therapy for multiple myeloma. Front Immunol. 13:10505222022. View Article : Google Scholar : PubMed/NCBI

88 

Fang PQ, Gunther JR, Wu SY, Dabaja BS, Nastoupil LJ, Ahmed S, Neelapu SS and Pinnix CC: Radiation and CAR T-cell therapy in lymphoma: Future frontiers and potential opportunities for synergy. Front Oncol. 11:6486552021. View Article : Google Scholar : PubMed/NCBI

89 

Qu C, Ping N, Kang L, Liu H, Qin S, Wu Q, Chen X, Zhou M, Xia F, Ye A, et al: Radiation priming chimeric antigen receptor T-cell therapy in Relapsed/Refractory diffuse large B-cell lymphoma with high tumor burden. J Immunother. 43:32–37. 2020. View Article : Google Scholar : PubMed/NCBI

90 

Muroyama Y, Nirschl TR, Kochel CM, Lopez-Bujanda Z, Theodros D, Mao W, Carrera-Haro MA, Ghasemzadeh A, Marciscano AE, Velarde E, et al: Stereotactic radiotherapy increases functionally suppressive regulatory T cells in the tumor microenvironment. Cancer Immunol Res. 5:992–1004. 2017. View Article : Google Scholar : PubMed/NCBI

91 

Guha P, Heatherton KR, O'Connell KP, Alexander IS and Katz SC: Assessing the future of solid tumor immunotherapy. Biomedicines. 10:6552022. View Article : Google Scholar : PubMed/NCBI

92 

Huan T, Li H and Tang B: Radiotherapy plus CAR-T cell therapy to date: A note for cautions optimism? Front Immunol. 13:10335122022. View Article : Google Scholar : PubMed/NCBI

93 

DeSelm C: The current and future role of radiation therapy in the era of CAR T-cell salvage. Br J Radiol. 94:202100982021. View Article : Google Scholar : PubMed/NCBI

94 

Chitadze G and Kabelitz D: Immune surveillance in glioblastoma: Role of the NKG2D system and novel cell-based therapeutic approaches. Scand J Immunol. 96:e132012022. View Article : Google Scholar : PubMed/NCBI

95 

Rana PS, Murphy EV, Kort J and Driscoll JJ: Road testing new CAR design strategies in multiple myeloma. Front Immunol. 13:9571572022. View Article : Google Scholar : PubMed/NCBI

96 

Ashrafizadeh M, Farhood B, Eleojo Musa A, Taeb S, Rezaeyan A and Najafi M: Abscopal effect in radioimmunotherapy. Int Immunopharmacol. 85:1066632020. View Article : Google Scholar : PubMed/NCBI

97 

Mortezaee K: Enriched cancer stem cells, dense stroma, and cold immunity: Interrelated events in pancreatic cancer. J Biochem Mol Toxicol. 35:e227082021. View Article : Google Scholar : PubMed/NCBI

98 

Belkahla S, Brualla JM, Fayd'herbe de Maudave A, Falvo P, Allende-Vega N, Constantinides M, Khan AUH, Coenon L, Alexia C, Mitola G, et al: The metabolism of cells regulates their sensitivity to NK cells depending on p53 status. Sci Rep. 12:32342022. View Article : Google Scholar : PubMed/NCBI

99 

Murty S, Haile ST, Beinat C, Aalipour A, Alam IS, Murty T, Shaffer TM, Patel CB, Graves EE, Mackall CL and Gambhir SS: Intravital imaging reveals synergistic effect of CAR T-cells and radiation therapy in a preclinical immunocompetent glioblastoma model. Oncoimmunology. 9:17573602020. View Article : Google Scholar : PubMed/NCBI

100 

Herrera FG, Ronet C, Ochoa de Olza M, Barras D, Crespo I, Andreatta M, Corria-Osorio J, Spill A, Benedetti F, Genolet R, et al: Low-dose radiotherapy reverses tumor immune desertification and resistance to immunotherapy. Cancer Discov. 12:108–133. 2022. View Article : Google Scholar : PubMed/NCBI

101 

Westin JR, Kersten MJ, Salles G, Abramson JS, Schuster SJ, Locke FL and Andreadis C: Efficacy and safety of CD19-directed CAR-T cell therapies in patients with relapsed/refractory aggressive B-cell lymphomas: Observations from the JULIET, ZUMA-1, and TRANSCEND trials. Am J Hematol. 96:1295–1312. 2021. View Article : Google Scholar : PubMed/NCBI

