|
1
|
Fan J, Feng Z and Chen N: Spermidine as a
target for cancer therapy. Pharmacol Res. 159:1049432020.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Carioli G, Malvezzi M, Bertuccio P, Hashim
D, Waxman S, Negri E, Boffetta P and La Vecchia C: Cancer mortality
in the elderly in 11 countries worldwide, 1970–2015. Ann Oncol.
30:1344–1355. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Mattiuzzi C and Lippi G: Current cancer
epidemiology. J Epidemiol Glob Health. 9:217–222. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Yang Y: Cancer immunotherapy: Harnessing
the immune system to battle cancer. J Clin Invest. 125:3335–3337.
2015. View
Article : Google Scholar : PubMed/NCBI
|
|
5
|
Cha JH, Chan LC, Li CW, Hsu JL and Hung
MC: Mechanisms controlling PD-L1 expression in cancer. Mol Cell.
76:359–370. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Rowshanravan B, Halliday N and Sansom DM:
CTLA-4: A moving target in immunotherapy. Blood. 131:58–67. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Jiang H, Shi Z, Wang P, Wang C, Yang L, Du
G, Zhang H, Shi B, Jia J, Li Q, et al: Claudin18.2-specific
chimeric antigen receptor engineered T cells for the treatment of
gastric Cancer. J Natl Cancer Inst. 111:409–418. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Christgen S, Tweedell RE and Kanneganti
TD: Programming inflammatory cell death for therapy. Pharmacol
Ther. 232:1080102022. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Fang Y, Tian S, Pan Y, Li W, Wang Q, Tang
Y, Yu T, Wu X, Shi Y, Ma P and Shu Y: Pyroptosis: A new frontier in
cancer. Biomed Pharmacother. 121:1095952020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Loveless R, Bloomquist R and Teng Y:
Pyroptosis at the forefront of anticancer immunity. J Exp Clin
Cancer Res. 40:2642021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Duan Q, Zhang H, Zheng J and Zhang L:
Turning cold into hot: Firing up the tumor microenvironment. Trends
Cancer. 6:605–618. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Niu X, Chen L, Li Y, Hu Z and He F:
Ferroptosis, necroptosis, and pyroptosis in the tumor
microenvironment: Perspectives for immunotherapy of SCLC. Semin
Cancer Biol. 86:273–285. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Rioja-Blanco E, Arroyo-Solera I, Álamo P,
Casanova I, Gallardo A, Unzueta U, Serna N, Sánchez-García L, Quer
M, Villaverde A, et al: CXCR4-targeted nanotoxins induce
GSDME-dependent pyroptosis in head and neck squamous cell
carcinoma. J Exp Clin Cancer Res. 41:492022. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Liu Y, Guo K, Ding M, Zhang B, Xiao N,
Tang Z, Wang Z, Zhang C and Shubhra QTH: Engineered magnetic
polymer nanoparticles can ameliorate breast cancer treatment
inducing pyroptosis-starvation along with chemotherapy. ACS Appl
Mater Interfaces. 14:42541–42557. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wu D, Wang S, Yu G and Chen X: Cell death
mediated by the pyroptosis pathway with the aid of nanotechnology:
Prospects for cancer therapy. Angew Chem Int Ed Engl. 60:8018–8034.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Gogoi M, Shreenivas MM and Chakravortty D:
Hoodwinking the big-eater to prosper: The salmonella-macrophage
paradigm. J Innate Immun. 11:289–299. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zychlinsky A, Prevost MC and Sansonetti
PJ: Shigella flexneri induces apoptosis in infected macrophages.
Nature. 358:167–169. 1992. View
Article : Google Scholar : PubMed/NCBI
|
|
18
|
Hu X, Chen H, Xu H, Wu Y, Wu C, Jia C, Li
Y, Sheng S, Xu C, Xu H, et al: Role of pyroptosis in traumatic
brain and spinal cord injuries. Int J Biol Sci. 16:2042–2050. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Carneiro BA and El-Deiry WS: Targeting
apoptosis in cancer therapy. Nat Rev Clin Oncol. 17:395–417. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
D'Souza CA and Heitman J: Dismantling the
cryptococcus coat. Trends Microbiol. 9:112–113. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Xia X, Wang X, Cheng Z, Qin W, Lei L,
Jiang J and Hu J: The role of pyroptosis in cancer: pro-cancer or
pro-‘host’? Cell Death Dis. 10:6502019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Xu YJ, Zheng L, Hu YW and Wang Q:
Pyroptosis and its relationship to atherosclerosis. Clin Chim Acta.
