|
1
|
McGuigan A, Kelly P, Turkington RC, Jones
C, Coleman HG and McCain RS: Pancreatic cancer: A review of
clinical diagnosis, epidemiology, treatment and outcomes. World J
Gastroenterol. 24:4846–4861. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Zeng S, Pöttler M, Lan B, Grützmann R,
Pilarsky C and Yang H: Chemoresistance in pancreatic cancer. Int J
Mol Sci. 20:45042019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zhang L, Sanagapalli S and Stoita A:
Challenges in diagnosis of pancreatic cancer. World J
Gastroenterol. 24:2047–2060. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ansari D, Tingstedt B, Andersson B,
Holmquist F, Sturesson C, Williamsson C, Sasor A, Borg D, Bauden M
and Andersson R: Pancreatic cancer: Yesterday, today and tomorrow.
Future Oncol. 12:1929–1946. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Fialkow PJ, Singer JW, Raskind WH, Adamson
JW, Jacobson RJ, Bernstein ID, Dow LW, Najfeld V and Veith R:
Clonal development, stem-cell differentiation, and clinical
remissions in acute nonlymphocytic leukemia. N Engl J Med.
317:468–473. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
McCulloch EA, Howatson AF, Buick RN,
Minden MD and Izaguirre CA: Acute myeloblastic leukemia considered
as a clonal hemopathy. Blood Cells. 5:261–282. 1979.PubMed/NCBI
|
|
7
|
Vogelstein B, Fearon ER, Hamilton SR and
Feinberg AP: Use of restriction fragment length polymorphisms to
determine the clonal origin of human tumors. Science. 227:642–645.
1985. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Shlush LI, Zandi S, Mitchell A, Chen WC,
Brandwein JM, Gupta V, Kennedy JA, Schimmer AD, Schuh AC, Yee KW,
et al: Identification of pre-leukaemic haematopoietic stem cells in
acute leukaemia. Nature. 506:328–333. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Reya T, Morrison SJ, Clarke MF and
Weissman IL: Stem cells, cancer, and cancer stem cells. Nature.
414:105–111. 2001. View
Article : Google Scholar : PubMed/NCBI
|
|
10
|
O'Brien CA, Pollett A, Gallinger S and
Dick JE: A human colon cancer cell capable of initiating tumour
growth in immunodeficient mice. Nature. 445:106–110. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Haraguchi N, Ohkuma M, Sakashita H,
Matsuzaki S, Tanaka F, Mimori K, Kamohara Y, Inoue H and Mori M:
CD133+CD44+ population efficiently enriches colon cancer initiating
cells. Ann Surg Oncol. 15:2927–2933. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Haraguchi N, Ishii H, Mimori K, Tanaka F,
Ohkuma M, Kim HM, Akita H, Takiuchi D, Hatano H, Nagano H, et al:
CD13 is a therapeutic target in human liver cancer stem cells. J
Clin Invest. 120:3326–3339. 2010. View
Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ishiwata T, Matsuda Y, Yoshimura H, Sasaki
N, Ishiwata S, Ishikawa N, Takubo K, Arai T and Aida J: Pancreatic
cancer stem cells: Features and detection methods. Pathol Oncol
Res. 24:797–805. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Li H, Wang C, Lan L, Yan L, Li W, Evans I,
Ruiz EJ, Su Q, Zhao G, Wu W, et al: METTL3 promotes oxaliplatin
resistance of gastric cancer CD133+ stem cells by promoting PARP1
mRNA stability. Cell Mol Life Sci. 79:1352022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Li B, Jiang J, Assaraf YG, Xiao H, Chen ZS
and Huang C: Surmounting cancer drug resistance: New insights from
the perspective of N6-methyladenosine RNA modification. Drug Resist
Updat. 53:1007202020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Gao Q, Zheng J, Ni Z, Sun P, Yang C, Cheng
M, Wu M, Zhang X, Yuan L, Zhang Y and Li Y: The m6A
methylation-regulated AFF4 promotes self-renewal of bladder cancer
stem cells. Stem Cells Int. 2020:88492182020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ziegenhain C, Vieth B, Parekh S, Reinius
B, Guillaumet-Adkins A, Smets M, Leonhardt H, Heyn H, Hellmann I
and Enard W: Comparative analysis of single-cell RNA sequencing
methods. Mol Cell. 65:631–643.e4. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Lei Y, Tang R, Xu J, Wang W, Zhang B, Liu
J, Yu X and Shi S: Applications of single-cell sequencing in cancer
research: Progress and perspectives. J Hematol Oncol. 14:912021.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ren X, Zhou C, Lu Y, Ma F, Fan Y and Wang
C: Single-cell RNA-seq reveals invasive trajectory and determines
cancer stem cell-related prognostic genes in pancreatic cancer.
