Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
September-2023 Volume 26 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2023 Volume 26 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Application of pyroptosis in tumor research (Review)

  • Authors:
    • Jianing Tan
    • Ziliang Zhuo
    • Yu Si
  • View Affiliations / Copyright

    Affiliations: Department of Neurology, Changshu No. 2 People's Hospital, Affiliated Changshu Hospital of Nantong University, Suzhou, Jiangsu 215500, P.R. China, Basic Research Laboratory, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
    Copyright: © Tan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 376
    |
    Published online on: July 18, 2023
       https://doi.org/10.3892/ol.2023.13962
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

As a potent clinical strategy, cancer therapy has sparked an academic boom over the past few years. Immune checkpoint inhibitors (ICIs) have been demonstrated to be highly successful. These achievements have progressed cancer treatment and have made an indelible mark on cancer. However, the inherent complexity of cancer means that only part of the population can benefit from this treatment. Pyroptosis is a new suicidal cellular mechanism that induces inflammation by releasing immunogenic cellular components. Inflammatory signaling cascades mediated by pyroptosis commonly inspire numerous cell lysis in immune diseases. Contrariwise, this consequence may be a promising target in cancer research. Therefore, the present study briefly described programmed cell death processes and their potential roles in cancer. Because of the rapid development of bioengineering in cancer, the present study also examined the associated scaffolding available for cancer, highlighting advances in tumor engineering approaches. Ultimately, an improved understanding of pyroptosis and tumor scaffolding might shed light on a combination that can be manipulated for therapeutic purposes.
View Figures

Figure 1

View References

1 

Fan J, Feng Z and Chen N: Spermidine as a target for cancer therapy. Pharmacol Res. 159:1049432020. View Article : Google Scholar : PubMed/NCBI

2 

Carioli G, Malvezzi M, Bertuccio P, Hashim D, Waxman S, Negri E, Boffetta P and La Vecchia C: Cancer mortality in the elderly in 11 countries worldwide, 1970–2015. Ann Oncol. 30:1344–1355. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Mattiuzzi C and Lippi G: Current cancer epidemiology. J Epidemiol Glob Health. 9:217–222. 2019. View Article : Google Scholar : PubMed/NCBI

4 

Yang Y: Cancer immunotherapy: Harnessing the immune system to battle cancer. J Clin Invest. 125:3335–3337. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Cha JH, Chan LC, Li CW, Hsu JL and Hung MC: Mechanisms controlling PD-L1 expression in cancer. Mol Cell. 76:359–370. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Rowshanravan B, Halliday N and Sansom DM: CTLA-4: A moving target in immunotherapy. Blood. 131:58–67. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Jiang H, Shi Z, Wang P, Wang C, Yang L, Du G, Zhang H, Shi B, Jia J, Li Q, et al: Claudin18.2-specific chimeric antigen receptor engineered T cells for the treatment of gastric Cancer. J Natl Cancer Inst. 111:409–418. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Christgen S, Tweedell RE and Kanneganti TD: Programming inflammatory cell death for therapy. Pharmacol Ther. 232:1080102022. View Article : Google Scholar : PubMed/NCBI

9 

Fang Y, Tian S, Pan Y, Li W, Wang Q, Tang Y, Yu T, Wu X, Shi Y, Ma P and Shu Y: Pyroptosis: A new frontier in cancer. Biomed Pharmacother. 121:1095952020. View Article : Google Scholar : PubMed/NCBI

10 

Loveless R, Bloomquist R and Teng Y: Pyroptosis at the forefront of anticancer immunity. J Exp Clin Cancer Res. 40:2642021. View Article : Google Scholar : PubMed/NCBI

11 

Duan Q, Zhang H, Zheng J and Zhang L: Turning cold into hot: Firing up the tumor microenvironment. Trends Cancer. 6:605–618. 2020. View Article : Google Scholar : PubMed/NCBI

12 

Niu X, Chen L, Li Y, Hu Z and He F: Ferroptosis, necroptosis, and pyroptosis in the tumor microenvironment: Perspectives for immunotherapy of SCLC. Semin Cancer Biol. 86:273–285. 2022. View Article : Google Scholar : PubMed/NCBI

13 

Rioja-Blanco E, Arroyo-Solera I, Álamo P, Casanova I, Gallardo A, Unzueta U, Serna N, Sánchez-García L, Quer M, Villaverde A, et al: CXCR4-targeted nanotoxins induce GSDME-dependent pyroptosis in head and neck squamous cell carcinoma. J Exp Clin Cancer Res. 41:492022. View Article : Google Scholar : PubMed/NCBI

