|
1
|
Lei M, Zheng G, Ning Q, Zheng J and Dong
D: Translation and functional roles of circular RNAs in human
cancer. Mol Cancer. 19:302020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Liu J, Li D, Luo H and Zhu X: Circular
RNAs: The star molecules in cancer. Mol Aspects Med. 70:141–152.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Patop IL, Wüst S and Kadener S: Past,
present, and future of circRNAs. EMBO J. 38:e1008362019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Qu S, Zhong Y, Shang R, Zhang X, Song W,
Kjems J and Li H: The emerging landscape of circular RNA in life
processes. RNA Biol. 14:992–999. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Chandler B, Hayashi M, Hayashi MN and
Spiegelman S: Circularity of the replicating form of a
single-stranded DNA virus. Science. 143:47–49. 1964. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Arnberg AC, Van Ommen GJ, Grivell LA, Van
Bruggen EF and Borst P: Some yeast mitochondrial RNAs are circular.
Cell. 19:313–319. 1980. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Kos A, Dijkema R, Arnberg AC, Meide PH and
Schellekens H: The hepatitis delta (delta) virus possesses a
circular RNA. Nature. 323:558–560. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Cocquerelle C, Mascrez B, Hétuin D and
Bailleul B: Mis-splicing yields circular RNA molecules. FASEB J.
7:155–160. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Capel B, Swain A, Nicolis S, Hacker A,
Walter M, Koopman P, Goodfellow P and Lovell-Badge R: Circular
transcripts of the testis-determining gene Sry in adult mouse
testis. Cell. 73:1019–1030. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Diener TO: Circular RNAs: Relics of
precellular evolution? Proc Natl Acad Sci USA. 86:9370–9374. 1989.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kozak M: Inability of circular mRNA to
attach to eukaryotic ribosomes. Nature. 280:82–85. 1979. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Guan C, Liu L, Zhao Y, Zhang X, Liu G,
Wang H, Gao X, Zhong X and Jiang X: YY1 and eIF4A3 are mediators of
the cell proliferation, migration and invasion in
cholangiocarcinoma promoted by circ-ZNF609 by targeting miR-432-5p
to regulate LRRC1. Aging (Albany NY). 13:25195–25212. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Li X, Azhati B, Wang W, Rexiati M, Xing C
and Wang Y: Circular RNA UBAP2 promotes the proliferation of
prostate cancer cells via the miR-1244/MAP3K2 axis. Oncol Lett.
21:4862021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hu Z, Huang L, Wang W, Guan C, Zhao Y, Liu
L and Jiang X: Long non-coding RNA FOXD2-AS1 promotes
proliferation, migration, and invasion in cholangiocarcinoma
through regulating miR-760/E2F3 axis. Dig Dis Sci. 67:546–558.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Peng F, Gong W, Li S, Yin B, Zhao C, Liu
W, Chen X, Luo C, Huang Q, Chen T, et al: CircRNA_010383 acts as a
sponge for miR-135a, and its downregulated expression contributes
to renal fibrosis in diabetic nephropathy. Diabetes. 70:603–615.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Du WW, Zhang C, Yang W, Yong T, Awan FM
and Yang BB: Identifying and characterizing circRNA-protein
interaction. Theranostics. 7:4183–4191. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Liu L, Wang H, Yu S, Gao X, Liu G, Sun D
and Jiang X: An update on the roles of circRNA-ZFR in human
malignant tumors. Front Cell Dev Biol. 9:8061812022. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Garikipati VNS, Verma SK, Cheng Z, Liang
D, Truongcao MM, Cimini M, Yue Y, Huang G, Wang C, Benedict C, et
al: Circular RNA CircFndc3b modulates cardiac repair after
myocardial infarction via FUS/VEGF-A axis. Nat Commun. 10:43172019.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Li H, Deng Z, Yang H, Pan X, Wei Z, Shen
HB, Choi KS, Wang L, Wang S and Wu J: CircRNA-binding protein site
prediction based on multi-view deep learning, subspace learning and
multi-view classifier. Brief Bioinform. 23:bbab3942022. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Pamudurti NR, Bartok O, Jens M,
Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E,
Perez-Hernandez D, Ramberger E, et al: Translation of circRNAs. Mol
Cell. 66:9–21.e7. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chen CK, Cheng R, Demeter J, Chen J,
Weingarten-Gabbay S, Jiang L, Snyder MP, Weissman JS, Segal E,
Jackson PK and Chang HY: Structured elements drive extensive
circular RNA translation. Mol Cell. 81:4300–4318. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Wu P, Mo Y, Peng M, Tang T, Zhong Y, Deng
X, Xiong F, Guo C, Wu X, Li Y, et al: Emerging role of
tumor-related functional peptides encoded by lncRNA and circRNA.