Bioengineered. 12:5056–5068. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Karmakar S, Rauth S, Nallasamy P, Perumal
N, Nimmakayala RK, Leon F, Gupta R, Barkeer S, Venkata RC, Raman V,
et al: RNA polymerase II-associated factor 1 regulates stem cell
features of pancreatic cancer cells, independently of the PAF1
complex, via interactions with PHF5A and DDX3. Gastroenterology.
159:1898–1915.e6. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wood A, Schneider J, Dover J, Johnston M
and Shilatifard A: The Paf1 complex is essential for histone
monoubiquitination by the Rad6-Bre1 complex, which signals for
histone methylation by COMPASS and Dot1p. J Biol Chem.
278:34739–34742. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Chaudhary K, Deb S, Moniaux N, Ponnusamy
MP and Batra SK: Human RNA polymerase II-associated factor complex:
Dysregulation in cancer. Oncogene. 26:7499–7507. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Cao Y, Wang Z, Yan Y, Ji L, He J, Xuan B,
Shen C, Ma Y, Jiang S, Ma D, et al: Enterotoxigenic
bacteroidesfragilis promotes intestinal inflammation and malignancy
by inhibiting exosome-packaged miR-149-3p. Gastroenterology.
161:1552–1566.e12. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Sato H, Sasaki K, Hara T, Kobayashi S,
Doki Y, Eguchi H, Satoh T and Ishii H: Targeting the regulation of
aberrant protein production pathway in gastrointestinal cancer
treatment. Front Oncol. 12:10183332022. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Konno M, Taniguchi M and Ishii H:
Significant epitranscriptomes in heterogeneous cancer. Cancer Sci.
110:2318–2327. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Desrosiers R, Friderici K and Rottman F:
Identification of methylated nucleosides in messenger RNA from
Novikoff hepatoma cells. Porc Natl Acad Sci USA. 71:3971–3975.
1974. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Perry RP and Kelley DE: Existence of
methylated messenger RNA in mouse L cells. Cell. 1:37–42. 1974.
View Article : Google Scholar
|
|
28
|
Dominissini D, Moshitch-Moshkovitz S,
Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K,
Jacob-Hirsch J, Amariglio N, Kupiec M, et al: Topology of the human
and mouse m6A RNA methylomes revealed by m6A-seq. Nature.
485:201–206. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Meyer KD, Saletore Y, Zumbo P, Elemento O,
Mason CE and Jaffrey SR: Comprehensive analysis of mRNA methylation
reveals enrichment in 3´ UTRs and near stop codons. Cell.
149:1635–1646. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang
Y, Yi C, Lindahl T, Pan T, Yang YG and He C: N6-Methyladenosine in
nuclear RNA is a major substrate of the obesity-associated FTO. Nat
Chem Biol. 7:885–887. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Meyer KD and Jaffrey SR: Rethinking m6A
readers, writers, and erasers. Annu Rev Cell Dev Biol. 33:319–342.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wang L, Zhang S, Li H and Xu Y, Wu Q, Shen
J, Li T and Xu Y: Quantification of m6A RNA methylation modulators
pattern was a potential biomarker for prognosis and associated with
tumor immune microenvironment of pancreatic adenocarcinoma. BMC
Cancer. 21:8762021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Xu F, Zhang Z, Yuan M, Zhao Y, Zhou Y, Pei
H and Bai L: M6A regulatory genes play an important role in the
prognosis, progression and immune microenvironment of pancreatic
adenocarcinoma. Cancer Invest. 39:39–54. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Li F, He C, Yao H, Zhao Y, Ye X, Zhou S,
Zou J, Li Y, Li J, Chen S, et al: Glutamate from nerve cells
promotes perineural invasion in pancreatic cancer by regulating
tumor glycolysis through HK2 mRNA-m6A modification. Pharmacol Res.
