|
1
|
Sapkota D, Costea DE, Blo M, Bruland O,
Lorens JB, Vasstrand EN and Ibrahim SO: S100A14 inhibits
proliferation of oral carcinoma derived cells through G1-arrest.
Oral Oncol. 48:219–225. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Gonzalez LL, Garrie K and Turner MD: Role
of S100 proteins in health and disease. Biochim Biophys Acta Mol
Cell Res. 1867:1186772020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zaia AA, Sappington KJ, Nisapakultorn K,
Chazin WJ, Dietrich EA, Ross KF and Herzberg MC: Subversion of
antimicrobial calprotectin (S100A8/S100A9 complex) in the cytoplasm
of TR146 epithelial cells after invasion by Listeria monocytogenes.
Mucosal Immunol. 2:43–53. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Zou X, Sorenson BS, Ross KF and Herzberg
MC: Augmentation of epithelial resistance to invading bacteria by
using mRNA transfections. Infect Immun. 81:3975–3983. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Singh P and Ali SA: Multifunctional role
of S100 protein family in the immune system: An Update. Cells.
11:22742022. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Crowe LAN, McLean M, Kitson SM, Melchor
EG, Patommel K, Cao HM, Reilly JH, Leach WJ, Rooney BP, Spencer SJ,
et al: S100A8 & S100A9: Alarmin mediated inflammation in
tendinopathy. Sci Rep. 9:14632019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Schenten V, Plançon S, Jung N, Hann J,
Bueb JL, Bréchard S, Tschirhart EJ and Tolle F: Secretion of the
phosphorylated form of S100A9 from neutrophils is essential for the
proinflammatory functions of extracellular S100A8/A9. Front
Immunol. 9:4472018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
De Veirman K, De Beule N, Maes K, Menu E,
De Bruyne E, De Raeve H, Fostier K, Moreaux J, Kassambara A, Hose
D, et al: Extracellular S100A9 protein in bone marrow supports
multiple myeloma survival by stimulating angiogenesis and cytokine
secretion. Cancer Immunol Res. 5:839–846. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wu Z, Jiang D, Huang X, Cai M, Yuan K and
Huang P: S100A8 as a promising biomarker and oncogenic immune
protein in the tumor microenvironment: An integrative pancancer
analysis. J Oncol. 2022:69476522022.PubMed/NCBI
|
|
10
|
Basso D, Fogar P and Plebani M: The
S100A8/A9 complex reduces CTLA4 expression by immature myeloid
cells: Implications for pancreatic cancer-driven immunosuppression.
Oncoimmunology. 2:e244412013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kligman D and Hilt DC: The S100 protein
family. Trends Biochem Sci. 13:437–443. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Allgower C, Kretz AL, von Karstedt S,
Wittau M, Henne-Bruns D and Lemke J: Friend or Foe: S100 proteins
in cancer. Cancers (Basel). 12:20372020. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Delangre E, Oppliger E, Berkcan S,
Gjorgjieva M, Correia de Sousa M and Foti M: S100 proteins in fatty
liver disease and hepatocellular carcinoma. Int J Mol Sci.
23:110302022. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Austermann J, Spiekermann C and Roth J:
S100 proteins in rheumatic diseases. Nat Rev Rheumatol. 14:528–541.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Raffat MA, Hadi NI, Hosein M, Mirza S,
Ikram S and Akram Z: S100 proteins in oral squamous cell carcinoma.
Clin Chim Acta. 480:143–149. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zhang S, Wang Z, Liu W, Lei R, Shan J, Li
L and Wang X: Distinct prognostic values of S100 mRNA expression in
breast cancer. Sci Rep. 7:397862017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Bai Y, Li LD, Li J and Lu X: Prognostic
values of S100 family members in ovarian cancer patients. BMC
Cancer. 18:12562018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kleindienst A, Hesse F, Bullock MR and
Buchfelder M: The neurotrophic protein S100B: Value as a marker of
brain damage and possible therapeutic implications. Prog Brain Res.