Mol Cancer. 19:222020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wang B, Yin H, Zhang H and Wang T:
CircNRIP1 facilitates keloid progression via FXR1-mediated
upregulation of miR-503-3p and miR-503-5p. Int J Mol Med.
47:702021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Liu Y, Li J, Bu H, Wang H, Zhang Y, Shen
Q, Li M, Lu Z, Rong X, Zheng D and Peng Y: Circular RNA expression
alteration identifies a novel circulating biomarker in serum
exosomal for detection of alcohol dependence. Addict Biol.
26:e130312021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Tao X, Shao Y, Yan J, Yang L, Ye Q, Wang
Q, Lu R and Guo J: Biological roles and potential clinical values
of circular RNAs in gastrointestinal malignancies. Cancer Biol Med.
18:437–457. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM,
Taheri M and Samsami M: Emerging role of circular RNAs in the
pathogenesis of ovarian cancer. Cancer Cell Int. 22:1722022.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Pereira AL, Magalhães L, Pantoja RP,
Araújo G, Ribeiro-Dos-Santos  and Vidal AF: The biological role of
sponge circular RNAs in gastric cancer: Main players or
coadjuvants? Cancers (Basel). 12:19822020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wang Y, Li Z, Xu S and Guo J: Novel
potential tumor biomarkers: Circular RNAs and exosomal circular
RNAs in gastrointestinal malignancies. J Clin Lab Anal.
34:e233592020.PubMed/NCBI
|
|
29
|
Li T, Shao Y, Fu L, Xie Y, Zhu L, Sun W,
Yu R, Xiao B and Guo J: Plasma circular RNA profiling of patients
with gastric cancer and their droplet digital RT-PCR detection. J
Mol Med. 96:85–96. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Reis-das-Mercês L, Vinasco-Sandoval T,
Pompeu R, Ramos AC, Anaissi AKM, Demachki S, Assumpção PP, Vidal
AF, Ribeiro-Dos-Santos  and Magalhães L: CircRNAs as potential
blood biomarkers and key elements in regulatory networks in gastric
cancer. Int J Mol Sci. 23:6502022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Hurwitz LM, Pinsky PF and Trabert B:
General population screening for ovarian cancer. Lancet.
397:2128–2130. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Killock D: Viral gene therapy active in
ovarian cancer. Nat Rev Clin Oncol. 17:3912020. View Article : Google Scholar
|
|
33
|
Barber E and Matei D: Immunotherapy in
ovarian cancer: We are not there yet. Lancet Oncol. 22:903–905.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Bairi EK, Singh S and Page LC: Revisiting
platinum-resistant ovarian cancer: Advances in therapy, molecular
biomarkers, and clinical outcomes. Semin Cancer Biol. 77:1–2. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Lheureux S, Braunstein M and Oza AM:
Epithelial ovarian cancer: Evolution of management in the era of
precision medicine. CA Cancer J Clin. 69:280–304. 2019.PubMed/NCBI
|
|
36
|
Li H, Luo F, Jiang X, Zhang WJ, Xiang T,
Pan QZ, Cai L, Zhao J, Weng D, Li Y, et al: CircITGB6 promotes
ovarian cancer cisplatin resistance by resetting tumor-associated
macrophage polarization toward the M2 phenotype. J Immunother
Cancer. 10:e0040292022. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Huang XY, Zhang PF, Wei CY, Peng R, Lu JC,
Gao C, Cai JB, Yang X, Fan J, Ke AW, et al: Circular RNA circMET
drives immunosuppression and anti-PD1 therapy resistance in
hepatocellular carcinoma via the miR-30-5p/snail/DPP4 axis. Mol
Cancer. 19:922020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Hong X, Liu N, Liang Y, He Q, Yang X, Lei
Y, Zhang P, Zhao Y, He S, Wang Y, et al: Circular RNA CRIM1
functions as a ceRNA to promote nasopharyngeal carcinoma metastasis
and docetaxel chemoresistance through upregulating FOXQ1. Mol
Cancer. 19:332020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Luo Y and Gui R: Circulating exosomal
circFoxp1 confers cisplatin resistance in epithelial ovarian cancer