14 

Liu Y, Guo K, Ding M, Zhang B, Xiao N, Tang Z, Wang Z, Zhang C and Shubhra QTH: Engineered magnetic polymer nanoparticles can ameliorate breast cancer treatment inducing pyroptosis-starvation along with chemotherapy. ACS Appl Mater Interfaces. 14:42541–42557. 2022. View Article : Google Scholar : PubMed/NCBI

15 

Wu D, Wang S, Yu G and Chen X: Cell death mediated by the pyroptosis pathway with the aid of nanotechnology: Prospects for cancer therapy. Angew Chem Int Ed Engl. 60:8018–8034. 2021. View Article : Google Scholar : PubMed/NCBI

16 

Gogoi M, Shreenivas MM and Chakravortty D: Hoodwinking the big-eater to prosper: The salmonella-macrophage paradigm. J Innate Immun. 11:289–299. 2019. View Article : Google Scholar : PubMed/NCBI

17 

Zychlinsky A, Prevost MC and Sansonetti PJ: Shigella flexneri induces apoptosis in infected macrophages. Nature. 358:167–169. 1992. View Article : Google Scholar : PubMed/NCBI

18 

Hu X, Chen H, Xu H, Wu Y, Wu C, Jia C, Li Y, Sheng S, Xu C, Xu H, et al: Role of pyroptosis in traumatic brain and spinal cord injuries. Int J Biol Sci. 16:2042–2050. 2020. View Article : Google Scholar : PubMed/NCBI

19 

Carneiro BA and El-Deiry WS: Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 17:395–417. 2020. View Article : Google Scholar : PubMed/NCBI

20 

D'Souza CA and Heitman J: Dismantling the cryptococcus coat. Trends Microbiol. 9:112–113. 2001. View Article : Google Scholar : PubMed/NCBI

21 

Xia X, Wang X, Cheng Z, Qin W, Lei L, Jiang J and Hu J: The role of pyroptosis in cancer: pro-cancer or pro-‘host’? Cell Death Dis. 10:6502019. View Article : Google Scholar : PubMed/NCBI

22 

Xu YJ, Zheng L, Hu YW and Wang Q: Pyroptosis and its relationship to atherosclerosis. Clin Chim Acta. 476:28–37. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Xia S, Zhang Z, Magupalli VG, Pablo JL, Dong Y, Vora SM, Wang L, Fu TM, Jacobson MP, Greka A, et al: Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature. 593:607–611. 2021. View Article : Google Scholar : PubMed/NCBI

24 

Burdette BE, Esparza AN, Zhu H and Wang S: Gasdermin D in pyroptosis. Acta Pharm Sin B. 11:2768–2782. 2021. View Article : Google Scholar : PubMed/NCBI

25 

Broz P, Pelegrín P and Shao F: The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol. 20:143–157. 2020. View Article : Google Scholar : PubMed/NCBI

26 

Fischer FA, Chen KW and Bezbradica JS: Posttranslational and therapeutic control of gasdermin-mediated pyroptosis and inflammation. Front Immunol. 12:6611622021. View Article : Google Scholar : PubMed/NCBI

27 

Van Opdenbosch N and Lamkanfi M: Caspases in cell death, inflammation, and disease. Immunity. 50:1352–1364. 2019. View Article : Google Scholar : PubMed/NCBI

28 

Man SM and Kanneganti TD: Regulation of inflammasome activation. Immunol Rev. 265:6–21. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Cai X, Chen J, Xu H, Liu S, Jiang QX, Halfmann R and Chen ZJ: Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell. 156:1207–1222. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Shao S, Chen C, Shi G, Zhou Y, Wei Y, Fan N, Yang Y, Wu L and Zhang T: Therapeutic potential of the target on NLRP3 inflammasome in multiple sclerosis. Pharmacol Ther. 227:1078802021. View Article : Google Scholar : PubMed/NCBI

31 

Lahooti B, Chhibber T, Bagchi S, Varahachalam SP and Jayant RD: Therapeutic role of inflammasome inhibitors in neurodegenerative disorders. Brain Behav Immun. 91:771–783. 2021. View Article : Google Scholar : PubMed/NCBI

32 

Li S, Wang L, Xu Z, Huang Y, Xue R, Yue T, Xu L, Gong F, Bai S, Wu Q, et al: ASC deglutathionylation is a checkpoint for NLRP3 inflammasome activation. J Exp Med. 218:e202026372021. View Article : Google Scholar : PubMed/NCBI