161:317–325. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Li HB, Wang JL, Jin XD, Zhao L, Ye HL,
Kuang YB, Ma Y, Jiang XY and Yu ZY: Comprehensive analysis of the
transcriptional expressions and prognostic value of S100A family in
pancreatic ductal adenocarcinoma. BMC Cancer. 21:10392021.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Arantes L, De Carvalho AC, Melendez ME and
Lopes Carvalho A: Serum, plasma and saliva biomarkers for head and
neck cancer. Expert Rev Mol Diagn. 18:85–112. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chi H, Xie X, Yan Y, Peng G, Strohmer DF,
Lai G, Zhao S, Xia Z and Tian G: Natural killer cell-related
prognosis signature characterizes immune landscape and predicts
prognosis of HNSCC. Front Immunol. 13:10186852022. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Xu J, Lai F, Liu Y, Tan Z, Zheng C, Wang
J, Guo H, Jiang L, Ge X, Lan X, et al: Novel computer-aided
reconstruction of soft tissue defects following resection of oral
and oropharyngeal squamous cell carcinoma. World J Surg Oncol.
20:1962022. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Runge A, Mayr M, Schwaiger T, Sprung S,
Chetta P, Gottfried T, Dudas J, Greier MC, Glatz MC, Haybaeck J, et
al: Patient-derived head and neck tumor slice cultures: A versatile
tool to study oncolytic virus action. Sci Rep. 12:153342022.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Mei Z, Zhang K, Lam AK, Huang J, Qiu F,
Qiao B and Zhang Y: MUC1 as a target for CAR-T therapy in head and
neck squamous cell carinoma. Cancer Med. 9:640–652. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Chen Y, Li ZY, Zhou GQ and Sun Y: An
Immune-related gene prognostic index for head and neck squamous
cell carcinoma. Clin Cancer Res. 27:330–341. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Chen Y, Jiang N, Chen M, Sui B and Liu X:
Identification of tumor antigens and immune subtypes in head and
neck squamous cell carcinoma for mRNA vaccine development. Front
Cell Dev Biol. 10:10647542022. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wei T, Leisegang M, Xia M, Kiyotani K, Li
N, Zeng C, Deng C, Jiang J, Harada M, Agrawal N, et al: Generation
of neoantigen-specific T cells for adoptive cell transfer for
treating head and neck squamous cell carcinoma. Oncoimmunology.
10:19297262021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Massarelli E, William W, Johnson F, Kies
M, Ferrarotto R, Guo M, Feng L, Lee JJ, Tran H, Kim YU, et al:
Combining immune checkpoint blockade and tumor-specific vaccine for
patients with incurable human papillomavirus 16-related cancer: A
phase 2 clinical trial. JAMA Oncol. 5:67–73. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Sasahira T, Kurihara-Shimomura M,
Shimojjukoku Y, Shima K and Kirita T: Searching for new molecular
targets for oral squamous cell carcinoma with a view to clinical
implementation of precision medicine. J Pers Med. 12:4132022.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Sundriyal D, Arya L, Saha R, Walia M and
Nayak PP: Hypercalcemia of malignancy: Time to pull the brakes.
Indian J Surg Oncol. 13:28–32. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Roesch Ely M, Nees M, Karsai S, Magele I,
Bogumil R, Vorderwulbecke S, Ruess A, Dietz A, Schnolzer M and
Bosch FX: Transcript and proteome analysis reveals reduced
expression of calgranulins in head and neck squamous cell
carcinoma. Eur J Cell Biol. 84:431–444. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Argyris PP, Slama Z, Malz C, Koutlas IG,
Pakzad B, Patel K, Kademani D, Khammanivong A and Herzberg MC:
Intracellular calprotectin (S100A8/A9) controls epithelial
differentiation and caspase-mediated cleavage of EGFR in head and
neck squamous cell carcinoma. Oral Oncol. 95:1–10. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Oliveira MV, Fraga CA, Barros LO, Pereira
CS, Santos SH, Basile JR, Gomez RS, Guimaraes AL and De-Paula AM:
High expression of S100A4 and endoglin is associated with
metastatic disease in head and neck squamous cell carcinoma. Clin
Exp Metastasis. 31:639–649. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Tripathi SC, Matta A, Kaur J, Grigull J,
Chauhan SS, Thakar A, Shukla NK, Duggal R, DattaGupta S, Ralhan R
and Siu KW: Nuclear S100A7 is associated with poor prognosis in
head and neck cancer. PLoS One. 5:e119392010. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Sapkota D, Bruland O, Bøe OE, Bakeer H,
Elgindi OA, Vasstrand EN and Ibrahim SO: Expression profile of the
S100 gene family members in oral squamous cell carcinomas. J Oral
Pathol Med. 37:607–615. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Driemel O, Murzik U, Escher N, Melle C,
Bleul A, Dahse R, Reichert TE, Ernst G and von Eggeling F: Protein
profiling of oral brush biopsies: S100A8 and S100A9 can
differentiate between normal, premalignant, and tumor cells.