476:28–37. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Xia S, Zhang Z, Magupalli VG, Pablo JL,
Dong Y, Vora SM, Wang L, Fu TM, Jacobson MP, Greka A, et al:
Gasdermin D pore structure reveals preferential release of mature
interleukin-1. Nature. 593:607–611. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Burdette BE, Esparza AN, Zhu H and Wang S:
Gasdermin D in pyroptosis. Acta Pharm Sin B. 11:2768–2782. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Broz P, Pelegrín P and Shao F: The
gasdermins, a protein family executing cell death and inflammation.
Nat Rev Immunol. 20:143–157. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Fischer FA, Chen KW and Bezbradica JS:
Posttranslational and therapeutic control of gasdermin-mediated
pyroptosis and inflammation. Front Immunol. 12:6611622021.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Van Opdenbosch N and Lamkanfi M: Caspases
in cell death, inflammation, and disease. Immunity. 50:1352–1364.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Man SM and Kanneganti TD: Regulation of
inflammasome activation. Immunol Rev. 265:6–21. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Cai X, Chen J, Xu H, Liu S, Jiang QX,
Halfmann R and Chen ZJ: Prion-like polymerization underlies signal
transduction in antiviral immune defense and inflammasome
activation. Cell. 156:1207–1222. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Shao S, Chen C, Shi G, Zhou Y, Wei Y, Fan
N, Yang Y, Wu L and Zhang T: Therapeutic potential of the target on
NLRP3 inflammasome in multiple sclerosis. Pharmacol Ther.
227:1078802021. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lahooti B, Chhibber T, Bagchi S,
Varahachalam SP and Jayant RD: Therapeutic role of inflammasome
inhibitors in neurodegenerative disorders. Brain Behav Immun.
91:771–783. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Li S, Wang L, Xu Z, Huang Y, Xue R, Yue T,
Xu L, Gong F, Bai S, Wu Q, et al: ASC deglutathionylation is a
checkpoint for NLRP3 inflammasome activation. J Exp Med.
218:e202026372021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wang C, Yang T, Xiao J, Xu C, Alippe Y,
Sun K, Kanneganti TD, Monahan JB, Abu-Amer Y, Lieberman J and
Mbalaviele G: NLRP3 inflammasome activation triggers gasdermin
D-independent inflammation. Sci Immunol. 6:eabj38592021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
He Y, Hara H and Núñez G: Mechanism and
regulation of NLRP3 inflammasome activation. Trends Biochem Sci.
41:1012–1021. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zheng M and Kanneganti TD: The regulation
of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis,
apoptosis, and necroptosis (PANoptosis). Immunol Rev. 297:26–38.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Swanson KV, Deng M and Ting JPY: The NLRP3
inflammasome: Molecular activation and regulation to therapeutics.
Nat Rev Immunol. 19:477–489. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Teng JF, Mei QB, Zhou XG, Tang Y, Xiong R,
Qiu WQ, Pan R, Law BYK, Wong VKW, Yu CL, et al: Polyphyllin VI
induces caspase-1-mediated pyroptosis via the induction of
ROS/NF-κB/NLRP3/GSDMD signal axis in non-small cell lung cancer.
Cancers (Basel). 12:1932020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ershaid N, Sharon Y, Doron H, Raz Y, Shani
O, Cohen N, Monteran L, Leider-Trejo L, Ben-Shmuel A, Yassin M, et
al: NLRP3 inflammasome in fibroblasts links tissue damage with
inflammation in breast cancer progression and metastasis. Nat
Commun. 10:43752019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Li T, Fu B, Zhang X, Zhou Y, Yang M, Cao
M, Chen Y, Tan Y and Hu R: Overproduction of gastrointestinal 5-HT
promotes colitis-associated colorectal cancer progression via
enhancing NLRP3 inflammasome activation. Cancer Immunol Res.
9:1008–1023. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hsu SK, Li CY, Lin IL, Syue WJ, Chen YF,
Cheng KC, Teng YN, Lin YH, Yen CH and Chiu CC: Inflammation-related
pyroptosis, a novel programmed cell death pathway, and its
crosstalk with immune therapy in cancer treatment. Theranostics.