102 

Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, Liedtke M, Rosenblatt J, Maus MV, Turka A, et al: Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 380:1726–1737. 2019. View Article : Google Scholar : PubMed/NCBI

103 

Smith EL, Mailankody S, Staehr M, Wang X, Senechal B, Purdon TJ, Daniyan AF, Geyer MB, Goldberg AD, Mead E, et al: BCMA-targeted CAR T-cell therapy plus radiotherapy for the treatment of refractory myeloma reveals potential synergy. Cancer Immunol Res. 7:1047–1053. 2019. View Article : Google Scholar : PubMed/NCBI

104 

Ababneh HS, Abramson JS, Johnson PC and Patel CG: Assessing the role of radiotherapy in patients with refractory or relapsed high-grade B-cell lymphomas treated with CAR T-cell therapy. Radiother Oncol. 175:65–72. 2022. View Article : Google Scholar : PubMed/NCBI

105 

Saifi O, Breen WG, Lester SC, Rule WG, Stish B, Rosenthal A, Munoz J, Herchko SM, Murthy HS, Lin Y, et al: Does bridging radiation therapy affect the pattern of failure after CAR T-cell therapy in non-Hodgkin lymphoma? Radiother Oncol. 166:171–179. 2022. View Article : Google Scholar : PubMed/NCBI

106 

Fan J, Adams A, Sieg N, Heger JM, Gödel P, Kutsch N, Kaul D, Teichert M, von Tresckow B, Bücklein V, et al: Potential synergy between radiotherapy and CAR T-cells-a multicentric analysis of the role of radiotherapy in the combination of CAR T cell therapy. Radiother Oncol. 183:1095802023. View Article : Google Scholar : PubMed/NCBI

107 

Abramson JS: Anti-CD19 CAR T-cell therapy for B-cell Non-Hodgkin lymphoma. Transfus Med Rev. 34:29–33. 2020. View Article : Google Scholar : PubMed/NCBI

108 

Mohanty R, Chowdhury CR, Arega S, Sen P, Ganguly P and Ganguly N: CAR T cell therapy: A new era for cancer treatment (Review). Oncol Rep. 42:2183–2195. 2019.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhong L, Li Y, Muluh TA and Wang Y: Combination of CAR‑T cell therapy and radiotherapy: Opportunities and challenges in solid tumors (Review). Oncol Lett 26: 281, 2023.
APA
Zhong, L., Li, Y., Muluh, T.A., & Wang, Y. (2023). Combination of CAR‑T cell therapy and radiotherapy: Opportunities and challenges in solid tumors (Review). Oncology Letters, 26, 281. https://doi.org/10.3892/ol.2023.13867
MLA
Zhong, L., Li, Y., Muluh, T. A., Wang, Y."Combination of CAR‑T cell therapy and radiotherapy: Opportunities and challenges in solid tumors (Review)". Oncology Letters 26.1 (2023): 281.
Chicago
Zhong, L., Li, Y., Muluh, T. A., Wang, Y."Combination of CAR‑T cell therapy and radiotherapy: Opportunities and challenges in solid tumors (Review)". Oncology Letters 26, no. 1 (2023): 281. https://doi.org/10.3892/ol.2023.13867
Copy and paste a formatted citation
x
Spandidos Publications style
Zhong L, Li Y, Muluh TA and Wang Y: Combination of CAR‑T cell therapy and radiotherapy: Opportunities and challenges in solid tumors (Review). Oncol Lett 26: 281, 2023.
APA
Zhong, L., Li, Y., Muluh, T.A., & Wang, Y. (2023). Combination of CAR‑T cell therapy and radiotherapy: Opportunities and challenges in solid tumors (Review). Oncology Letters, 26, 281. https://doi.org/10.3892/ol.2023.13867
MLA
Zhong, L., Li, Y., Muluh, T. A., Wang, Y."Combination of CAR‑T cell therapy and radiotherapy: Opportunities and challenges in solid tumors (Review)". Oncology Letters 26.1 (2023): 281.
Chicago
Zhong, L., Li, Y., Muluh, T. A., Wang, Y."Combination of CAR‑T cell therapy and radiotherapy: Opportunities and challenges in solid tumors (Review)". Oncology Letters 26, no. 1 (2023): 281. https://doi.org/10.3892/ol.2023.13867
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team