187:1065552023. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Jiang X, Liu B, Nie Z, Duan L, Xiong Q,
Jin Z, Yang C and Chen Y: The role of m6A modification in the
biological functions and diseases. Signal Transduct Target Ther.
6:742021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Li J, Wang F, Liu Y, Wang H and Ni B:
N6-methyladenosine (m6A) in pancreatic cancer: Regulatory
mechanisms and future direction. Int J Biol Sci. 17:2323–2335.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Guo X, Li K, Jiang W, Hu Y, Xiao W, Huang
Y, Feng Y, Pan Q and Wan R: RNA demethylase ALKBH5 prevents
pancreatic cancer progression by posttranscriptional activation of
PER1 in an m6A-YTHDF2-dependent manner. Mol Cancer. 19:912020.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ma Z and Ji J: N6-methyladenosine (m6A)
RNA modification in cancer stem cells. Stem Cells. 38:1511–1519.
2020. View Article : Google Scholar
|
|
39
|
Shen C, Sheng Y, Zhu AC, Robinson S, Jiang
X, Dong L, Chen H, Su R, Yin Z, Li W, et al: RNA demethylase ALKBH5
selectively promotes tumorigenesis and cancer stem cell
self-renewal in acute myeloid leukemia. Cell Stem Cell.
27:64–80.e9. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Paris J, Morgan M, Campos J, Spencer GJ,
Shmakova A, Ivanova I, Mapperley C, Lawson H, Wotherspoon DA,
Sepulveda C, et al: Targeting the RNA m6A reader YTHDF2 selectively
compromises cancer stem cells in acute myeloid leukemia. Cell Stem
Cell. 25:137–148.e6. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhang C, Samanta D, Lu H, Bullen JW, Zhang
H, Chen I, He X and Semenza GL: Hypoxia induces the breast cancer
stem cell phenotype by HIF-dependent and ALKBH5-mediated
m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA.
113:E2047–E2056. 2016.PubMed/NCBI
|
|
42
|
Zhu P, He F, Hou Y, Tu G, Li Q, Jin T,
Zeng H, Qin Y, Wan X, Qiao Y, et al: A novel hypoxic long noncoding
RNA KB-1980E6.3 maintains breast cancer stem cell stemness via
interacting with IGF2BP1 to facilitate c-Myc mRNA stability.
Oncogene. 40:1609–1627. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Dixit D, Prager BC, Gimple RC, Poh HX,
Wang Y, Wu Q, Qiu Z, Kidwell RL, Kim LJY, Xie Q, et al: The RNA m6A
reader YTHDF2 maintains oncogene expression and is a targetable
dependency in glioblastoma stem cells. Cancer Discov. 11:480–499.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Zhang S, Zhao BS, Zhou A, Lin K, Zheng S,
Lu Z, Chen Y, Sulman EP, Xie K, Bögler O, et al: m6A Demethylase
ALKBH5 maintains tumorigenicity of glioblastoma Stem-like Cells by
sustaining FOXM1 expression and cell proliferation program. Cancer
Cell. 31:591–606.e6. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, Sun
G, Lu Z, Huang Y, Yang CG, et al: m6A RNA methylation regulates the
self-renewal and tumorigenesis of glioblastoma stem cells. Cell
Rep. 18:2622–2634. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ma S, Chen C, Ji X, Liu J, Zhou Q, Wang G,
Yuan W, Kan Q and Sun Z: The interplay between m6A RNA methylation
and noncoding RNA in cancer. J Hematol Oncol. 12:1212019.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Dai D, Wang H, Zhu L, Jin H and Wang X:
N6-methyladenosine links RNA metabolism to cancer progression. Cell
Death Dis. 9:1242018. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ma X, Cao J, Zhou Z, Lu Y, Li Q, Jin Y,
Chen G, Wang W, Ge W, Chen X, et al: N6-methyladenosine
modification-mediated mRNA metabolism is essential for human
pancreatic lineage specification and islet organogenesis. Nat
Commun. 13:41482022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Garg R, Melstrom L, Chen J, He C and Goel
A: Targeting FTO suppresses pancreatic carcinogenesis via
regulating stem cell maintenance and EMT pathway. Cancers (Basel).