33 

Wang C, Yang T, Xiao J, Xu C, Alippe Y, Sun K, Kanneganti TD, Monahan JB, Abu-Amer Y, Lieberman J and Mbalaviele G: NLRP3 inflammasome activation triggers gasdermin D-independent inflammation. Sci Immunol. 6:eabj38592021. View Article : Google Scholar : PubMed/NCBI

34 

He Y, Hara H and Núñez G: Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. 41:1012–1021. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Zheng M and Kanneganti TD: The regulation of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis). Immunol Rev. 297:26–38. 2020. View Article : Google Scholar : PubMed/NCBI

36 

Swanson KV, Deng M and Ting JPY: The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat Rev Immunol. 19:477–489. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Teng JF, Mei QB, Zhou XG, Tang Y, Xiong R, Qiu WQ, Pan R, Law BYK, Wong VKW, Yu CL, et al: Polyphyllin VI induces caspase-1-mediated pyroptosis via the induction of ROS/NF-κB/NLRP3/GSDMD signal axis in non-small cell lung cancer. Cancers (Basel). 12:1932020. View Article : Google Scholar : PubMed/NCBI

38 

Ershaid N, Sharon Y, Doron H, Raz Y, Shani O, Cohen N, Monteran L, Leider-Trejo L, Ben-Shmuel A, Yassin M, et al: NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis. Nat Commun. 10:43752019. View Article : Google Scholar : PubMed/NCBI

39 

Li T, Fu B, Zhang X, Zhou Y, Yang M, Cao M, Chen Y, Tan Y and Hu R: Overproduction of gastrointestinal 5-HT promotes colitis-associated colorectal cancer progression via enhancing NLRP3 inflammasome activation. Cancer Immunol Res. 9:1008–1023. 2021. View Article : Google Scholar : PubMed/NCBI

40 

Hsu SK, Li CY, Lin IL, Syue WJ, Chen YF, Cheng KC, Teng YN, Lin YH, Yen CH and Chiu CC: Inflammation-related pyroptosis, a novel programmed cell death pathway, and its crosstalk with immune therapy in cancer treatment. Theranostics. 11:8813–8835. 2021. View Article : Google Scholar : PubMed/NCBI

41 

He X, Fan X, Bai B, Lu N, Zhang S and Zhang L: Pyroptosis is a critical immune-inflammatory response involved in atherosclerosis. Pharmacol Res. 165:1054472021. View Article : Google Scholar : PubMed/NCBI

42 

Zheng X, Chen W, Gong F, Chen Y and Chen E: The role and mechanism of pyroptosis and potential therapeutic targets in sepsis: A review. Front Immunol. 12:7119392021. View Article : Google Scholar : PubMed/NCBI

43 

Wright SS, Vasudevan SO and Rathinam VA: Mechanisms and consequences of noncanonical inflammasome-mediated pyroptosis. J Mol Biol. 434:1672452022. View Article : Google Scholar : PubMed/NCBI

44 

Burzynski LC and Clarke MCH: Death is coming and the clot thickens, as pyroptosis feeds the fire. Immunity. 50:1339–1341. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, et al: Non-canonical inflammasome activation targets caspase-11. Nature. 479:117–121. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Xia S, Hollingsworth LR IV and Wu H: Mechanism and regulation of gasdermin-mediated cell death. Cold Spring Harb Perspect Biol. 12:a0364002020. View Article : Google Scholar : PubMed/NCBI

47 

Deng W, Bai Y, Deng F, Pan Y, Mei S, Zheng Z, Min R, Wu Z, Li W, Miao R, et al: Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers pyroptosis. Nature. 602:496–502. 2022. View Article : Google Scholar : PubMed/NCBI

48 

LaRock DL, Johnson AF, Wilde S, Sands JS, Monteiro MP and LaRock CN: Group A streptococcus induces GSDMA-dependent pyroptosis in keratinocytes. Nature. 605:527–531. 2022. View Article : Google Scholar : PubMed/NCBI

49 

Zhou Z, He H, Wang K, Shi X, Wang Y, Su Y, Wang Y, Li D, Liu W, Zhang Y, et al: Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science. 368:eaaz75482020. View Article : Google Scholar : PubMed/NCBI

50 

Zhang JY, Zhou B, Sun RY, Ai YL, Cheng K, Li FN, Wang BR, Liu FJ, Jiang ZH, Wang WJ, et al: The metabolite α-KG induces GSDMC-dependent pyroptosis through death receptor 6-activated caspase-8. Cell Res. 31:980–997. 2021. View Article : Google Scholar : PubMed/NCBI