cells. J Gynecol Oncol. 31:e752020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Li M, Cai J, Han X and Ren Y:
Downregulation of circNRIP1 suppresses the paclitaxel resistance of
ovarian cancer via regulating the miR-211-5p/HOXC8 axis. Cancer
Manag Res. 12:9159–9171. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Chen LL: The expanding regulatory
mechanisms and cellular functions of circular RNAs. Nat Rev Mol
Cell Biol. 21:475–490. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Xu P, Zhang X, Ni W, Fan H, Xu J, Chen Y,
Zhu J, Gu X, Yang L, Ni R, et al: Upregulated HOXC8 expression is
associated with poor prognosis and oxaliplatin resistance in
hepatocellular carcinoma. Dig Dis Sci. 60:3351–3363. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Jiang Y, Wang Z, Ying C, Hu J, Zeng T and
Gao L: FMR1/circCHAF1A/miR-211-5p/HOXC8 feedback loop regulates
proliferation and tumorigenesis via MDM2-dependent p53 signaling in
GSCs. Oncogene. 40:4094–4110. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Castle PE, Einstein MH and Sahasrabuddhe
VV: Cervical cancer prevention and control in women living with
human immunodeficiency virus. CA Cancer J Clin. 71:505–526. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ferrall L, Lin KY, Roden RBS, Hung CF and
Wu TC: Cervical cancer immunotherapy: Facts and hopes. Clin Cancer
Res. 27:4953–4973. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sundström K and Elfström KM: Advances in
cervical cancer prevention: Efficacy, effectiveness, elimination?
PLoS Med. 17:e10030352020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Yang H, Li X, Meng Q, Sun H, Wu S, Hu W,
Liu G, Li X, Yang Y and Chen R: CircPTK2 (hsa_circ_0005273) as a
novel therapeutic target for metastatic colorectal cancer. Mol
Cancer. 19:132020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ma J, Du WW, Zeng K, Wu N, Fang L, Lyu J,
Yee AJ and Yang BB: An antisense circular RNA circSCRIB enhances
cancer progression by suppressing parental gene splicing and
translation. Mol Ther. 29:2754–2768. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Li X, Ma N, Zhang Y, Wei H, Zhang H, Pang
X, Li X, Wu D, Wang D and Zhang S: Circular RNA circNRIP1 promotes
migration and invasion in cervical cancer by sponging miR-629-3p
and regulating the PTP4A1/ERK1/2 pathway. Cell Death Dis.
11:3992020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Hu JY, Yi W, Wei X, Zhang MY, Xu R, Zeng
LS, Huang ZJ and Chen JS: MiR-601 is a prognostic marker and
suppresses cell growth and invasion by targeting PTP4A1 in breast
cancer. Biomed Pharmacother. 79:247–253. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhang JX, Mai SJ, Huang XX, Wang FW, Liao
YJ, Lin MC, Kung HF, Zeng YX and Xie D: MiR-29c mediates
epithelial-to-mesenchymal transition in human colorectal carcinoma
metastasis via PTP4A and GNA13 regulation of β-catenin signaling.
Ann Oncol. 25:2196–2204. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Flores-Pérez A, Marchat LA,
Rodríguez-Cuevas S, Bautista VP, Fuentes-Mera L, Romero-Zamora D,
Maciel-Dominguez A, Cruz OH, Fonseca-Sánchez M, Ruíz-García E, et
al: Suppression of cell migration is promoted by miR-944 through
targeting of SIAH1 and PTP4A1 in breast cancer cells. BMC Cancer.
16:3792016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Bai Y, Luo Y, Liu S, Zhang L, Shen K, Dong
Y, Walls CD, Quilliam LA, Wells CD, Cao Y and Zhang ZY: PRL-1
protein promotes ERK1/2 and RhoA protein activation through a
non-canonical interaction with the Src homology 3 domain of p115
Rho GTPase-activating protein. J Biol Chem. 286:42316–42324. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Lai Q, Wang M, Hu C, Tang Y, Li Y and Hao
S: Circular RNA regulates the onset and progression of cancer
through the mitogen-activated protein kinase signaling pathway.