14:59192022. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Chijimatsu R, Kobayashi S, Takeda Y,
Kitakaze M, Tatekawa S, Arao Y, Nakayama M, Tachibana N, Saito T,
Ennishi D, et al: Establishment of a reference single-cell RNA
sequencing dataset for human pancreatic adenocarcinoma. iScience.
25:1046592022. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Ishii H, Iwatsuki M, Ieta K, Ohta D,
Haraguchi N, Mimori K and Mori M: Cancer stem cells and
chemoradiation resistance. Cancer Science. 99:1871–1877. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Mehdi A and Rabbani SA: Role of
methylation in pro- and anti-cancer immunity. Cancers (Basel).
13:5452021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Tatekawa S, Ofusa K, Chijimatsu R,
Vecchione A, Tamari K, Ogawa K and Ishii H: Methylosystem for
cancer sieging strategy. Cancers (Basel). 13:50882021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Monné M, Marobbio CMT, Agrimi G, Palmieri
L and Palmieri F: Mitochondrial transport and metabolism of the
major methyl donor and versatile cofactor S-adenosylmethionine, and
related diseases: A review. IUBMB Life. 74:573–591. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wu X and Zhang Y: TET-mediated active DNA
demethylation: Mechanism, function and beyond. Nat Rev Genet.
18:517–534. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
He L, Li H, Wu A, Peng Y, Shu G and Yin G:
Functions of N6-methyladenosine and its role in cancer. Mol Cancer.
18:1762019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Lan Q, Liu PY, Haase J, Bell JL,
Hüttelmaier S and Liu T: The critical role of RNA m6A methylation
in cancer. Cancer Res. 79:1285–1292. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ryall JG, Cliff T, Dalton S and Sartorelli
V: Metabolic reprogramming of stem cell epigenetics. Cell Stem
Cell. 17:651–662. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Nuñez JK, Chen J, Pommier GC, Cogan JZ,
Replogle JM, Adriaens C, Ramadoss GN, Shi Q, Hung KL, Samelson AJ,
et al: Genome-wide programmable transcriptional memory by
CRISPR-based epigenome editing. Cell. 184:2503–2519.e17. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yankova E, Blackaby W, Albertella M, Rak
J, De Braekeleer E, Tsagkogeorga G, Pilka ES, Aspris D, Leggate D,
Hendrick AG, et al: Small molecule inhibition of METTL3 as a
strategy against myeloid leukaemia. Nature. 593:597–601. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Huff S, Tiwari SK, Gonzalez GM, Wang Y and
Rana TM: m6A-RNA demethylase FTO inhibitors impair self-renewal in
glioblastoma stem cells. ACS Chem Biol. 16:324–333. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wang JN, Wang F, Ke J, Li Z, Xu CH, Yang
Q, Chen X, He XY, He Y, Suo XG, et al: Inhibition of METTL3
attenuates renal injury and inflammation by alleviating TAB3 m6A
modifications via IGF2BP2-dependent mechanisms. Sci Transl Med.
14:eabk27092022. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Huang B, Liu C, Wu Q, Zhang J, Min Q,
Sheng T, Wang X and Zou Y: Long non-coding RNA NEAT1 facilitates
pancreatic cancer progression through negative modulation of
miR-506-3p. Biochem Biophys Res Commun. 482:828–834. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Gupta VK and Banerjee S: Isolation of
lipid raft proteins from CD133+ cancer stem cells. Methods Mol
Biol. 1609:25–31. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Li C, Heidt DG, Dalerba P, Burant CF,
Zhang L, Adsay V, Wicha M, Clarke MF and Simeone DM: Identification
of pancreatic cancer stem cells. Cancer Res. 67:1030–1037. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhou T, Liu J, Xie Y, Yuan S, Guo Y, Bai
W, Zhao K, Jiang W, Wang H, Wang H, et al: ESE3/EHF, a promising
target of rosiglitazone, suppresses pancreatic cancer stemness by
downregulating CXCR4. Gut. 71:357–371. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hamada S, Satoh K, Hirota M, Kanno A,
Umino J, Ito H, Masamune A, Kikuta K, Kume K and Shimosegawa T: The
homeobox gene MSX2 determines chemosensitivity of pancreatic cancer
cells via the regulation of transporter gene ABCG2. J Cell Physiol.