51 

Wang K, Sun Q, Zhong X, Zeng M, Zeng H, Shi X, Li Z, Wang Y, Zhao Q, Shao F and Ding J: Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis. Cell. 180:941–955.e20. 2020. View Article : Google Scholar : PubMed/NCBI

52 

Wang Y, Gao W, Shi X, Ding J, Liu W, He H, Wang K and Shao F: Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 547:99–103. 2017. View Article : Google Scholar : PubMed/NCBI

53 

Barnett KC and Ting JPY: Mitochondrial GSDMD pores DAMPen pyroptosis. Immunity. 52:424–426. 2020. View Article : Google Scholar : PubMed/NCBI

54 

Liu Z, Gan L, Xu Y, Luo D, Ren Q, Wu S and Sun C: Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue. J Pineal Res. 63:2017. View Article : Google Scholar

55 

Humphries F, Shmuel-Galia L, Ketelut-Carneiro N, Li S, Wang B, Nemmara VV, Wilson R, Jiang Z, Khalighinejad F, Muneeruddin K, et al: Succination inactivates gasdermin D and blocks pyroptosis. Science. 369:1633–1637. 2020. View Article : Google Scholar : PubMed/NCBI

56 

Yi YS: Regulatory roles of the caspase-11 non-canonical inflammasome in inflammatory diseases. Immune Netw. 18:e412018. View Article : Google Scholar : PubMed/NCBI

57 

Yu P, Zhang X, Liu N, Tang L, Peng C and Chen X: Pyroptosis: Mechanisms and diseases. Signal Transduct Target Ther. 6:1282021. View Article : Google Scholar : PubMed/NCBI

58 

Tang D, Kang R, Berghe TV, Vandenabeele P and Kroemer G: The molecular machinery of regulated cell death. Cell Res. 29:347–364. 2019. View Article : Google Scholar : PubMed/NCBI

59 

Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA and Lei P: Ferroptosis: Mechanisms and links with diseases. Signal Transduct Target Ther. 6:492021. View Article : Google Scholar : PubMed/NCBI

60 

Bertheloot D, Latz E and Franklin BS: Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell Mol Immunol. 18:1106–1121. 2021. View Article : Google Scholar : PubMed/NCBI

61 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

62 

Rao Z, Zhu Y, Yang P, Chen Z, Xia Y, Qiao C, Liu W, Deng H, Li J, Ning P and Wang Z: Pyroptosis in inflammatory diseases and cancer. Theranostics. 12:4310–4329. 2022. View Article : Google Scholar : PubMed/NCBI

63 

Yan H, Luo B, Wu X, Guan F, Yu X, Zhao L, Ke X, Wu J and Yuan J: Cisplatin induces pyroptosis via activation of MEG3/NLRP3/caspase-1/GSDMD pathway in triple-negative breast cancer. Int J Biol Sci. 17:2606–2621. 2021. View Article : Google Scholar : PubMed/NCBI

64 

Yuan R, Zhao W, Wang QQ, He J, Han S, Gao H, Feng Y and Yang S: Cucurbitacin B inhibits non-small cell lung cancer in vivo and in vitro by triggering TLR4/NLRP3/GSDMD-dependent pyroptosis. Pharmacol Res. 170:1057482021. View Article : Google Scholar : PubMed/NCBI

65 

Yu J, Li S, Qi J, Chen Z, Wu Y, Guo J, Wang K, Sun X and Zheng J: Cleavage of GSDME by caspase-3 determines lobaplatin-induced pyroptosis in colon cancer cells. Cell Death Dis. 10:1932019. View Article : Google Scholar : PubMed/NCBI

66 

Zhang Z, Zhang Y, Xia S, Kong Q, Li S, Liu X, Junqueira C, Meza-Sosa KF, Mok TMY, Ansara J, et al: Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature. 579:415–420. 2020. View Article : Google Scholar : PubMed/NCBI

67 

Ibrahim J, De Schutter E and Op de Beeck K: GSDME: A potential ally in cancer detection and treatment. Trends Cancer. 7:392–394. 2021. View Article : Google Scholar : PubMed/NCBI

68 

Jia Y, Wang X, Deng Y, Li S, Xu X, Qin Y and Peng L: Pyroptosis provides new strategies for the treatment of cancer. J Cancer. 14:140–151. 2023. View Article : Google Scholar : PubMed/NCBI