Oncol Lett. 22:8172021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Biller LH and Schrag D: Diagnosis and
treatment of metastatic colorectal cancer: A review. JAMA.
325:669–685. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Xie M, Yu T, Jing X, Ma L, Fan Y, Yang F,
Ma P, Jiang H, Wu X, Shu Y and Xu T: Exosomal circSHKBP1 promotes
gastric cancer progression via regulating the miR-582-3p/HUR/VEGF
axis and suppressing HSP90 degradation. Mol Cancer. 19:1122020.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang PF, Gao C, Huang XY, Lu JC, Guo XJ,
Shi GM, Cai JB and Ke AW: Cancer cell-derived exosomal circUHRF1
induces natural killer cell exhaustion and may cause resistance to
anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer.
19:1102020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Pan B, Qin J, Liu X, He B, Wang X, Pan Y,
Sun H, Xu T, Xu M, Chen X, et al: Identification of serum exosomal
hsa-circ-0004771 as a novel diagnostic biomarker of colorectal
cancer. Front Genet. 10:10962019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Liu F, Li R, Zhang R, He M and Zhang Y:
Knockdown of circNRIP1 sensitizes colorectal cancer to 5-FU via
sponging miR-532-3p. Oncol Rep. 46:2182021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Huang E, Fu J, Yu Q, Xie P, Yang Z, Ji H,
Wang L, Luo G, Zhang Y and Li K: CircRNA hsa_circ_0004771 promotes
esophageal squamous cell cancer progression via miR-339-5p/CDC25A
axis. Epigenomics. 12:587–603. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhang Y, Zhu C and Lu X: Advances in serum
biomarkers for early diagnosis of gastric cancer. Zhejiang Da Xue
Xue Bao Yi Xue Ban. 48:326–333. 2019.(In Chinese). PubMed/NCBI
|
|
63
|
Zhou S, Guo Z, Zhou C, Zhang Y and Wang S:
Circ_NRIP1 is oncogenic in malignant development of esophageal
squamous cell carcinoma (ESCC) via miR-595/SEMA4D axis and PI3K/AKT
pathway. Cancer Cell Int. 21:2502021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
McCabe EM and Rasmussen TP: LncRNA
involvement in cancer stem cell function and epithelial-mesenchymal
transitions. Semin Cancer Biol. 75:38–48. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Pastushenko I and Blanpain C: EMT
transition states during tumor progression and metastasis. Trends
Cell Biol. 29:212–226. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Pastushenko I, Brisebarre A, Sifrim A,
Fioramonti M, Revenco T, Boumahdi S, Van KA, Brown D, Moers V,
Lemaire S, et al: Identification of the tumour transition states
occurring during EMT. Nature. 556:463–468. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhang X, Wang S, Wang H, Cao J, Huang X,
Chen Z, Xu P, Sun G, Xu J, Lv J and Xu Z: Circular RNA circNRIP1
acts as a microRNA-149-5p sponge to promote gastric cancer
progression via the AKT1/mTOR pathway. Mol Cancer. 18:202019.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Shingu T, Ho AL, Yuan L, Zhou X, Dai C,
Zheng S, Wang Q, Zhong Y, Chang Q, Horner JW, et al: Qki deficiency
maintains stemness of glioma stem cells in suboptimal environment
by downregulating endolysosomal degradation. Nat Genet. 49:75–86.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Payne KK: Cellular stress responses and
metabolic reprogramming in cancer progression and dormancy. Semin
Cancer Biol. 78:45–48. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Liu Y, Jiang Y, Xu L, Qu C, Zhang L, Xiao
X, Chen W, Li K, Liang Q and Wu H: Circ-NRIP1 promotes glycolysis
and tumor progression by regulating miR-186-5p/MYH9 axis in gastric
cancer. Cancer Manag Res. 12:5945–5956. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Xu G, Li M, Wu J, Qin C, Tao Y and He H:
Circular RNA circNRIP1 sponges microRNA-138-5p to maintain
hypoxia-induced resistance to 5-Fluorouracil through