11:8813–8835. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
He X, Fan X, Bai B, Lu N, Zhang S and
Zhang L: Pyroptosis is a critical immune-inflammatory response
involved in atherosclerosis. Pharmacol Res. 165:1054472021.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zheng X, Chen W, Gong F, Chen Y and Chen
E: The role and mechanism of pyroptosis and potential therapeutic
targets in sepsis: A review. Front Immunol. 12:7119392021.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wright SS, Vasudevan SO and Rathinam VA:
Mechanisms and consequences of noncanonical inflammasome-mediated
pyroptosis. J Mol Biol. 434:1672452022. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Burzynski LC and Clarke MCH: Death is
coming and the clot thickens, as pyroptosis feeds the fire.
Immunity. 50:1339–1341. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kayagaki N, Warming S, Lamkanfi M, Vande
Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, et al:
Non-canonical inflammasome activation targets caspase-11. Nature.
479:117–121. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Xia S, Hollingsworth LR IV and Wu H:
Mechanism and regulation of gasdermin-mediated cell death. Cold
Spring Harb Perspect Biol. 12:a0364002020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Deng W, Bai Y, Deng F, Pan Y, Mei S, Zheng
Z, Min R, Wu Z, Li W, Miao R, et al: Streptococcal pyrogenic
exotoxin B cleaves GSDMA and triggers pyroptosis. Nature.
602:496–502. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
LaRock DL, Johnson AF, Wilde S, Sands JS,
Monteiro MP and LaRock CN: Group A streptococcus induces
GSDMA-dependent pyroptosis in keratinocytes. Nature. 605:527–531.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zhou Z, He H, Wang K, Shi X, Wang Y, Su Y,
Wang Y, Li D, Liu W, Zhang Y, et al: Granzyme A from cytotoxic
lymphocytes cleaves GSDMB to trigger pyroptosis in target cells.
Science. 368:eaaz75482020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhang JY, Zhou B, Sun RY, Ai YL, Cheng K,
Li FN, Wang BR, Liu FJ, Jiang ZH, Wang WJ, et al: The metabolite
α-KG induces GSDMC-dependent pyroptosis through death receptor
6-activated caspase-8. Cell Res. 31:980–997. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wang K, Sun Q, Zhong X, Zeng M, Zeng H,
Shi X, Li Z, Wang Y, Zhao Q, Shao F and Ding J: Structural
mechanism for GSDMD targeting by autoprocessed caspases in
pyroptosis. Cell. 180:941–955.e20. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wang Y, Gao W, Shi X, Ding J, Liu W, He H,
Wang K and Shao F: Chemotherapy drugs induce pyroptosis through
caspase-3 cleavage of a gasdermin. Nature. 547:99–103. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Barnett KC and Ting JPY: Mitochondrial
GSDMD pores DAMPen pyroptosis. Immunity. 52:424–426. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Liu Z, Gan L, Xu Y, Luo D, Ren Q, Wu S and
Sun C: Melatonin alleviates inflammasome-induced pyroptosis through
inhibiting NF-κB/GSDMD signal in mice adipose tissue. J Pineal Res.
63:2017. View Article : Google Scholar
|
|
55
|
Humphries F, Shmuel-Galia L,
Ketelut-Carneiro N, Li S, Wang B, Nemmara VV, Wilson R, Jiang Z,
Khalighinejad F, Muneeruddin K, et al: Succination inactivates
gasdermin D and blocks pyroptosis. Science. 369:1633–1637. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yi YS: Regulatory roles of the caspase-11
non-canonical inflammasome in inflammatory diseases. Immune Netw.
18:e412018. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yu P, Zhang X, Liu N, Tang L, Peng C and
Chen X: Pyroptosis: Mechanisms and diseases. Signal Transduct
Target Ther. 6:1282021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Tang D, Kang R, Berghe TV, Vandenabeele P
and Kroemer G: The molecular machinery of regulated cell death.
Cell Res. 29:347–364. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi
AA and Lei P: Ferroptosis: Mechanisms and links with diseases.