Proteomics Clin Appl. 1:486–493. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Hu S, Arellano M, Boontheung P, Wang J,
Zhou H, Jiang J, Elashoff D, Wei R, Loo JA and Wong DT: Salivary
proteomics for oral cancer biomarker discovery. Clin Cancer Res.
14:6246–6252. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kesting MR, Sudhoff H, Hasler RJ,
Nieberler M, Pautke C, Wolff KD, Wagenpfeil S, Al-Benna S, Jacobsen
F and Steinstraesser L: Psoriasin (S100A7) up-regulation in oral
squamous cell carcinoma and its relation to clinicopathologic
features. Oral Oncol. 45:731–736. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Sapkota D, Bruland O, Costea DE, Haugen H,
Vasstrand EN and Ibrahim SO: S100A14 regulates the invasive
potential of oral squamous cell carcinoma derived cell-lines in
vitro by modulating expression of matrix metalloproteinases, MMP1
and MMP9. Eur J Cancer. 47:600–710. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Roman E, Lunde ML, Miron T,
Warnakulasauriya S, Johannessen AC, Vasstrand EN and Ibrahim SO:
Analysis of protein expression profile of oral squamous cell
carcinoma by MALDI-TOF-MS. Anticancer Res. 33:837–845.
2013.PubMed/NCBI
|
|
41
|
Jou YJ, Hua CH, Lin CD, Lai CH, Huang SH,
Tsai MH, Kao JY and Lin CW: S100A8 as potential salivary biomarker
of oral squamous cell carcinoma using nanoLC-MS/MS. Clin Chim Acta.
436:121–129. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Natarajan J, Hunter K, Mutalik VS and
Radhakrishnan R: Overexpression of S100A4 as a biomarker of
metastasis and recurrence in oral squamous cell carcinoma. J Appl
Oral Sci. 22:426–433. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kumar M, Srivastava G, Kaur J, Assi J,
Alyass A, Leong I, MacMillan C, Witterick I, Shukla NK, Thakar A,
et al: Prognostic significance of cytoplasmic S100A2 overexpression
in oral cancer patients. J Transl Med. 13:82015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Sapkota D, Bruland O, Parajuli H, Osman
TA, Teh MT, Johannessen AC and Costea DE: S100A16 promotes
differentiation and contributes to a less aggressive tumor
phenotype in oral squamous cell carcinoma. BMC Cancer. 15:6312015.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Sood A, Mishra D, Kharbanda OP, Chauhan
SS, Gupta SD, Deo SSV, Yadav R, Ralhan R, Kumawat R and Kaur H:
Role of S100 A7 as a diagnostic biomarker in oral potentially
malignant disorders and oral cancer. J Oral Maxillofac Pathol.
26:166–172. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Pandey S, Osman TA, Sharma S, Vallenari
EM, Shahdadfar A, Pun CB, Gautam DK, Uhlin-Hansen L, Rikardsen O,
Johannessen AC, et al: Loss of S100A14 expression at the
tumor-invading front correlates with poor differentiation and worse
prognosis in oral squamous cell carcinoma. Head Neck. 42:2088–2098.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Tyszkiewicz T, Jarzab M, Szymczyk C, Kowal
M, Krajewska J, Jaworska M, Fraczek M, Krajewska A, Hadas E,
Swierniak M, et al: Epidermal differentiation complex (locus 1q21)
gene expression in head and neck cancer and normal mucosa. Folia
Histochem Cytobiol. 52:79–89. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Qu ZF, Ma H, Duan XF, Wu R and Zou Y: The
expression and significance of S100A9 in oral squamous cell
carcinoma. Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi.