HIF-1α-dependent glucose metabolism in gastric carcinoma. Cancer
Manag Res. 12:2789–2802. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Fernandes E, Sores J, Cotton S, Peixoto A,
Ferreira D, Freitas R, Reis CA, Santos LL and Ferreira JA:
Esophageal, gastric and colorectal cancers: Looking beyond
classical serological biomarkers towards glycoproteomics-assisted
precision oncology. Theranostics. 10:4903–4928. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Shieh Y, Eklund M, Sawaya GF, Black WC,
Kramer BS and Esserman LJ: Population-based screening for cancer:
Hope and hype. Nat Rev Clin Oncol. 13:550–565. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Ding X, Zheng J and Cao M: Circ_0004771
accelerates cell carcinogenic phenotypes via suppressing
miR-1253-mediated DDAH1 inhibition in breast cancer. Cancer Manag
Res. 13:1–11. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Soukup V, Babjuk M, Bellmunt J, Dalbagni
G, Giannarini G, Hakenberg OW, Herr H, Lechevallier E and Ribal MJ:
Follow-up after surgical treatment of bladder cancer: A critical
analysis of the literature. Eur Urol. 62:290–302. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Reddy KRK, Dasari C, Duscharla D, Supriya
B, Ram NS, Surekha MV, Kumar JM and Ummanni R: Dimethylarginine
dimethylaminohydrolase-1 (DDAH1) is frequently upregulated in
prostate cancer, and its overexpression conveys tumor growth and
angiogenesis by metabolizing asymmetric dimethylarginine (ADMA).
Angiogenesis. 21:79–94. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Xie R, Tang J, Zhu X and Jiang H:
Silencing of hsa_circ_0004771 inhibits proliferation and induces
apoptosis in breast cancer through activation of miR-653 by
targeting ZEB2 signaling pathway. Biosci Rep. 39:BSR201819192019.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Si W, Huang W, Zheng Y, Yang Y, Liu X,
Shan L, Zhou X, Wang Y, Su D, Gao J, et al: Dysfunction of the
reciprocal feedback loop between GATA3- and ZEB2-nucleated
repression programs contributes to breast cancer metastasis. Cancer
Cell. 27:822–836. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Li H, Xu L, Li C, Zhao L, Ma Y, Zheng H,
Li Z, Zhang Y, Wang R, Liu Y and Qu X: Ubiquitin ligase Cbl-b
represses IGF-I-induced epithelial mesenchymal transition via ZEB2
and microRNA-200c regulation in gastric cancer cells. Mol Cancer.
13:1362014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Chen YP, Chan ATC, Le QT, Blanchard P, Sun
Y and Ma J: Nasopharyngeal carcinoma. Lancet. 394:64–80. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Tang LL, Chen WQ, Xue WQ, He YQ, Zheng RS,
Zeng YX and Jia WH: Global trends in incidence and mortality of
nasopharyngeal carcinoma. Cancer Lett. 374:22–30. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Lei Y, Li YQ, Jiang W, Hong XH, Ge WX,
Zhang Y, Hu WH, Wang YQ, Liang YL, Li JY, et al: A gene-expression
predictor for efficacy of induction chemotherapy in locoregionally
advanced nasopharyngeal carcinoma. J Natl Cancer Inst. 113:471–480.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Tang LQ, Li CF, Li J, Chen WH, Chen QY,
Yuan LX, Lai XP, He Y, Xu YX, Hu DP, et al: Establishment and
validation of prognostic nomograms for endemic nasopharyngeal
carcinoma. J Natl Cancer Inst. 108:djv2912015. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Gatta G, Botta L, Sánchez MJ, Anderson LA,
Pierannunzio D and Licitra L: Prognoses and improvement for head
and neck cancers diagnosed in Europe in early 2000s: The EUROCARE-5
population-based study. Eur J Cancer. 51:2130–2143. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Lin J, Qin H, Han Y, Li X, Zhao Y and Zhai
G: CircNRIP1 modulates the miR-515-5p/IL-25 axis to control 5-Fu
