Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
August-2023 Volume 26 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2023 Volume 26 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Tumor organoid model of colorectal cancer (Review)

  • Authors:
    • Chi Yang
    • Wangwen Xiao
    • Rui Wang
    • Yan Hu
    • Ke Yi
    • Xuan Sun
    • Guanghui Wang
    • Xiaohui Xu
  • View Affiliations / Copyright

    Affiliations: Department of Gastroenterology, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215400, P.R. China, Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215400, P.R. China, School of Pharmacy, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
    Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 328
    |
    Published online on: June 15, 2023
       https://doi.org/10.3892/ol.2023.13914
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The establishment of self‑organizing ‘mini‑gut’ organoid models has brought about a significant breakthrough in biomedical research. Patient‑derived tumor organoids have emerged as valuable tools for preclinical studies, offering the retention of genetic and phenotypic characteristics of the original tumor. These organoids have applications in various research areas, including in vitro modelling, drug discovery and personalized medicine. The present review provided an overview of intestinal organoids, focusing on their unique characteristics and current understanding. The progress made in colorectal cancer (CRC) organoid models was then delved into, discussing their role in drug development and personalized medicine. For instance, it has been indicated that patient‑derived tumor organoids are able to predict response to irinotecan‑based neoadjuvant chemoradiotherapy. Furthermore, the limitations and challenges associated with current CRC organoid models were addressed, along with proposed strategies for enhancing their utility in future basic and translational research.14
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA and Jemal A: Colorectal cancer statistics, 2020. CA Cancer J Clin. 70:145–164. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Wong MCS, Huang J, Lok V, Wang J, Fung F, Ding H and Zheng ZJ: Differences in incidence and mortality trends of colorectal cancer worldwide based on sex, age, and anatomic location. Clin Gastroenterol Hepatol. 19:955–966.e61. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Nakayama M, Wang D, Kok SY, Oshima H and Oshima M: Genetic alterations and microenvironment that drive malignant progression of colorectal cancer: Lessons from mouse and organoid models. J Cancer Prev. 27:1–6. 2022. View Article : Google Scholar : PubMed/NCBI

5 

Jeyakumar A, Dissabandara L and Gopalan V: A critical overview on the biological and molecular features of red and processed meat in colorectal carcinogenesis. J Gastroenterol. 52:407–418. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Chen H, Zheng X, Zong X, Li Z, Li N, Hur J, Fritz CD, Chapman W Jr, Nickel KB, Tipping A, et al: Metabolic syndrome, metabolic comorbid conditions and risk of early-onset colorectal cancer. Gut. 70:1147–1154. 2021. View Article : Google Scholar : PubMed/NCBI

7 

Roney MSI, Lanagan C, Sheng YH, Lawler K, Schmidt C, Nguyen NT, Begun J and Kijanka GS: IgM and IgA augmented autoantibody signatures improve early-stage detection of colorectal cancer prior to nodal and distant spread. Clin Transl Immunology. 10:e13302021. View Article : Google Scholar : PubMed/NCBI

8 

DeStefanis RA, Kratz JD, Olson AM, Sunil A, DeZeeuw AK, Gillette AA, Sha GC, Johnson KA, Pasch CA, Clipson L, et al: Impact of baseline culture conditions of cancer organoids when determining therapeutic response and tumor heterogeneity. Sci Rep. 12:52052022. View Article : Google Scholar : PubMed/NCBI

9 

Ben-David U, Ha G, Tseng YY, Greenwald NF, Oh C, Shih J, McFarland JM, Wong B, Boehm JS, Beroukhim R and Golub TR: Patient-derived xenografts undergo mouse-specific tumor evolution. Nat Genet. 49:1567–1575. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Xu H, Jiao Y, Qin S, Zhao W, Chu Q and Wu K: Organoid technology in disease modelling, drug development, personalized treatment and regeneration medicine. Exp Hematol Oncol. 7:302018. View Article : Google Scholar : PubMed/NCBI

11 

Li M and Izpisua Belmonte JC: Organoids-Preclinical models of human disease. N Engl J Med. 380:569–579. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Peng D, Gleyzer R, Tai WH, Kumar P, Bian Q, Isaacs B, da Rocha EL, Cai S, DiNapoli K, Huang FW and Cahan P: Evaluating the transcriptional fidelity of cancer models. Genome Med. 13:732021. View Article : Google Scholar : PubMed/NCBI

13 

Janakiraman H, Zhu Y, Becker SA, Wang C, Cross A, Curl E, Lewin D, Hoffman BJ, Warren GW, Hill EG, et al: Modeling rectal cancer to advance neoadjuvant precision therapy. Int J Cancer. 147:1405–1418. 2020. View Article : Google Scholar : PubMed/NCBI

14 

Veninga V and Voest EE: Tumor organoids: Opportunities and challenges to guide precision medicine. Cancer Cell. 39:1190–1201. 2021. View Article : Google Scholar : PubMed/NCBI

15 

Fontoura JC, Viezzer C, Dos Santos FG, Ligabue RA, Weinlich R, Puga RD, Antonow D, Severino P and Bonorino C: Comparison of 2D and 3D cell culture models for cell growth, gene expression and drug resistance. Mater Sci Eng C Mater Biol Appl. 107:1102642020. View Article : Google Scholar : PubMed/NCBI

16 

Zhao H, Yan C, Hu Y, Mu L, Huang K, Li Q, Li X, Tao D and Qin J: Sphere-forming assay vs. organoid culture: Determining long-term stemness and the chemoresistant capacity of primary colorectal cancer cells. Int J Oncol. 54:893–904. 2019.PubMed/NCBI