31:219–222. 2017.(In Chinese). PubMed/NCBI
|
|
49
|
Suzuki S, Honda K, Nanjo H, Iikawa N,
Tsuji T, Kawasaki Y, Yamazaki K, Sato T, Saito H, Shiina K and
Ishikawa K: CD147 expression correlates with lymph node metastasis
in T1-T2 squamous cell carcinoma of the tongue. Oncol Lett.
14:4670–4676. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Argyris PP, Slama ZM, Ross KF,
Khammanivong A and Herzberg MC: Calprotectin and the initiation and
progression of head and neck cancer. J Dent Res. 97:674–682. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Mints M, Landin D, Nasman A, Mirzaie L,
Ursu RG, Zupancic M, Marklund L, Dalianis T, Munck-Wikland E and
Ramqvist T: Tumour inflammation signature and expression of S100A12
and HLA class I improve survival in HPV-negative hypopharyngeal
cancer. Sci Rep. 11:17822021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ohnishi Y, Yasui H, Kakudo K and Nozaki M:
Lapatinib-resistant cancer cells possessing epithelial cancer stem
cell properties develop sensitivity during sphere formation by
activation of the ErbB/AKT/cyclin D2 pathway. Oncol Rep.
36:3058–3064. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ohnishi Y, Yasui H, Nozaki M and Nakajima
M: Molecularly-targeted therapy for the oral cancer stem cells. Jpn
Dent Sci Rev. 54:88–103. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Moriyama-Kita M, Endo Y, Yonemura Y,
Heizmann CW, Miyamori H, Sato H, Yamamoto E and Sasaki T: S100A4
regulates E-cadherin expression in oral squamous cell carcinoma.
Cancer Lett. 230:211–218. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Sun Q, Wang R, Wang Y, Luo J, Wang P and
Cheng B: Notch1 is a potential therapeutic target for the treatment
of human hepatitis B virus X protein-associated hepatocellular
carcinoma. Oncol Rep. 31:933–939. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Khammanivong A, Wang C, Sorenson BS, Ross
KF and Herzberg MC: S100A8/A9 (calprotectin) negatively regulates
G2/M cell cycle progression and growth of squamous cell carcinoma.
PLoS One. 8:e693952013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Cheng S, Zhang X, Huang N, Qiu Q, Jin Y
and Jiang D: Down-regulation of S100A9 inhibits osteosarcoma cell
growth through inactivating MAPK and NF-κB signaling pathways. BMC
Cancer. 16:2532016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Li R, Li W, He F, Zhang M, Luo H and Tang
H: Systematic screening identifies a TEAD4-S100A13 axis modulating
cisplatin sensitivity of oral squamous cell carcinoma cells. J Oral
Pathol Med. 50:882–890. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Takeuchi S, Kasamatsu A, Yamatoji M,
Nakashima D, Endo-Sakamoto Y, Koide N, Takahara T, Shimizu T, Iyoda
M, Ogawara K, et al: TEAD4-YAP interaction regulates tumoral growth
by controlling cell-cycle arrest at the G1 phase. Biochem Biophys
Res Commun. 486:385–390. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sivadasan P, Gupta MK, Sathe G, Sudheendra
HV, Sunny SP, Renu D, Hari PS, Gowda H, Suresh A, Kuriakose MA and
Sirdeshmukh R: Salivary proteins from dysplastic leukoplakia and
oral squamous cell carcinoma and their potential for early
detection. J Proteomics. 212:1035742020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Shan J, Sun Z, Yang J, Xu J, Shi W, Wu Y,
Fan Y and Li H: Discovery and preclinical validation of proteomic
biomarkers in saliva for early detection of oral squamous cell
carcinomas. Oral Dis. 25:97–107. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Cheng YS, Rees T and Wright J: A review of
research on salivary biomarkers for oral. Clin Transl Med. 3:32014.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Xu J, Gross N, Zang Y, Cao S, Yang F, Yang