69 

Jiang M, Qi L, Li L and Li Y: The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer. Cell Death Discov. 6:1122020. View Article : Google Scholar : PubMed/NCBI

70 

Carlino MS, Larkin J and Long GV: Immune checkpoint inhibitors in melanoma. Lancet. 398:1002–1014. 2021. View Article : Google Scholar : PubMed/NCBI

71 

Lou X, Li K, Qian B, Li Y, Zhang D and Cui W: Pyroptosis correlates with tumor immunity and prognosis. Commun Biol. 5:9172022. View Article : Google Scholar : PubMed/NCBI

72 

Li S, Chen P, Cheng B, Liu Y, Zhang X, Xu Q, Huang M, Dai X, Huang K, Zhang L, et al: Pyroptosis predicts immunotherapy outcomes across multiple cancer types. Clin Immunol. 245:1091632022. View Article : Google Scholar : PubMed/NCBI

73 

Gao W, Wang X, Zhou Y, Wang X and Yu Y: Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct Target Ther. 7:1962022. View Article : Google Scholar : PubMed/NCBI

74 

Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P and Vandenabeele P: Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. 12:860–875. 2012. View Article : Google Scholar : PubMed/NCBI

75 

Galluzzi L, Vitale I, Warren S, Adjemian S, Agostinis P, Martinez AB, Chan TA, Coukos G, Demaria S, Deutsch E, et al: Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J Immunother Cancer. 8:e0003372020. View Article : Google Scholar : PubMed/NCBI

76 

Yatim N, Jusforgues-Saklani H, Orozco S, Schulz O, Barreira da Silva R, Reis e Sousa C, Green DR, Oberst A and Albert ML: RIPK1 and NF-κB signaling in dying cells determines cross-priming of CD8+ T cells. Science. 350:328–334. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Chen DS and Mellman I: Oncology meets immunology: The cancer-immunity cycle. Immunity. 39:1–10. 2013. View Article : Google Scholar : PubMed/NCBI

78 

Zeng C, Wang R and Tan H: Role of pyroptosis in cardiovascular diseases and its therapeutic implications. Int J Biol Sci. 15:1345–1357. 2019. View Article : Google Scholar : PubMed/NCBI

79 

Song M, Cui M and Liu K: Therapeutic strategies to overcome cisplatin resistance in ovarian cancer. Eur J Med Chem. 232:1142052022. View Article : Google Scholar : PubMed/NCBI

80 

Aloss K and Hamar P: Recent preclinical and clinical progress in liposomal doxorubicin. Pharmaceutics. 15:8932023. View Article : Google Scholar : PubMed/NCBI

81 

Vasan N, Baselga J and Hyman DM: A view on drug resistance in cancer. Nature. 575:299–309. 2019. View Article : Google Scholar : PubMed/NCBI

82 

Zhang Z, Zhang H, Li D, Zhou X, Qin Q and Zhang Q: Caspase-3-mediated GSDME induced pyroptosis in breast cancer cells through the ROS/JNK signalling pathway. J Cell Mol Med. 25:8159–8168. 2021. View Article : Google Scholar : PubMed/NCBI

83 

Ghosh S: Cisplatin: The first metal based anticancer drug. Bioorg Chem. 88:1029252019. View Article : Google Scholar : PubMed/NCBI

84 

Stater EP, Sonay AY, Hart C and Grimm J: The ancillary effects of nanoparticles and their implications for nanomedicine. Nat Nanotechnol. 16:1180–1194. 2021. View Article : Google Scholar : PubMed/NCBI

85 

Kirtane AR, Verma M, Karandikar P, Furin J, Langer R and Traverso G: Nanotechnology approaches for global infectious diseases. Nat Nanotechnol. 16:369–384. 2021. View Article : Google Scholar : PubMed/NCBI

86 

Ploetz E, Zimpel A, Cauda V, Bauer D, Lamb DC, Haisch C, Zahler S, Vollmar AM, Wuttke S and Engelke H: Metal-organic framework nanoparticles induce pyroptosis in cells controlled by the extracellular pH. Adv Mater. 32:e19072672020. View Article : Google Scholar : PubMed/NCBI

87 

Zhang Y, Yu W, Chen M, Zhang B, Zhang L and Li P: The applications of nanozymes in cancer therapy: Based on regulating pyroptosis, ferroptosis and autophagy of tumor cells. Nanoscale. Jun 28–2023.(Epub ahead of print). View Article : Google Scholar