17 

Lehmann R, Lee CM, Shugart EC, Benedetti M, Charo RA, Gartner Z, Hogan B, Knoblich J, Nelson CM and Wilson KM: Human organoids: A new dimension in cell biology. Mol Biol Cell. 30:1129–1137. 2019. View Article : Google Scholar : PubMed/NCBI

18 

Joshi R, Castro De Moura M, Piñeyro D, Alvarez-Errico D, Arribas C and Esteller M: The DNA methylation landscape of human cancer organoids available at the American type culture collection. Epigenetics. 15:1167–1177. 2020. View Article : Google Scholar : PubMed/NCBI

19 

Lancaster MA and Knoblich JA: Organogenesis in a dish: Modeling development and disease using organoid technologies. Science. 345:12471252014. View Article : Google Scholar : PubMed/NCBI

20 

Shirure VS, Hughes CCW and George SC: Engineering Vascularized Organoid-on-a-Chip Models. Annu Rev Biomed Eng. 23:141–167. 2021. View Article : Google Scholar : PubMed/NCBI

21 

Lancaster MA and Knoblich JA: Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc. 9:2329–2340. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Sugimoto S and Sato T: Establishment of 3D intestinal organoid cultures from intestinal stem cells. Methods Mol Biol. 1612:97–105. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Saito Y, Onishi N, Takami H, Seishima R, Inoue H, Hirata Y, Kameyama K, Tsuchihashi K, Sugihara E, Uchino S, et al: Development of a functional thyroid model based on an organoid culture system. Biochem Biophys Res Commun. 497:783–789. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Mazzucchelli S, Piccotti F, Allevi R, Truffi M, Sorrentino L, Russo L, Agozzino M, Signati L, Bonizzi A, Villani L and Corsi F: Establishment and morphological characterization of patient-derived organoids from breast cancer. Biol Proced Online. 21:122019. View Article : Google Scholar : PubMed/NCBI

25 

Seidlitz T, Merker SR, Rothe A, Zakrzewski F, von Neubeck C, Grützmann K, Sommer U, Schweitzer C, Schölch S, Uhlemann H, et al: Human gastric cancer modelling using organoids. Gut. 68:207–217. 2019. View Article : Google Scholar : PubMed/NCBI

26 

Broutier L, Andersson-Rolf A, Hindley CJ, Boj SF, Clevers H, Koo BK and Huch M: Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nat Protoc. 11:1724–1743. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Kopper O, de Witte CJ, Lõhmussaar K, Valle-Inclan JE, Hami N, Kester L, Balgobind AV, Korving J, Proost N, Begthel H, et al: An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat Med. 25:838–849. 2019. View Article : Google Scholar : PubMed/NCBI

28 

Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, Chuva de Sousa Lopes SM and Little MH: Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 526:564–568. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Li X, Francies HE, Secrier M, Perner J, Miremadi A, Galeano-Dalmau N, Barendt WJ, Letchford L, Leyden GM, Goffin EK, et al: Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics. Nat Commun. 9:29832018. View Article : Google Scholar : PubMed/NCBI

30 

Christin JR and Shen MM: Modeling tumor plasticity in organoid models of human cancer. Trends Cancer. 8:161–163. 2022. View Article : Google Scholar : PubMed/NCBI

31 

Kakni P, Hueber R, Knoops K, López-Iglesias C, Truckenmüller R, Habibovic P and Giselbrecht S: Intestinal organoid culture in polymer film-based microwell arrays. Adv Biosyst. 4:e20001262020. View Article : Google Scholar : PubMed/NCBI

32 

Stevens CE and Leblond CP: Rate of renewal of the cells of the intestinal epithelium in the rat. Anat Rec. 97:3731947.PubMed/NCBI

33 

Li X, Larsson P, Ljuslinder I, Öhlund D, Myte R, Löfgren-Burström A, Zingmark C, Ling A, Edin S and Palmqvist R: Ex vivo organoid cultures reveal the importance of the tumor microenvironment for maintenance of colorectal cancer stem cells. Cancers (Basel). 12:9232020. View Article : Google Scholar : PubMed/NCBI

34 

Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ and Clevers H: Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 449:1003–1007. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ and Clevers H: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459:262–265. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Jung P, Sato T, Merlos-Suárez A, Barriga FM, Iglesias M, Rossell D, Auer H, Gallardo M, Blasco MA, Sancho E, et al: Isolation and in vitro expansion of human colonic stem cells. Nat Med. 17:1225–1227. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, Van Houdt WJ, Pronk A, Van Gorp J, Siersema PD and Clevers H: Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology. 141:1762–1772. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Grabinger T, Luks L, Kostadinova F, Zimberlin C, Medema JP, Leist M and Brunner T: Ex vivo culture of intestinal crypt organoids as a model system for assessing cell death induction in intestinal epithelial cells and enteropathy. Cell Death Dis. 5:e12282014. View Article : Google Scholar : PubMed/NCBI

39 

Ganesh K, Wu C, O'Rourke KP, Szeglin BC, Zheng Y, Sauvé CG, Adileh M, Wasserman I, Marco MR, Kim AS, et al: A rectal cancer organoid platform to study individual responses to chemoradiation. Nat Med. 25:1607–1614. 2019. View Article : Google Scholar : PubMed/NCBI

40 

Fujii M, Matano M, Nanki K and Sato T: Efficient genetic engineering of human intestinal organoids using electroporation. Nat Protoc. 10:1474–1485. 2015. View Article : Google Scholar : PubMed/NCBI