Signal Transduct Target Ther. 6:492021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Bertheloot D, Latz E and Franklin BS:
Necroptosis, pyroptosis and apoptosis: An intricate game of cell
death. Cell Mol Immunol. 18:1106–1121. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Rao Z, Zhu Y, Yang P, Chen Z, Xia Y, Qiao
C, Liu W, Deng H, Li J, Ning P and Wang Z: Pyroptosis in
inflammatory diseases and cancer. Theranostics. 12:4310–4329. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yan H, Luo B, Wu X, Guan F, Yu X, Zhao L,
Ke X, Wu J and Yuan J: Cisplatin induces pyroptosis via activation
of MEG3/NLRP3/caspase-1/GSDMD pathway in triple-negative breast
cancer. Int J Biol Sci. 17:2606–2621. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Yuan R, Zhao W, Wang QQ, He J, Han S, Gao
H, Feng Y and Yang S: Cucurbitacin B inhibits non-small cell lung
cancer in vivo and in vitro by triggering
TLR4/NLRP3/GSDMD-dependent pyroptosis. Pharmacol Res.
170:1057482021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Yu J, Li S, Qi J, Chen Z, Wu Y, Guo J,
Wang K, Sun X and Zheng J: Cleavage of GSDME by caspase-3
determines lobaplatin-induced pyroptosis in colon cancer cells.
Cell Death Dis. 10:1932019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhang Z, Zhang Y, Xia S, Kong Q, Li S, Liu
X, Junqueira C, Meza-Sosa KF, Mok TMY, Ansara J, et al: Gasdermin E
suppresses tumour growth by activating anti-tumour immunity.
Nature. 579:415–420. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ibrahim J, De Schutter E and Op de Beeck
K: GSDME: A potential ally in cancer detection and treatment.
Trends Cancer. 7:392–394. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Jia Y, Wang X, Deng Y, Li S, Xu X, Qin Y
and Peng L: Pyroptosis provides new strategies for the treatment of
cancer. J Cancer. 14:140–151. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Jiang M, Qi L, Li L and Li Y: The
caspase-3/GSDME signal pathway as a switch between apoptosis and
pyroptosis in cancer. Cell Death Discov. 6:1122020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Carlino MS, Larkin J and Long GV: Immune
checkpoint inhibitors in melanoma. Lancet. 398:1002–1014. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Lou X, Li K, Qian B, Li Y, Zhang D and Cui
W: Pyroptosis correlates with tumor immunity and prognosis. Commun
Biol. 5:9172022. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Li S, Chen P, Cheng B, Liu Y, Zhang X, Xu
Q, Huang M, Dai X, Huang K, Zhang L, et al: Pyroptosis predicts
immunotherapy outcomes across multiple cancer types. Clin Immunol.
245:1091632022. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Gao W, Wang X, Zhou Y, Wang X and Yu Y:
Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor
immunotherapy. Signal Transduct Target Ther. 7:1962022. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Krysko DV, Garg AD, Kaczmarek A, Krysko O,
Agostinis P and Vandenabeele P: Immunogenic cell death and DAMPs in
cancer therapy. Nat Rev Cancer. 12:860–875. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Galluzzi L, Vitale I, Warren S, Adjemian
S, Agostinis P, Martinez AB, Chan TA, Coukos G, Demaria S, Deutsch
E, et al: Consensus guidelines for the definition, detection and
interpretation of immunogenic cell death. J Immunother Cancer.
8:e0003372020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Yatim N, Jusforgues-Saklani H, Orozco S,
Schulz O, Barreira da Silva R, Reis e Sousa C, Green DR, Oberst A
and Albert ML: RIPK1 and NF-κB signaling in dying cells determines
cross-priming of CD8+ T cells. Science. 350:328–334.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chen DS and Mellman I: Oncology meets
immunology: The cancer-immunity cycle. Immunity. 39:1–10. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zeng C, Wang R and Tan H: Role of
pyroptosis in cardiovascular diseases and its therapeutic
implications. Int J Biol Sci. 15:1345–1357. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Song M, Cui M and Liu K: Therapeutic
strategies to overcome cisplatin resistance in ovarian cancer. Eur
J Med Chem. 232:1142052022. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Aloss K and Hamar P: Recent preclinical
and clinical progress in liposomal doxorubicin. Pharmaceutics.