227:729–738. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ling X, Wu W, Fan C, Xu C, Liao J, Rich
LJ, Huang RY, Repasky EA, Wang X and Li F: An ABCG2 non-substrate
anticancer agent FL118 targets drug-resistant cancer stem-like
cells and overcomes treatment resistance of human pancreatic
cancer. J Exp Clin Cancer Res. 37:2402018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Li C, Wu JJ, Hynes M, Dosch J, Sarkar B,
Welling TH, Pasca di Magliano M and Simeone DM: c-Met is a marker
of pancreatic cancer stem cells and therapeutic target.
Gastroenterology. 141:2218–2227.e5. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Aliebrahimi S, Kouhsari SM, Arab SS,
Shadboorestan A and Ostad SN: Phytochemicals, withaferin A and
carnosol, overcome pancreatic cancer stem cells as c-Met
inhibitors. Biomed Pharmacother. 106:1527–1536. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Nimmakayala RK, Leon F, Rachagani S, Rauth
S, Nallasamy P, Marimuthu S, Shailendra GK, Chhonker YS, Chugh S,
Chirravuri R, et al: Metabolic programming of distinct cancer stem
cells promotes metastasis of pancreatic ductal adenocarcinoma.
Oncogene. 40:215–231. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Matsuda Y, Tanaka M, Sawabe M, Mori S,
Muramatsu M, Mieno MN, Ishiwata T and Arai T: The stem
cell-specific intermediate filament nestin missense variation
p.A1199P is associated with pancreatic cancer. Oncol Lett.
17:4647–4654. 2019.PubMed/NCBI
|
|
73
|
Xia T, Wu X, Cao M, Zhang P, Shi G, Zhang
J, Lu Z, Wu P, Cai B, Miao Y and Jiang K: The RNA m6A
methyltransferase METTL3 promotes pancreatic cancer cell
proliferation and invasion. Pathol Res Pract. 215:1526662019.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zhang J, Bai R, Li M, Ye H, Wu C, Wang C,
Li S, Tan L, Mai D, Li G, et al: Excessive miR-25-3p maturation via
N6-methyladenosine stimulated by cigarette smoke promotes
pancreatic cancer progression. Nat Commun. 10:18582019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Tang Y, Gao G, Xia WW and Wang JB: METTL3
promotes the growth and metastasis of pancreatic cancer by
regulating the m6A modification and stability of E2F5. Cell Signal.
99:1104402022. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Guo Z, Zhang X, Lin C, Huang Y, Zhong Y,
Guo H, Zheng Z and Weng S: METTL3-IGF2BP3-axis mediates the
proliferation and migration of pancreatic cancer by regulating
spermine synthase m6A modification. Front Oncol. 12:9622042022.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Li Y, Huang H, Zhu Y, Xu B, Chen J, Liu Y,
Zheng X and Chen L: Increased expression of METTL3 in pancreatic
cancer tissues associates with poor survival of the patients. World
J Surg Oncol. 20:2832022. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Song Z, Wang X, Chen F, Chen Q, Liu W,
Yang X, Zhu X, Liu X and Wang P: LncRNA MALAT1 regulates
METTL3-mediated PD-L1 expression and immune infiltrates in
pancreatic cancer. Front Oncol. 12:10042122022. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Taketo K, Konno M, Asai A, Koseki J,
Toratani M, Satoh T, Doki Y, Mori M, Ishii H and Ogawa K: The
epitranscriptome m6A writer METTL3 promotes chemo- and
radioresistance in pancreatic cancer cells. Int J Oncol.
52:621–629. 2018.PubMed/NCBI
|
|
80
|
Jiang Z, Song X, Wei Y, Li Y, Kong D and
Sun J: N(6)-methyladenosine-mediated miR-380-3p maturation and
upregulation promotes cancer aggressiveness in pancreatic cancer.