41 

van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, van Houdt W, van Gorp J, Taylor-Weiner A, Kester L, et al: Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 161:933–945. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Xie BY and Wu AW: Organoid culture of isolated cells from patient-derived tissues with colorectal cancer. Chin Med J (Engl). 129:2469–2475. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Huch M, Dorrell C, Boj SF, van Es JH, Li VS, van de Wetering M, Sato T, Hamer K, Sasaki N, Finegold MJ, et al: In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 494:247–250. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Huch M, Bonfanti P, Boj SF, Sato T, Loomans CJ, van de Wetering M, Sojoodi M, Li VS, Schuijers J, Gracanin A, et al: Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 32:2708–2721. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Amsterdam A, Raanan C, Schreiber L, Freyhan O, Schechtman L and Givol D: Localization of the stem cell markers LGR5 and Nanog in the normal and the cancerous human ovary and their inter-relationship. Acta Histochem. 115:330–338. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Koo BK, Stange DE, Sato T, Karthaus W, Farin HF, Huch M, van Es JH and Clevers H: Controlled gene expression in primary Lgr5 organoid cultures. Nat Methods. 9:81–83. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Barker N, Rookmaaker MB, Kujala P, Ng A, Leushacke M, Snippert H, van de Wetering M, Tan S, Van Es JH, Huch M, et al: Lgr5(+ve) stem/progenitor cells contribute to nephron formation during kidney development. Cell Rep. 2:540–552. 2012. View Article : Google Scholar : PubMed/NCBI

48 

Kadur Lakshminarasimha Murthy P, Sontake V, Tata A, Kobayashi Y, Macadlo L, Okuda K, Conchola AS, Nakano S, Gregory S, Miller LA, et al: Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. Nature. 604:111–119. 2022. View Article : Google Scholar : PubMed/NCBI

49 

Leung C, Tan SH and Barker N: Recent advances in Lgr5+ stem cell research. Trends Cell Biol. 28:380–391. 2018. View Article : Google Scholar : PubMed/NCBI

50 

Schutgens F and Clevers H: Human organoids: Tools for understanding biology and treating diseases. Annu Rev Pathol. 15:211–234. 2020. View Article : Google Scholar : PubMed/NCBI

51 

Crespo M, Vilar E, Tsai SY, Chang K, Amin S, Srinivasan T, Zhang T, Pipalia NH, Chen HJ, Witherspoon M, et al: Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing. Nat Med. 23:878–884. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Daoud A and Múnera JO: Generation of human colonic organoids from human pluripotent stem cells. Methods Cell Biol. 159:201–227. 2020. View Article : Google Scholar : PubMed/NCBI

53 

Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE, Tolle K, Hoskins EE, Kalinichenko VV, Wells SI, Zorn AM, et al: Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature. 470:105–109. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Múnera JO, Sundaram N, Rankin SA, Hill D, Watson C, Mahe M, Vallance JE, Shroyer NF, Sinagoga KL, Zarzoso-Lacoste A, et al: Differentiation of human pluripotent stem cells into colonic organoids via transient activation of BMP signaling. Cell Stem Cell. 21:51–64.e6. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Fujii M, Shimokawa M, Date S, Takano A, Matano M, Nanki K, Ohta Y, Toshimitsu K, Nakazato Y, Kawasaki K, et al: A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell. 18:827–838. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T and Sato T: Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med. 21:256–262. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Drost J, van Jaarsveld RH, Ponsioen B, Zimberlin C, van Boxtel R, Buijs A, Sachs N, Overmeer RM, Offerhaus GJ, Begthel H, et al: Sequential cancer mutations in cultured human intestinal stem cells. Nature. 521:43–47. 2015. View Article : Google Scholar : PubMed/NCBI

58 

Yan HHN, Siu HC, Ho SL, Yue SSK, Gao Y, Tsui WY, Chan D, Chan AS, Wong JWH, Man AHY, et al: Organoid cultures of early-onset colorectal cancers reveal distinct and rare genetic profiles. Gut. 69:2165–2179. 2020. View Article : Google Scholar : PubMed/NCBI

59 

Weeber F, van de Wetering M, Hoogstraat M, Dijkstra KK, Krijgsman O, Kuilman T, Gadellaa-van Hooijdonk CG, van der Velden DL, Peeper DS, Cuppen EP, et al: Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc Natl Acad Sci USA. 112:13308–13311. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Wang R, Mao Y, Wang W, Zhou X, Wang W, Gao S, Li J, Wen L, Fu W and Tang F: Systematic evaluation of colorectal cancer organoid system by single-cell RNA-Seq analysis. Genome Biol. 23:1062022. View Article : Google Scholar : PubMed/NCBI

61 

Cristobal A, van den Toorn HWP, van de Wetering M, Clevers H, Heck AJR and Mohammed S: Personalized proteome profiles of healthy and tumor human colon organoids reveal both individual diversity and basic features of colorectal cancer. Cell Rep. 18:263–274. 2017. View Article : Google Scholar : PubMed/NCBI

62 

Jabaji Z, Sears CM, Brinkley GJ, Lei NY, Joshi VS, Wang J, Lewis M, Stelzner M, Martín MG and Dunn JC: Use of collagen gel as an alternative extracellular matrix for the in vitro and in vivo growth of murine small intestinal epithelium. Tissue Eng Part C Methods. 19:961–969. 2013. View Article : Google Scholar : PubMed/NCBI

63 

Brown JW and Mills JC: Implantable synthetic organoid matrices for intestinal regeneration. Nat Cell Biol. 19:1307–1308. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Roper J, Tammela T, Cetinbas NM, Akkad A, Roghanian A, Rickelt S, Almeqdadi M, Wu K, Oberli MA, Sánchez-Rivera FJ, et al: In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat Biotechnol. 35:569–576. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Barbáchano A, Fernández-Barral A, Bustamante-Madrid P, Prieto I, Rodríguez-Salas N, Larriba MJ and Muñoz A: Organoids and colorectal cancer. Cancers (Basel). 13:26572021. View Article : Google Scholar : PubMed/NCBI