15:8932023. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Vasan N, Baselga J and Hyman DM: A view on
drug resistance in cancer. Nature. 575:299–309. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhang Z, Zhang H, Li D, Zhou X, Qin Q and
Zhang Q: Caspase-3-mediated GSDME induced pyroptosis in breast
cancer cells through the ROS/JNK signalling pathway. J Cell Mol
Med. 25:8159–8168. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Ghosh S: Cisplatin: The first metal based
anticancer drug. Bioorg Chem. 88:1029252019. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Stater EP, Sonay AY, Hart C and Grimm J:
The ancillary effects of nanoparticles and their implications for
nanomedicine. Nat Nanotechnol. 16:1180–1194. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Kirtane AR, Verma M, Karandikar P, Furin
J, Langer R and Traverso G: Nanotechnology approaches for global
infectious diseases. Nat Nanotechnol. 16:369–384. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Ploetz E, Zimpel A, Cauda V, Bauer D, Lamb
DC, Haisch C, Zahler S, Vollmar AM, Wuttke S and Engelke H:
Metal-organic framework nanoparticles induce pyroptosis in cells
controlled by the extracellular pH. Adv Mater. 32:e19072672020.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zhang Y, Yu W, Chen M, Zhang B, Zhang L
and Li P: The applications of nanozymes in cancer therapy: Based on
regulating pyroptosis, ferroptosis and autophagy of tumor cells.
Nanoscale. Jun 28–2023.(Epub ahead of print). View Article : Google Scholar
|
|
88
|
Yang F, Bettadapura SN, Smeltzer MS, Zhu H
and Wang S: Pyroptosis and pyroptosis-inducing cancer drugs. Acta
Pharmacol Si. 43:2462–2473. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Wu D, Zhu X, Ao J, Song E and Song Y:
Delivery of ultrasmall nanoparticles to the cytosolic compartment
of pyroptotic J774A.1 macrophages via GSDMDNterm
membrane pores. ACS Appl Mater Interfaces. 13:50823–50835. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zhao P, Wang M, Chen M, Chen Z, Peng X,
Zhou F, Song J and Qu J: Programming cell pyroptosis with
biomimetic nanoparticles for solid tumor immunotherapy.
Biomaterials. 254:1201422020. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Kuchur OA, Tsymbal SA, Shestovskaya MV,
Serov NS, Dukhinova MS and Shtil AA: Metal-derived nanoparticles in
tumor theranostics: Potential and limitations. J Inorg Biochem.
209:1111172020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Cui R, Wu Q, Wang J, Zheng X, Ou R, Xu Y,
Qu S and Li D: Hydrogel-by-design: Smart delivery system for cancer
immunotherapy. Front Bioeng Biotechnol. 9:7234902021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Guimarães CF, Ahmed R, Marques AP, Reis RL
and Demirci U: Engineering hydrogel-based biomedical photonics:
Design, fabrication, and applications. Adv Mater. 33:e20065822021.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Yin Y, Li X, Ma H, Zhang J, Yu D, Zhao R,
Yu S, Nie G and Wang H: In situ transforming RNA nanovaccines from
polyethylenimine functionalized graphene oxide hydrogel for durable
cancer immunotherapy. Nano Lett. 21:2224–2231. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Sepantafar M, Maheronnaghsh R, Mohammadi
H, Radmanesh F, Hasani-Sadrabadi MM, Ebrahimi M and Baharvand H:
Engineered hydrogels in cancer therapy and diagnosis. Trends
Biotechnol. 35:1074–1087. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Guedes G, Wang S, Fontana F, Figueiredo P,
Lindén J, Correia A, Pinto RJB, Hietala S, Sousa FL and Santos HA:
Dual-crosslinked dynamic hydrogel incorporating {Mo154}
with pH and NIR responsiveness for chemo-photothermal therapy. Adv
Mater. 33:e20077612021. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Guan QF, Yang HB, Han ZM, Ling ZC, Yin CH,
Yang KP, Zhao YX and Yu SH: Sustainable cellulose-nanofiber-based
hydrogels. ACS Nano. 15:7889–7898. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Basti ATK, Jonoobi M, Sepahvand S, Ashori
A, Siracusa V, Rabie D, Mekonnen TH and Naeijian F: Employing
cellulose nanofiber-based hydrogels for burn dressing. Polymers
(Basel). 14:12072022. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Balahura LR, Dinescu S, Balaș M, Cernencu
A, Lungu A, Vlăsceanu GM, Iovu H and Costache M: Cellulose
nanofiber-based hydrogels embedding 5-FU promote pyroptosis
activation in breast cancer cells and support human adipose-derived
stem cell proliferation, opening new perspectives for breast tissue
engineering. Pharmaceutics. 13:11892021. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Gonsalves A, Tambe P, Le D, Thakore D,
Wadajkar AS, Yang J, Nguyen KT and Menon JU: Synthesis and
characterization of a novel pH-responsive drug-releasing
nanocomposite hydrogel for skin cancer therapy and wound healing. J
Mater Chem B. 9:9533–9546. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Wang S, Zhang Z, Wei S, He F, Li Z, Wang
HH, Huang Y and Nie Z: Near-infrared light-controllable MXene
hydrogel for tunable on-demand release of therapeutic proteins.