and cisplatin resistance in nasopharyngeal carcinoma. Drug Des
Devel Ther. 15:323–330. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Li C, Zhu L, Fu L, Han M, Li Y, Meng Z and
Qiu X: CircRNA NRIP1 promotes papillary thyroid carcinoma
progression by sponging mir-195-5p and modulating the P38 MAPK and
JAK/STAT pathways. Diagn Pathol. 16:932021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Baldini C, Moriconi FR, Galimberti S,
Libby P and Caterina DR: The JAK-STAT pathway: An emerging target
for cardiovascular disease in rheumatoid arthritis and
myeloproliferative neoplasms. Eur Heart J. 42:4389–4400. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Liu ZK, Li C, Zhang RY, Wei D, Shang YK,
Yong YL, Kong LM, Zheng NS, Liu K, Lu M, et al: EYA2 suppresses the
progression of hepatocellular carcinoma via SOCS3-mediated blockade
of JAK/STAT signaling. Mol Cancer. 20:792021. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Blaj C, Schmidt EM, Lamprecht S, Hermeking
H, Jung A, Kirchner T and Horst D: Oncogenic effects of high MAPK
activity in colorectal cancer mark progenitor cells and persist
irrespective of RAS mutations. Cancer Res. 77:1763–1774. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Fu L, Huo J, Fitrat H, Kong Y, Zhang L,
Shang C, Li G, Ji F, Fu X and Qiu X: CircNRIP1 exerts oncogenic
functions in papillary thyroid carcinoma by sponging miR-653-5p and
regulating PBX3 expression. J Oncol. 2022:20815012022. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Chen Z, Fillmore CM, Hammerman PS, Kim CF
and Wong KK: Non-small-cell lung cancers: A heterogeneous set of
diseases. Nat Rev Cancer. 14:535–546. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Herbst RS, Morgensztern D and Boshoff C:
The biology and management of non-small cell lung cancer. Nature.
553:446–454. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Cagney DN, Martin AM, Catalano PJ, Brown
PD, Alexander BM, Lin NU and Aizer AA: Implications of screening
for brain metastases in patients with breast cancer and non-small
cell lung cancer. JAMA Oncol. 4:1001–1003. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
White RW and Horvitz E: Evaluation of the
feasibility of screening patients for early signs of lung carcinoma
in Web Search Logs. JAMA Oncol. 3:398–401. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Wang S, Zhang K, Tan S, Xin J, Yuan Q, Xu
H, Xu X, Liang Q, Christiani DC, Wang M, et al: Circular RNAs in
body fluids as cancer biomarkers: The new frontier of liquid
biopsies. Mol Cancer. 20:132021. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Lieben L: Diagnosis: RNA-seq for
blood-based pan-cancer diagnostics. Nat Rev Cancer. 15:696–697.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Labelle M, Begum S and Hynes RO: Direct
signaling between platelets and cancer cells induces an
epithelial-mesenchymal-like transition and promotes metastasis.
Cancer Cell. 20:576–590. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
D'Ambrosi S, Visser A, Antunes-Ferreira M,
Poutsma A, Giannoukakos S, Sol N, Sabrkhany S, Bahce I, Kuijpers
MJE, Oude Egbrink MGA, et al: The analysis of platelet-derived
circRNA repertoire as potential diagnostic biomarker for non-small
cell lung cancer. Cancers. 13:46442021. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Chen SW, Zhu SQ, Pei X, Qiu BQ, Xiong D,
Long X, Lin K, Lu F, Xu JJ and Wu YB: Cancer cell-derived exosomal
circUSP7 induces CD8+ T cell dysfunction and anti-PD1 resistance by
regulating the miR-934/SHP2 axis in NSCLC. Mol Cancer. 20:1442021.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhang N, Nan A, Chen L, Li X, Jia Y, Qiu
M, Dai X, Zhou H, Zhu J, Zhang H and Jiang Y: Circular RNA
circSATB2 promotes progression of non-small cell lung cancer cells.