66 

Kapoor-Narula U and Lenka N: Cancer stem cells and tumor heterogeneity: Deciphering the role in tumor progression and metastasis. Cytokine. 157:1559682022. View Article : Google Scholar : PubMed/NCBI

67 

Zeuner A, Todaro M, Stassi G and De Maria R: Colorectal cancer stem cells: From the crypt to the clinic. Cell Stem Cell. 15:692–705. 2014. View Article : Google Scholar : PubMed/NCBI

68 

Punt CJA, Koopman M and Vermeulen L: From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat Rev Clin Oncol. 14:235–246. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, van Hoeck A, Wood HM, Nomburg J, Gurjao C, Manders F, Dalmasso G, Stege PB, et al: Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature. 580:269–273. 2020. View Article : Google Scholar : PubMed/NCBI

70 

Wang R, Li J, Zhou X, Mao Y, Wang W, Gao S, Wang W, Gao Y, Chen K, Yu S, et al: Single-cell genomic and transcriptomic landscapes of primary and metastatic colorectal cancer tumors. Genome Med. 14:932022. View Article : Google Scholar : PubMed/NCBI

71 

Youk J, Kwon HW, Kim R and Ju YS: Dissecting single-cell genomes through the clonal organoid technique. Exp Mol Med. 53:1503–1511. 2021. View Article : Google Scholar : PubMed/NCBI

72 

Roerink SF, Sasaki N, Lee-Six H, Young MD, Alexandrov LB, Behjati S, Mitchell TJ, Grossmann S, Lightfoot H, Egan DA, et al: Intra-tumour diversification in colorectal cancer at the single-cell level. Nature. 556:457–462. 2018. View Article : Google Scholar : PubMed/NCBI

73 

Ono H, Arai Y, Furukawa E, Narushima D, Matsuura T, Nakamura H, Shiokawa D, Nagai M, Imai T, Mimori K, et al: Single-cell DNA and RNA sequencing reveals the dynamics of intra-tumor heterogeneity in a colorectal cancer model. BMC Biol. 19:2072021. View Article : Google Scholar : PubMed/NCBI

74 

Demmers LC, Kretzschmar K, Van Hoeck A, Bar-Epraïm YE, van den Toorn HWP, Koomen M, van Son G, van Gorp J, Pronk A, Smakman N, et al: Single-cell derived tumor organoids display diversity in HLA class I peptide presentation. Nat Commun. 11:53382020. View Article : Google Scholar : PubMed/NCBI

75 

Greaves M: Evolutionary determinants of cancer. Cancer Discov. 5:806–820. 2015. View Article : Google Scholar : PubMed/NCBI

76 

McGranahan N and Swanton C: Clonal heterogeneity and tumor evolution: Past, present, and the future. Cell. 168:613–628. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Kim SC, Park JW, Seo HY, Kim M, Park JH, Kim GH, Lee JO, Shin YK, Bae JM, Koo BK, et al: Multifocal organoid capturing of colon cancer reveals pervasive intratumoral heterogenous drug responses. Adv Sci (Weinh). 9:e21033602022. View Article : Google Scholar : PubMed/NCBI

78 

Jeong N, Kim SC, Park JW, Park SG, Nam KH, Lee JO, Shin YK, Bae JM, Jeong SY, Kim MJ and Ku JL: Multifocal organoids reveal clonal associations between synchronous intestinal tumors with pervasive heterogeneous drug responses. NPJ Genom Med. 7:422022. View Article : Google Scholar : PubMed/NCBI

79 

Okamoto T, duVerle D, Yaginuma K, Natsume Y, Yamanaka H, Kusama D, Fukuda M, Yamamoto M, Perraudeau F, Srivastava U, et al: Comparative analysis of patient-matched PDOs revealed a reduction in OLFM4-Associated clusters in metastatic lesions in colorectal cancer. Stem Cell Reports. 16:954–967. 2021. View Article : Google Scholar : PubMed/NCBI

80 

Mo S, Tang P, Luo W, Zhang L, Li Y, Hu X, Ma X, Chen Y, Bao Y, He X, et al: Patient-Derived organoids from colorectal cancer with paired liver metastasis reveal tumor heterogeneity and predict response to chemotherapy. Adv Sci (Weinh). 9:e22040972022. View Article : Google Scholar : PubMed/NCBI

81 

Fumagalli A, Drost J, Suijkerbuijk SJE, van Boxtel R, de Ligt J, Offerhaus GJ, Begthel H, Beerling E, Tan EH, Sansom OJ, et al: Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proc Natl Acad Sci USA. 114:E2357–E2364. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Yao Y, Xu X, Yang L, Zhu J, Wan J, Shen L, Xia F, Fu G, Deng Y, Pan M, et al: Patient-Derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell. 26:17–26.e6. 2020. View Article : Google Scholar : PubMed/NCBI

83 

Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, Balgobind AV, Wind K, Gracanin A, Begthel H, et al: A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 172:373–386.e10. 2018. View Article : Google Scholar : PubMed/NCBI

84 

Mullenders J, de Jongh E, Brousali A, Roosen M, Blom JPA, Begthel H, Korving J, Jonges T, Kranenburg O, Meijer R and Clevers HC: Mouse and human urothelial cancer organoids: A tool for bladder cancer research. Proc Natl Acad Sci USA. 116:4567–4574. 2019. View Article : Google Scholar : PubMed/NCBI