Acta Biomater. 130:138–148. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Zheng Y, Wang W, Zhao J, Wu C, Ye C, Huang
M and Wang S: Preparation of injectable temperature-sensitive
chitosan-based hydrogel for combined hyperthermia and chemotherapy
of colon cancer. Carbohydr Polym. 222:1150392019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Zhang W, Jin X, Li H, Zhang RR and Wu CW:
Injectable and body temperature sensitive hydrogels based on
chitosan and hyaluronic acid for pH sensitive drug release.
Carbohydr Polym. 186:82–90. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Phan VHG, Murugesan M, Huong H, Le TT,
Phan TH, Manivasagan P, Mathiyalagan R, Jang ES, Yang DC, Li Y and
Thambi T: Cellulose nanocrystals-incorporated thermosensitive
hydrogel for controlled release, 3D printing, and breast cancer
treatment applications. ACS Appl Mater Interfaces. 14:42812–42826.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Kim J, Francis DM, Sestito LF, Archer PA,
Manspeaker MP, O'Melia MJ and Thomas SN: Thermosensitive hydrogel
releasing nitric oxide donor and anti-CTLA-4 micelles for
anti-tumor immunotherapy. Nat Commun. 13:14792022. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Robinson N, Ganesan R, Hegedűs C, Kovács
K, Kufer TA and Virág L: Programmed necrotic cell death of
macrophages: Focus on pyroptosis, necroptosis, and parthanatos.
Redox Biol. 26:1012392019. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Zhang Y, Chen X, Gueydan C and Han J:
Plasma membrane changes during programmed cell deaths. Cell Res.
28:9–21. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Ding J, Wang K, Liu W, She Y, Sun Q, Shi
J, Sun H, Wang DC and Shao F: Pore-forming activity and structural
autoinhibition of the gasdermin family. Nature. 535:111–116. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Liu X, Zhang Z, Ruan J, Pan Y, Magupalli
VG, Wu H and Lieberman J: Inflammasome-activated gasdermin D causes
pyroptosis by forming membrane pores. Nature. 535:153–158. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Wei X, Xie F, Zhou X, Wu Y, Yan H, Liu T,
Huang J, Wang F, Zhou F and Zhang L: Role of pyroptosis in
inflammation and cancer. Cell Mol Immunol. 19:971–992. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Liu Z, Wang T, She Y, Wu K, Gu S, Li L,
Dong C, Chen C and Zhou Y: N6-methyladenosine-modified
circIGF2BP3 inhibits CD8+ T-cell responses to facilitate
tumor immune evasion by promoting the deubiquitination of PD-L1 in
non-small cell lung cancer. Mol Cancer. 20:1052021. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Xia R, Geng G, Yu X, Xu Z, Guo J, Liu H,
Li N, Li Z, Li Y, Dai X, et al: LINC01140 promotes the progression
and tumor immune escape in lung cancer by sponging multiple
microRNAs. J Immunother Cancer. 9:e0027462021. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Hou J, Hsu JM and Hung MC: Molecular
mechanisms and functions of pyroptosis in inflammation and
antitumor immunity. Mol Cell. 81:4579–4590. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Wei Y, Yang L, Pandeya A, Cui J, Zhang Y
and Li Z: Pyroptosis-induced inflammation and tissue damage. J Mol
Biol. 434:1673012022. View Article : Google Scholar : PubMed/NCBI
|