Z, Yu W, Lei D and Pan X: Overexpression of S100A4 predicts
migration, invasion, and poor prognosis of hypopharyngeal squamous
cell carcinoma. Mol Diagn Ther. 23:407–417. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Cheng LH, Hung KF, Huang TF, Hsieh HP,
Wang SY, Huang CY and Lo JF: Attenuation of cancer-initiating cells
stemness properties by abrogating S100A4 calcium binding ability in
head and neck cancers. Oncotarget. 7:78946–78957. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Wu P, Quan H, Kang J, He J, Luo S, Xie C,
Xu J, Tang Y and Zhao S: Downregulation of Calcium-Binding Protein
S100A9 Inhibits Hypopharyngeal Cancer Cell Proliferation and
Invasion Ability Through Inactivation of NF-kappaB Signaling. Oncol
Res. 25:1479–1488. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wang C, Lin C, Tao Q, Zhao S, Liu H and Li
L: Evaluation of calcium-binding protein A11 promotes the
carcinogenesis of hypopharygeal squamous cell carcinoma via the
PI3K/AKT signaling pathway. Am J Transl Res. 11:3472–3480.
2019.PubMed/NCBI
|
|
67
|
Hu W, Tao Z, Zhou Q, Zhao D, Gu L, Zhu S
and Chen J: Effects of S100 calcium-binding protein A8 (S100A8) and
S100 calcium-binding protein A9 (S100A9) on matrix
metalloproteinase (MMP) expression in nasopharyngeal carcinoma
CNE-2 cells. Transl Cancer Res. 10:1874–1884. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Isaksen B and Fagerhol MK: Calprotectin
inhibits matrix metalloproteinases by sequestration of zinc. Mol
Pathol. 54:289–292. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Carlsson H, Yhr M, Petersson S, Collins N,
Polyak K and Enerback C: Psoriasin (S100A7) and calgranulin-B
(S100A9) induction is dependent on reactive oxygen species and is
downregulated by Bcl-2 and antioxidants. Cancer Biol Ther.
4:998–1005. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ichikawa M, Williams R, Wang L, Vogl T and
Srikrishna G: S100A8/A9 activate key genes and pathways in colon
tumor progression. Mol Cancer Res. 9:133–148. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Xiao Z, Li M, Li G, Fu Y, Peng F, Chen Y
and Chen Z: Proteomic characterization reveals a molecular portrait
of nasopharyngeal carcinoma differentiation. J Cancer. 8:570–577.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Li A, Shi D, Xu B, Wang J, Tang YL, Xiao
W, Shen G, Deng W and Zhao C: S100A6 promotes cell proliferation in
human nasopharyngeal carcinoma via the p38/MAPK signaling pathway.
Mol Carcinog. 56:972–984. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wen L, Ding Y, Chen X, Tian K, Li D, Liang
K and Yue B: Influences of S100A8 and S100A9 on proliferation of
nasopharyngeal carcinoma cells through PI3K/Akt signaling pathway.
Biomed Res Int. 2021:99173652021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wang C, Wang X, Han A, Wang Y and Jiang H:
Proof-of-concept study investigating the role of S100P-RAGE in
nasopharyngeal carcinoma. Exp Ther Med. 21:4702021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Liu L, Liu S, Deng P, Liang Y, Xiao R,
Tang LQ, Chen J, Chen QY, Guan P, Yan SM, et al: Targeting the
IRAK1-S100A9 axis overcomes resistance to paclitaxel in
nasopharyngeal carcinoma. Cancer Res. 81:1413–1425. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Meng DF, Sun R, Liu GY, Peng LX, Zheng LS,
Xie P, Lin ST, Mei Y, Qiang YY, Li CZ, et al: S100A14 suppresses
metastasis of nasopharyngeal carcinoma by inhibition of NF-kB
signaling through degradation of IRAK1. Oncogene. 39:5307–5322.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Png YT, Yang AZY, Lee MY, Chua MJM and Lim
CM: The role of NK cells in EBV infection and EBV-associated NPC.