85 

Wang XW, Xia TL, Tang HC, Liu X, Han R, Zou X, Zhao YT, Chen MY and Li G: Establishment of a patient-derived organoid model and living biobank for nasopharyngeal carcinoma. Ann Transl Med. 10:5262022. View Article : Google Scholar : PubMed/NCBI

86 

Beato F, Reverón D, Dezsi KB, Ortiz A, Johnson JO, Chen DT, Ali K, Yoder SJ, Jeong D, Malafa M, et al: Establishing a living biobank of patient-derived organoids of intraductal papillary mucinous neoplasms of the pancreas. Lab Invest. 101:204–217. 2021. View Article : Google Scholar : PubMed/NCBI

87 

Li YF, Gao Y, Liang BW, Cao XQ, Sun ZJ, Yu JH, Liu ZD and Han Y: Patient-derived organoids of non-small cells lung cancer and their application for drug screening. Neoplasma. 67:430–437. 2020. View Article : Google Scholar : PubMed/NCBI

88 

Yan HHN, Siu HC, Law S, Ho SL, Yue SSK, Tsui WY, Chan D, Chan AS, Ma S, Lam KO, et al: A Comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell. 23:882–897.e11. 2018. View Article : Google Scholar : PubMed/NCBI

89 

Jacob F, Salinas RD, Zhang DY, Nguyen PTT, Schnoll JG, Wong SZH, Thokala R, Sheikh S, Saxena D, Prokop S, et al: A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell. 180:188–204.e22. 2020. View Article : Google Scholar : PubMed/NCBI

90 

Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández-Mateos J, Khan K, Lampis A, Eason K, Huntingford I, Burke R, et al: Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 359:920–926. 2018. View Article : Google Scholar : PubMed/NCBI

91 

Luo L, Ma Y, Zheng Y, Su J and Huang G: Application progress of organoids in colorectal cancer. Front Cell Dev Biol. 10:8150672022. View Article : Google Scholar : PubMed/NCBI

92 

Seidlitz T and Stange DE: Gastrointestinal cancer organoids-applications in basic and translational cancer research. Exp Mol Med. 53:1459–1470. 2021. View Article : Google Scholar : PubMed/NCBI

93 

Kong J, Lee H, Kim D, Han SK, Ha D, Shin K and Kim S: Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients. Nat Commun. 11:54852020. View Article : Google Scholar : PubMed/NCBI

94 

Pasch CA, Favreau PF, Yueh AE, Babiarz CP, Gillette AA, Sharick JT, Karim MR, Nickel KP, DeZeeuw AK, Sprackling CM, et al: Patient-Derived cancer organoid cultures to predict sensitivity to chemotherapy and radiation. Clin Cancer Res. 25:5376–5387. 2019. View Article : Google Scholar : PubMed/NCBI

95 

Ooft SN, Weeber F, Dijkstra KK, McLean CM, Kaing S, van Werkhoven E, Schipper L, Hoes L, Vis DJ, van de Haar J, et al: Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci Transl Med. 11:eaay25742019. View Article : Google Scholar : PubMed/NCBI

96 

Chen G, Gong T, Wang Z, Wang Z, Lin X, Chen S, Sun C, Zhao W, Kong Y, Ai H, et al: Colorectal cancer organoid models uncover oxaliplatin-resistant mechanisms at single cell resolution. Cell Oncol (Dordr). 45:1155–1167. 2022.PubMed/NCBI

97 

Lv T, Shen L, Xu X, Yao Y, Mu P, Zhang H, Wan J, Wang Y, Guan R, Li X, et al: Patient-derived tumor organoids predict responses to irinotecan-based neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer. Int J Cancer. 152:524–535. 2023. View Article : Google Scholar : PubMed/NCBI

98 

Hongmao S: A Practical Guide to Rational Drug Design. Woodhead Publishing; 2015

99 

Pauli C, Hopkins BD, Prandi D, Shaw R, Fedrizzi T, Sboner A, Sailer V, Augello M, Puca L, Rosati R, et al: Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 7:462–477. 2017. View Article : Google Scholar : PubMed/NCBI

100 

Fielden MR and Kolaja KL: The role of early in vivo toxicity testing in drug discovery toxicology. Expert Opin Drug Saf. 7:107–110. 2008. View Article : Google Scholar : PubMed/NCBI

101 

Lu W, Rettenmeier E, Paszek M, Yueh MF, Tukey RH, Trottier J, Barbier O and Chen S: Crypt organoid culture as an in vitro model in drug metabolism and cytotoxicity studies. Drug Metab Dispos. 45:748–754. 2017. View Article : Google Scholar : PubMed/NCBI

102 

Schnalzger TE, de Groot MH, Zhang C, Mosa MH, Michels BE, Röder J, Darvishi T, Wels WS and Farin HF: 3D model for CAR-mediated cytotoxicity using patient-derived colorectal cancer organoids. EMBO J. 38:e1009282019. View Article : Google Scholar : PubMed/NCBI

103 

Park M, Kwon J, Shin HJ, Moon SM, Kim SB, Shin US, Han YH and Kim Y: Butyrate enhances the efficacy of radiotherapy via FOXO3A in colorectal cancer patient-derived organoids. Int J Oncol. 57:1307–1318. 2020. View Article : Google Scholar : PubMed/NCBI

104 

De Oliveira T, Goldhardt T, Edelmann M, Rogge T, Rauch K, Kyuchukov ND, Menck K, Bleckmann A, Kalucka J, Khan S, et al: Effects of the Novel PFKFB3 Inhibitor KAN0438757 on colorectal cancer cells and its systemic toxicity evaluation in vivo. Cancers (Basel). 13:10112021. View Article : Google Scholar : PubMed/NCBI