Bioengineered. 13:14460–14471. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Chen JQ, Tao YP, Hong YG, Li HF, Huang ZP,
Xu XF, Zheng H and Hu LK: M6A-mediated up-regulation of LncRNA
LIFR-AS1 enhances the progression of pancreatic cancer via
miRNA-150-5p/VEGFA/Akt signaling. Cell Cycle. 20:2507–2518. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
He Y, Liu Y, Wu D, Chen L, Luo Z, Shi X,
Li K, Hu H, Qu G, Zhao Q and Lian C: Linc-UROD stabilizes ENO1 and
PKM to strengthen glycolysis, proliferation and migration of
pancreatic cancer cells. Transl Oncol. 27:1015832023. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Tatekawa S, Tamari K, Chijimatsu R, Konno
M, Motooka D, Mitsufuji S, Akita H, Kobayashi S, Murakumo Y, Doki
Y, et al: N(6)-methyladenosine methylation-regulated polo-like
kinase 1 cell cycle homeostasis as a potential target of
radiotherapy in pancreatic adenocarcinoma. Sci Rep. 12:110742022.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Ye X, Wang LP, Han C, Hu H, Ni CM, Qiao
GL, Ouyang L and Ni JS: Increased m6A modification of lncRNA
DBH-AS1 suppresses pancreatic cancer growth and gemcitabine
resistance via the miR-3163/USP44 axis. Ann Transl Med. 10:3042022.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Huang C, Zhou S, Zhang C, Jin Y, Xu G,
Zhou L, Ding G, Pang T, Jia S and Cao L: ZC3H13-mediated
N6-methyladenosine modification of PHF10 is impaired by fisetin
which inhibits the DNA damage response in pancreatic cancer. Cancer
Lett. 530:16–28. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Hou J, Wang Z, Li H, Zhang H and Luo L:
Gene signature and identification of clinical trait-related m6 A
regulators in pancreatic cancer. Front Genet. 11:5222020.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wang W, He Y, Zhai LL, Chen LJ, Yao LC, Wu
L, Tang ZG and Ning JZ: m6A RNA demethylase FTO promotes the
growth, migration and invasion of pancreatic cancer cells through
inhibiting TFPI-2. Epigenetics. 17:1738–1752. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Huang R, Yang L, Zhang Z, Liu X, Fei Y,
Tong WM, Niu Y and Liang Z: RNA m6A demethylase ALKBH5 protects
against pancreatic ductal adenocarcinoma via targeting regulators
of iron metabolism. Front Cell Dev Biol. 9:7242822021. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Cui L, Ma R, Cai J, Guo C, Chen Z, Yao L,
Wang Y, Fan R, Wang X and Shi Y: RNA modifications: Importance in
immune cell biology and related diseases. Signal Transduct Target
Ther. 7:3342022. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Sato H, Hara T, Tatekawa S, Sasaki K,
Kobayashi S, Kitagawa T, Doki Y, Eguchi H, Ogawa K, Uchida S and
Ishii H: Emerging roles of long noncoding and circular RNAs in
pancreatic ductal adenocarcinoma. Front Physiol. 13:10259232022.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Takeda Y, Chijimatsu R, Vecchione A, Arai
T, Kitagawa T, Ofusa K, Yabumoto M, Hirotsu T, Eguchi H, Doki Y and
Ishii H: Impact of one-carbon metabolism-driving epitranscriptome
as a therapeutic target for gastrointestinal cancer. Int J Mol Sci.
22:72782021. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Takeda Y, Chijimatsu R, Ofusa K, Kobayashi
S, Doki Y, Eguchi H and Ishii H: Cancer metabolism challenges
genomic instability and clonal evolution as therapeutic targets.
Cancer Sci. 113:1097–1104. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Zagorac S, Garcia-Bermejo L and Sainz B
Jr: The epigenetic landscape of pancreatic cancer stem cells.
Epigenomes. 2:102018. View Article : Google Scholar
|
|
94
|
Liu Y, Tang G and Li J: Long non-coding
RNA NEAT1 participates in ventilator-induced lung injury by
regulating miR-20b expression. Mol Med Rep. 25:662022. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Xia L, Li F, Qiu J, Feng Z, Xu Z, Chen Z
and Sun J: Oncogenic miR-20b-5p contributes to malignant behaviors
of breast cancer stem cells by bidirectionally regulating CCND1 and
E2F1. BMC Cancer. 20:9492020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Kroeze LI, van der Reijden BA and Jansen
JH: 5-Hydroxymethylcytosine: An epigenetic mark frequently
deregulated in cancer. Biochim Biophys Acta. 1855:144–154.
2015.PubMed/NCBI
|