Viruses. 13:3002021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Lin Z, Deng L, Ji J, Cheng C, Wan X, Jiang
R, Tang J, Zhuo H, Sun B and Chen Y: S100A4 hypomethylation affects
epithelial-mesenchymal transition partially induced by LMP2A in
nasopharyngeal carcinoma. Mol Carcinog. 55:1467–1476. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Hino R, Uozaki H, Murakami N, Ushiku T,
Shinozaki A, Ishikawa S, Morikawa T, Nakaya T, Sakatani T, Takada K
and Fukayama M: Activation of DNA methyltransferase 1 by EBV latent
membrane protein 2A leads to promoter hypermethylation of PTEN gene
in gastric carcinoma. Cancer Res. 69:2766–2774. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Chakladar J, Li WT, Bouvet M, Chang EY,
Wang-Rodriguez J and Ongkeko WM: Papillary thyroid carcinoma
variants are characterized by Co-dysregulation of immune and cancer
associated genes. Cancers (Basel). 11:11792019. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Martinez-Aguilar J, Clifton-Bligh R and
Molloy MP: A multiplexed, targeted mass spectrometry assay of the
S100 protein family uncovers the isoform-specific expression in
thyroid tumours. BMC Cancer. 15:1992015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Nipp M, Elsner M, Balluff B, Meding S,
Sarioglu H, Ueffing M, Rauser S, Unger K, Höfler H, Walch A and
Zitzelsberger H: S100-A10, thioredoxin, and S100-A6 as biomarkers
of papillary thyroid carcinoma with lymph node metastasis
identified by MALDI imaging. J Mol Med (Berl). 90:163–174. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhao M, Wang KJ, Tan Z, Zheng CM, Liang Z
and Zhao JQ: Identification of potential therapeutic targets for
papillary thyroid carcinoma by bioinformatics analysis. Oncol Lett.
11:51–58. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wang X, Sun Z, Tian W, Piao C, Xie X, Zang
J, Peng S, Yu X and Wang Y: S100A12 is a promising biomarker in
papillary thyroid cancer. Sci Rep. 10:17242020. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wang G, Li HN, Cui XQ, Xu T, Dong ML, Li
SY and Li XR: S100A1 is a potential biomarker for papillary thyroid
carcinoma diagnosis and prognosis. J Cancer. 12:5760–5771. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Huang P and Xue J: Long non-coding RNA
FOXD2-AS1 regulates the tumorigenesis and progression of breast
cancer via the S100 calcium binding protein A1/Hippo signaling
pathway. Int J Mol Med. 46:1477–1489. 2020.PubMed/NCBI
|
|
87
|
Tian J and Luo B: Identification of three
prognosis-related differentially expressed lncRNAs driven by copy
number variation in thyroid cancer. J Immunol Res.
2022:92037962022. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Xia F, Chen Y, Jiang B, Du X, Peng Y, Wang
W, Huang W, Feng T and Li X: Long Noncoding RNA HOXA-AS2 promotes
papillary thyroid cancer progression by regulating
miR-520c-3p/S100A4 pathway. Cell Physiol Biochem. 50:1659–1672.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Cheon MG, Son YW, Lee JH, Jang HH and
Chung YS: Mts1 Up-regulation is associated with aggressive
pathological features in thyroid cancer. Cancer Genomics
Proteomics. 16:369–376. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wang Y, Ye H, Yang Y, Li J, Cen A and Zhao
L: microRNA-181a promotes the oncogene S100A2 and enhances
papillary thyroid carcinoma growth by mediating the expression of
histone demethylase KDM5C. J Endocrinol Invest. 45:17–28. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Economopoulou P, Kotsantis I and Psyrri A:
Special issue about head and neck cancers: HPV positive cancers.
Int J Mol Sci. 21:33882020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Tokuzen N, Nakashiro KI, Tojo S, Goda H,
Kuribayashi N and Uchida D: Human papillomavirus-16 infection and
p16 expression in oral squamous cell carcinoma. Oncol Lett.