105 

Weeber F, Ooft SN, Dijkstra KK and Voest EE: Tumor organoids as a pre-clinical cancer model for drug discovery. Cell Chem Biol. 24:1092–1100. 2017. View Article : Google Scholar : PubMed/NCBI

106 

Rae C, Amato F and Braconi C: Patient-Derived organoids as a model for cancer drug discovery. Int J Mol Sci. 22:34832021. View Article : Google Scholar : PubMed/NCBI

107 

Costales-Carrera A, Fernández-Barral A, Bustamante-Madrid P, Guerra L, Cantero R, Barbáchano A and Muñoz A: Plocabulin displays strong cytotoxic activity in a personalized colon cancer patient-derived 3D Organoid Assay. Mar Drugs. 17:6482019. View Article : Google Scholar : PubMed/NCBI

108 

Zerp SF, Bibi Z, Verbrugge I, Voest EE and Verheij M: Enhancing radiation response by a second-generation TRAIL receptor agonist using a new in vitro organoid model system. Clin Transl Radiat Oncol. 24:1–9. 2020. View Article : Google Scholar : PubMed/NCBI

109 

Norkin M, Ordóñez-Morán P and Huelsken J: High-content, targeted RNA-seq screening in organoids for drug discovery in colorectal cancer. Cell Rep. 35:1090262021. View Article : Google Scholar : PubMed/NCBI

110 

Sailer V, Pauli C, Merzier EC, Mosquera JM, Beltran H, Rubin MA and Rao RA: On-site cytology for development of patient-derived three-dimensional organoid cultures-A pilot study. Anticancer Res. 37:1569–1573. 2017. View Article : Google Scholar : PubMed/NCBI

111 

Sholl LM, Aisner DL, Varella-Garcia M, Berry LD, Dias-Santagata D, Wistuba II, Chen H, Fujimoto J, Kugler K, Franklin WA, et al: Multi-institutional oncogenic driver mutation analysis in lung adenocarcinoma: the lung cancer mutation consortium experience. J Thorac Oncol. 10:768–777. 2015. View Article : Google Scholar : PubMed/NCBI

112 

Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et al: PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 372:2509–2520. 2015. View Article : Google Scholar : PubMed/NCBI

113 

Hsu KS, Adileh M, Martin ML, Makarov V, Chen J, Wu C, Bodo S, Klingler S, Sauvé CG, Szeglin BC, et al: Colorectal cancer develops inherent radiosensitivity that can be predicted using patient-derived organoids. Cancer Res. 82:2298–2312. 2022. View Article : Google Scholar : PubMed/NCBI

114 

Cho YW, Min DW, Kim HP, An Y, Kim S, Youk J, Chun J, Im JP, Song SH, Ju YS, et al: Patient-derived organoids as a preclinical platform for precision medicine in colorectal cancer. Mol Oncol. 16:2396–2412. 2022. View Article : Google Scholar : PubMed/NCBI

115 

Geevimaan K, Guo JY, Shen CN, Jiang JK, Fann CSJ, Hwang MJ, Shui JW, Lin HT, Wang MJ, Shih HC, et al: Patient-Derived organoid serves as a platform for personalized chemotherapy in advanced colorectal cancer patients. Front Oncol. 12:8834372022. View Article : Google Scholar : PubMed/NCBI

116 

Wang T, Pan W, Zheng H, Zheng H, Wang Z, Li JJ, Deng C and Yan J: Accuracy of using a patient-derived tumor organoid culture model to predict the response to chemotherapy regimens in stage IV colorectal cancer: A blinded study. Dis Colon Rectum. 64:833–850. 2021. View Article : Google Scholar : PubMed/NCBI

117 

Bock C, Boutros M, Camp JG, Clarke L, Clevers H, Knoblich JA, Liberali P, Regev A, Rios AC, Stegle O, et al: The Organoid Cell Atlas. Nat Biotechnol. 39:13–17. 2021. View Article : Google Scholar : PubMed/NCBI

118 

Price S, Bhosle S, Gonçalves E, Li X, McClurg DP, Barthorpe S, Beck A, Hall C, Lightfoot H, Farrow L, et al: A suspension technique for efficient large-scale cancer organoid culturing and perturbation screens. Sci Rep. 12:55712022. View Article : Google Scholar : PubMed/NCBI

119 

Ji DB and Wu AW: Organoid in colorectal cancer: Progress and challenges. Chin Med J (Engl). 133:1971–1977. 2020. View Article : Google Scholar : PubMed/NCBI

120 

Marinucci M, Ercan C, Taha-Mehlitz S, Fourie L, Panebianco F, Bianco G, Gallon J, Staubli S, Soysal SD, Zettl A, et al: Standardizing patient-derived organoid generation workflow to avoid microbial contamination from colorectal cancer tissues. Front Oncol. 11:7818332022. View Article : Google Scholar : PubMed/NCBI

121 

Janda CY, Dang LT, You C, Chang J, de Lau W, Zhong ZA, Yan KS, Marecic O, Siepe D, Li X, et al: Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signalling. Nature. 545:234–237. 2017. View Article : Google Scholar : PubMed/NCBI

122 

Gjorevski N, Nikolaev M, Brown TE, Mitrofanova O, Brandenberg N, DelRio FW, Yavitt FM, Liberali P, Anseth KS and Lutolf MP: Tissue geometry drives deterministic organoid patterning. Science. 375:eaaw90212022. View Article : Google Scholar : PubMed/NCBI

123 

Nikolaev M, Mitrofanova O, Broguiere N, Geraldo S, Dutta D, Tabata Y, Elci B, Brandenberg N, Kolotuev I, Gjorevski N, et al: Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature. 585:574–578. 2020. View Article : Google Scholar : PubMed/NCBI