Mol Cancer. 19:1012020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Wang L, Tong X, Zhou Z, Wang S, Lei Z,
Zhang T, Liu Z, Zeng Y, Li C, Zhao J, et al: Circular RNA
hsa_circ_0008305 (circPTK2) inhibits TGF-β-induced
epithelial-mesenchymal transition and metastasis by controlling
TIF1γ in non-small cell lung cancer. Mol Cancer. 17:1402018.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Preußer C, Hung LH, Schneider T, Schreiner
S, Hardt M, Moebus A, Santoso S and Bindereif A: Selective release
of circRNAs in platelet-derived extracellular vesicles. J Extracell
Vesicles. 7:14244732018. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Yang T, Shen P, Chen Q, Wu P, Yuan H, Ge
W, Meng L, Huang X, Fu Y, Zhang Y, et al: FUS-induced circRHOBTB3
facilitates cell proliferation via miR-600/NACC1 mediated autophagy
response in pancreatic ductal adenocarcinoma. J Exp Clin Cancer
Res. 40:2612021. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Chen C, Yu H, Han FY, Lai X, Ye KH, Lei S,
Mai M, Lai M and Zhang H: Tumor-suppressive circRHOBTB3 is excreted
out of cells via exosome to sustain colorectal cancer cell fitness.
Mol Cancer. 21:462022. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Liu H, Bi J, Dong W, Yang M, Shi J, Jiang
N, Lin T and Huang J: Invasion-related circular RNA circFNDC3B
inhibits bladder cancer progression through the
miR-1178-3p/G3BP2/SRC/FAK axis. Mol Cancer. 17:1612018. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Tang B, Zhang QF, Liu K and Huang Y:
Exosomal circRNA FNDC3B promotes the progression of esophageal
squamous cell carcinoma by sponging miR-490-5p and regulating
thioredoxin reductase 1 expression. Bioengineered. 13:13829–13848.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Dai X, Guo X, Liu J, Cheng A, Peng X, Zha
L and Wang Z: Circular RNA circGRAMD1B inhibits gastric cancer
progression by sponging miR-130a-3p and regulating PTEN and p21
expression. Aging (Albany NY). 11:9689–9708. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Liu X, Wang Y, Zhou G, Zhou JB, Tian Z and
Xu J: circGRAMD1B contributes to migration, invasion and
epithelial-mesenchymal transition of lung adenocarcinoma cells via
modulating the expression of SOX4. Funct Integr Genomics.
23:752023. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Luo H, Peng J and Yuan Y: CircRNA OXCT1
promotes the malignant progression and glutamine metabolism of
non-small cell lung cancer by absorbing miR-516b-5p and
upregulating SLC1A5. Cell Cycle. 22:1182–1195. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Liu J, Dai X, Guo X, Cheng A, Mac SM and
Wang Z: Circ-OXCT1 suppresses gastric cancer EMT and metastasis by
attenuating TGF-β pathway through the circ-OXCT1/miR-136/SMAD4
axis. Onco Targets Ther. 13:3987–3998. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Meng Y, Hao D, Huang Y, Jia S, Zhang J, He
X, Liu D and Sun L: Circular RNA circNRIP1 plays oncogenic roles in
the progression of osteosarcoma. Mamm Genome. 32:448–456. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Hollier BG, Tinnirello AA, Werden SJ,
Evans KW, Taube JH, Sarkar TR, Sphyris N, Shariati M, Kumar SV,
Battula VL, et al: FOXC2 expression links epithelial-mesenchymal
transition and stem cell properties in breast cancer. Cancer Res.
73:1981–1992. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Shi Z, Wang K, Xing Y and Yang X:
CircNRIP1 encapsulated by bone marrow mesenchymal stem cell-derived
extracellular vesicles aggravates osteosarcoma by modulating the
miR-532-3p/AKT3/PI3K/AKT axis. Front Oncol. 11:6581392021.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Han J, Wang JZ, Yang X, Yu H, Zhou R, Lu
HC, Yuan WB, Lu JC, Zhou ZJ, Lu Q, et al: METTL3 promote tumor
proliferation of bladder cancer by accelerating pri-miR221/222
maturation in m6A-dependent manner. Mol Cancer. 18:1102019.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Zhang L, Hou C, Chen C, Guo Y, Yuan W, Yin
D, Liu J and Sun Z: The role of N6-methyladenosine (m6A)
modification in the regulation of circRNAs. Mol Cancer. 19:1052020.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Chen RX, Chen X, Xia LP, Zhang JX, Pan ZZ,
Ma XD, Han K, Chen JW, Judde JG, Deas O, et al: N6-methyladenosine
modification of circNSUN2 facilitates cytoplasmic export and
stabilizes HMGA2 to promote colorectal liver metastasis. Nat
Commun. 10:46952019. View Article : Google Scholar : PubMed/NCBI
|