22:5282021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Mork J, Lie AK, Glattre E, Hallmans G,
Jellum E, Koskela P, Møller B, Pukkala E, Schiller JT, Youngman L,
et al: Human papillomavirus infection as a risk factor for
squamous-cell carcinoma of the head and neck. N Engl J Med.
344:1125–1131. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Ang KK, Harris J, Wheeler R, Weber R,
Rosenthal DI, Nguyen-Tân PF, Westra WH, Chung CH, Jordan RC, Lu C,
et al: Human papillomavirus and survival of patients with
oropharyngeal cancer. N Engl J Med. 363:24–35. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Wuerdemann N, Wittekindt C, Sharma SJ,
Prigge ES, Reuschenbach M, Gattenlöhner S, Klussmann JP and Wagner
S: Risk factors for overall survival outcome in surgically treated
human papillomavirus-negative and positive patients with
oropharyngeal cancer. Oncol Res Treat. 40:320–327. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Granata R, Miceli R, Orlandi E, Perrone F,
Cortelazzi B, Franceschini M, Locati LD, Bossi P, Bergamini C,
Mirabile A, et al: Tumor stage, human papillomavirus and smoking
status affect the survival of patients with oropharyngeal cancer:
An Italian validation study. Ann Oncol. 23:1832–1837. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Paver EC, Currie AM, Gupta R and Dahlstrom
JE: Human papilloma virus related squamous cell carcinomas of the
head and neck: Diagnosis, clinical implications and detection of
HPV. Pathology. 52:179–191. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Lo WY, Lai CC, Hua CH, Tsai MH, Huang SY,
Tsai CH and Tsai FJ: S100A8 is identified as a biomarker of
HPV18-infected oral squamous cell carcinomas by suppression
subtraction hybridization, clinical proteomics analysis, and
immunohistochemistry staining. J Proteome Res. 6:2143–2151. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Liu S, Xie Y, Luo W, Dou Y, Xiong H, Xiao
Z and Zhang XL: PE_PGRS31-S100A9 interaction promotes mycobacterial
survival in macrophages through the regulation of NF-κB-TNF-α
signaling and arachidonic acid metabolism. Front Microbiol.
11:8452020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Khammanivong A, Sorenson BS, Ross KF,
Dickerson EB, Hasina R, Lingen MW and Herzberg MC: Involvement of
calprotectin (S100A8/A9) in molecular pathways associated with
HNSCC. Oncotarget. 7:14029–14047. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Gyöngyösi E, Szalmás A, Ferenczi A,
Póliska S, Kónya J and Veress G: Transcriptional regulation of
genes involved in keratinocyte differentiation by human
papillomavirus 16 oncoproteins. Arch Virol. 160:389–398. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Alghamdi MA, Al-Eitan LN, Tarkhan AH and
Al-Qarqaz FA: Global gene methylation profiling of common warts
caused by human papillomaviruses infection. Saudi J Biol Sci.
28:612–622. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Han S, Locke AK, Oaks LA, Cheng YL and
Coté GL: Nanoparticle-based assay for detection of S100P mRNA using
surface-enhanced Raman spectroscopy. J Biomed Opt. 24:1–9.
2019.
|
|
104
|
Jiao X, Zhang H, Xu X, Yu Y, Zhang H,
Zhang J, Ning L, Hao F, Liu X, Niu M, et al: S100A4 knockout
sensitizes anaplastic thyroid carcinoma cells harboring
BRAFV600E/Mt to Vemurafenib. Cell Physiol Biochem. 49:1143–1162.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Björk P, Björk A, Vogl T, Stenström M,
Liberg D, Olsson A, Roth J, Ivars F and Leanderson T:
Identification of human S100A9 as a novel target for treatment of
autoimmune disease via binding to quinoline-3-carboxamides. PLoS
Biol. 7:e972009. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Mouta Carreira C, LaVallee TM, Tarantini
F, Jackson A, Lathrop JT, Hampton B, Burgess WH and Maciag T:
S100A13 is involved in the regulation of fibroblast growth factor-1
and p40 synaptotagmin-1 release in vitro. J Biol Chem.
273:22224–22231. 1998. View Article : Google Scholar : PubMed/NCBI
|