124 

Kleinman HK and Martin GR: Matrigel: Basement membrane matrix with biological activity. Semin Cancer Biol. 15:378–386. 2005. View Article : Google Scholar : PubMed/NCBI

125 

Heo JH, Kang D, Seo SJ and Jin Y: Engineering the extracellular matrix for organoid culture. Int J Stem Cells. 15:60–69. 2022. View Article : Google Scholar : PubMed/NCBI

126 

Rathje F, Klingler S and Aberger F: Organoids for Modeling (Colorectal) Cancer in a Dish. Cancers (Basel). 14:54162022. View Article : Google Scholar : PubMed/NCBI

127 

Ng S, Tan WJ, Pek MMX, Tan MH and Kurisawa M: Mechanically and chemically defined hydrogel matrices for patient-derived colorectal tumor organoid culture. Biomaterials. 219:1194002019. View Article : Google Scholar : PubMed/NCBI

128 

Luo X, Fong ELS, Zhu C, Lin QXX, Xiong M, Li A, Li T, Benoukraf T, Yu H and Liu S: Hydrogel-based colorectal cancer organoid co-culture models. Acta Biomater. 132:461–472. 2021. View Article : Google Scholar : PubMed/NCBI

129 

Tayler IM and Stowers RS: Engineering hydrogels for personalized disease modeling and regenerative medicine. Acta Biomater. 132:4–22. 2021. View Article : Google Scholar : PubMed/NCBI

130 

Yang H, Zhang N and Liu YC: An organoids biobank for recapitulating tumor heterogeneity and personalized medicine. Chin J Cancer Res. 32:408–413. 2020. View Article : Google Scholar : PubMed/NCBI

131 

Boers SN, van Delden JJM and Bredenoord AL: Organoids as hybrids: Ethical implications for the exchange of human tissues. J Med Ethics. 45:131–139. 2019. View Article : Google Scholar : PubMed/NCBI

132 

Botti G, Di Bonito M and Cantile M: Organoid biobanks as a new tool for pre-clinical validation of candidate drug efficacy and safety. Int J Physiol Pathophysiol Pharmacol. 13:17–21. 2021.PubMed/NCBI

133 

Wallaschek N, Niklas C, Pompaiah M, Wiegering A, Germer CT, Kircher S, Brändlein S, Maurus K, Rosenwald A, Yan HHN, et al: Establishing pure cancer organoid cultures: Identification, selection and verification of cancer phenotypes and genotypes. J Mol Biol. 431:2884–2893. 2019. View Article : Google Scholar : PubMed/NCBI

134 

Driehuis E, Kretzschmar K and Clevers H: Establishment of patient-derived cancer organoids for drug-screening applications. Nat Protoc. 15:3380–3409. 2020. View Article : Google Scholar : PubMed/NCBI

135 

Grigorian A and O'Brien CB: Hepatotoxicity secondary to chemotherapy. J Clin Transl Hepatol. 2:95–102. 2014.PubMed/NCBI

136 

Fiore D, Ramesh P, Proto MC, Piscopo C, Franceschelli S, Anzelmo S, Medema JP, Bifulco M and Gazzerro P: Rimonabant kills colon cancer stem cells without inducing toxicity in normal colon organoids. Front Pharmacol. 8:9492018. View Article : Google Scholar : PubMed/NCBI

137 

Idris M, Alves MM, Hofstra RMW, Mahe MM and Melotte V: Intestinal multicellular organoids to study colorectal cancer. Biochim Biophys Acta Rev Cancer. 1876:1885862021. View Article : Google Scholar : PubMed/NCBI

138 

Zhang J, Tavakoli H, Ma L and Li X, Han L and Li X: Immunotherapy discovery on tumor organoid-on-a-chip platforms that recapitulate the tumor microenvironment. Adv Drug Deliv Rev. 187:1143652022. View Article : Google Scholar : PubMed/NCBI

139 

Junttila MR and de Sauvage FJ: Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 501:346–354. 2013. View Article : Google Scholar : PubMed/NCBI

140 

LeSavage BL, Suhar RA, Broguiere N, Lutolf MP and Heilshorn SC: Next-generation cancer organoids. Nat Mater. 21:143–159. 2022. View Article : Google Scholar : PubMed/NCBI

141 

Bulin AL and Hasan T: Spatiotemporal tracking of different cell populations in cancer organoid models for investigations on photodynamic therapy. Methods Mol Biol. 2451:81–90. 2022. View Article : Google Scholar : PubMed/NCBI

142 

Mosa MH, Michels BE, Menche C, Nicolas AM, Darvishi T, Greten FR and Farin HF: A Wnt-Induced phenotypic switch in cancer-associated fibroblasts inhibits EMT in colorectal cancer. Cancer Res. 80:5569–5582. 2020. View Article : Google Scholar : PubMed/NCBI

143 

Naruse M, Ochiai M, Sekine S, Taniguchi H, Yoshida T, Ichikawa H, Sakamoto H, Kubo T, Matsumoto K, Ochiai A and Imai T: Re-expression of REG family and DUOXs genes in CRC organoids by co-culturing with CAFs. Sci Rep. 11:20772021. View Article : Google Scholar : PubMed/NCBI

144 

Noel G, Baetz NW, Staab JF, Donowitz M, Kovbasnjuk O, Pasetti MF and Zachos NC: A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions. Sci Rep. 7:452702017. View Article : Google Scholar : PubMed/NCBI

145 

Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL, Ju J, Liu IH, Chiou SH, Salahudeen AA, Smith AR, et al: Organoid modeling of the tumor immune microenvironment. Cell. 175:1972–1988.e16. 2018. View Article : Google Scholar : PubMed/NCBI

146 

Dijkstra KK, Cattaneo CM, Weeber F, Chalabi M, van de Haar J, Fanchi LF, Slagter M, van der Velden DL, Kaing S, Kelderman S, et al: Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell. 174:1586–1598.e12. 2018. View Article : Google Scholar : PubMed/NCBI

147 

Cattaneo CM, Dijkstra KK, Fanchi LF, Kelderman S, Kaing S, van Rooij N, van den Brink S, Schumacher TN and Voest EE: Tumor organoid-T-cell coculture systems. Nat Protoc. 15:15–39. 2020. View Article : Google Scholar : PubMed/NCBI

148 

Frenkel N, Poghosyan S, Alarcón CR, García SB, Queiroz K, van den Bent L, Laoukili J, Rinkes IB, Vulto P, Kranenburg O and Hagendoorn J: Long-Lived human lymphatic endothelial cells to study lymphatic biology and lymphatic vessel/tumor coculture in a 3D microfluidic model. ACS Biomater Sci Eng. 7:3030–3042. 2021. View Article : Google Scholar : PubMed/NCBI

149 

Sontheimer-Phelps A, Hassell BA and Ingber DE: Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer. 19:65–81. 2019. View Article : Google Scholar : PubMed/NCBI

150 

Bein A, Shin W, Jalili-Firoozinezhad S, Park MH, Sontheimer-Phelps A, Tovaglieri A, Chalkiadaki A, Kim HJ and Ingber DE: Microfluidic Organ-on-a-Chip models of human intestine. Cell Mol Gastroenterol Hepatol. 5:659–668. 2018. View Article : Google Scholar : PubMed/NCBI

151 

Yan J, Li Z and Guo J, Liu S and Guo J: Organ-on-a-chip: A new tool for in vitro research. Biosens Bioelectron. 216:1146262022. View Article : Google Scholar : PubMed/NCBI

152 

Park SE, Georgescu A and Huh D: Organoids-on-a-chip. Science. 364:960–965. 2019. View Article : Google Scholar : PubMed/NCBI

153 

Takebe T, Zhang B and Radisic M: Synergistic engineering: Organoids Meet Organs-on-a-Chip. Cell Stem Cell. 21:297–300. 2017. View Article : Google Scholar : PubMed/NCBI

154 

Karzbrun E, Kshirsagar A, Cohen SR, Hanna JH and Reiner O: Human brain organoids on a chip reveal the physics of folding. Nat Phys. 14:515–522. 2018. View Article : Google Scholar : PubMed/NCBI

155 

Zhang YS, Aleman J, Shin SR, Kilic T, Kim D, Mousavi Shaegh SA, Massa S, Riahi R, Chae S, Hu N, et al: Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc Natl Acad Sci USA. 114:E2293–E2302. 2017.PubMed/NCBI

156 

Skardal A, Shupe T and Atala A: Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Drug Discov Today. 21:1399–1411. 2016. View Article : Google Scholar : PubMed/NCBI

157 

Rajasekar S, Lin DSY, Abdul L, Liu A, Sotra A, Zhang F and Zhang B: IFlowPlate-A Customized 384-Well Plate for the culture of perfusable vascularized colon organoids. Adv Mater. 32:e20029742020. View Article : Google Scholar : PubMed/NCBI

158 

Pinho D, Santos D, Vila A and Carvalho S: Establishment of colorectal cancer organoids in microfluidic-based system. Micromachines (Basel). 12:4972021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yang C, Xiao W, Wang R, Hu Y, Yi K, Sun X, Wang G and Xu X: Tumor organoid model of colorectal cancer (Review). Oncol Lett 26: 328, 2023.
APA
Yang, C., Xiao, W., Wang, R., Hu, Y., Yi, K., Sun, X. ... Xu, X. (2023). Tumor organoid model of colorectal cancer (Review). Oncology Letters, 26, 328. https://doi.org/10.3892/ol.2023.13914
MLA
Yang, C., Xiao, W., Wang, R., Hu, Y., Yi, K., Sun, X., Wang, G., Xu, X."Tumor organoid model of colorectal cancer (Review)". Oncology Letters 26.2 (2023): 328.
Chicago
Yang, C., Xiao, W., Wang, R., Hu, Y., Yi, K., Sun, X., Wang, G., Xu, X."Tumor organoid model of colorectal cancer (Review)". Oncology Letters 26, no. 2 (2023): 328. https://doi.org/10.3892/ol.2023.13914
Copy and paste a formatted citation
x
Spandidos Publications style
Yang C, Xiao W, Wang R, Hu Y, Yi K, Sun X, Wang G and Xu X: Tumor organoid model of colorectal cancer (Review). Oncol Lett 26: 328, 2023.
APA
Yang, C., Xiao, W., Wang, R., Hu, Y., Yi, K., Sun, X. ... Xu, X. (2023). Tumor organoid model of colorectal cancer (Review). Oncology Letters, 26, 328. https://doi.org/10.3892/ol.2023.13914
MLA
Yang, C., Xiao, W., Wang, R., Hu, Y., Yi, K., Sun, X., Wang, G., Xu, X."Tumor organoid model of colorectal cancer (Review)". Oncology Letters 26.2 (2023): 328.
Chicago
Yang, C., Xiao, W., Wang, R., Hu, Y., Yi, K., Sun, X., Wang, G., Xu, X."Tumor organoid model of colorectal cancer (Review)". Oncology Letters 26, no. 2 (2023): 328. https://doi.org/10.3892/ol.2023.13914
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team