88 

Yang F, Bettadapura SN, Smeltzer MS, Zhu H and Wang S: Pyroptosis and pyroptosis-inducing cancer drugs. Acta Pharmacol Si. 43:2462–2473. 2022. View Article : Google Scholar : PubMed/NCBI

89 

Wu D, Zhu X, Ao J, Song E and Song Y: Delivery of ultrasmall nanoparticles to the cytosolic compartment of pyroptotic J774A.1 macrophages via GSDMDNterm membrane pores. ACS Appl Mater Interfaces. 13:50823–50835. 2021. View Article : Google Scholar : PubMed/NCBI

90 

Zhao P, Wang M, Chen M, Chen Z, Peng X, Zhou F, Song J and Qu J: Programming cell pyroptosis with biomimetic nanoparticles for solid tumor immunotherapy. Biomaterials. 254:1201422020. View Article : Google Scholar : PubMed/NCBI

91 

Kuchur OA, Tsymbal SA, Shestovskaya MV, Serov NS, Dukhinova MS and Shtil AA: Metal-derived nanoparticles in tumor theranostics: Potential and limitations. J Inorg Biochem. 209:1111172020. View Article : Google Scholar : PubMed/NCBI

92 

Cui R, Wu Q, Wang J, Zheng X, Ou R, Xu Y, Qu S and Li D: Hydrogel-by-design: Smart delivery system for cancer immunotherapy. Front Bioeng Biotechnol. 9:7234902021. View Article : Google Scholar : PubMed/NCBI

93 

Guimarães CF, Ahmed R, Marques AP, Reis RL and Demirci U: Engineering hydrogel-based biomedical photonics: Design, fabrication, and applications. Adv Mater. 33:e20065822021. View Article : Google Scholar : PubMed/NCBI

94 

Yin Y, Li X, Ma H, Zhang J, Yu D, Zhao R, Yu S, Nie G and Wang H: In situ transforming RNA nanovaccines from polyethylenimine functionalized graphene oxide hydrogel for durable cancer immunotherapy. Nano Lett. 21:2224–2231. 2021. View Article : Google Scholar : PubMed/NCBI

95 

Sepantafar M, Maheronnaghsh R, Mohammadi H, Radmanesh F, Hasani-Sadrabadi MM, Ebrahimi M and Baharvand H: Engineered hydrogels in cancer therapy and diagnosis. Trends Biotechnol. 35:1074–1087. 2017. View Article : Google Scholar : PubMed/NCBI

96 

Guedes G, Wang S, Fontana F, Figueiredo P, Lindén J, Correia A, Pinto RJB, Hietala S, Sousa FL and Santos HA: Dual-crosslinked dynamic hydrogel incorporating {Mo154} with pH and NIR responsiveness for chemo-photothermal therapy. Adv Mater. 33:e20077612021. View Article : Google Scholar : PubMed/NCBI

97 

Guan QF, Yang HB, Han ZM, Ling ZC, Yin CH, Yang KP, Zhao YX and Yu SH: Sustainable cellulose-nanofiber-based hydrogels. ACS Nano. 15:7889–7898. 2021. View Article : Google Scholar : PubMed/NCBI

98 

Basti ATK, Jonoobi M, Sepahvand S, Ashori A, Siracusa V, Rabie D, Mekonnen TH and Naeijian F: Employing cellulose nanofiber-based hydrogels for burn dressing. Polymers (Basel). 14:12072022. View Article : Google Scholar : PubMed/NCBI

99 

Balahura LR, Dinescu S, Balaș M, Cernencu A, Lungu A, Vlăsceanu GM, Iovu H and Costache M: Cellulose nanofiber-based hydrogels embedding 5-FU promote pyroptosis activation in breast cancer cells and support human adipose-derived stem cell proliferation, opening new perspectives for breast tissue engineering. Pharmaceutics. 13:11892021. View Article : Google Scholar : PubMed/NCBI

100 

Gonsalves A, Tambe P, Le D, Thakore D, Wadajkar AS, Yang J, Nguyen KT and Menon JU: Synthesis and characterization of a novel pH-responsive drug-releasing nanocomposite hydrogel for skin cancer therapy and wound healing. J Mater Chem B. 9:9533–9546. 2021. View Article : Google Scholar : PubMed/NCBI

101 

Wang S, Zhang Z, Wei S, He F, Li Z, Wang HH, Huang Y and Nie Z: Near-infrared light-controllable MXene hydrogel for tunable on-demand release of therapeutic proteins. Acta Biomater. 130:138–148. 2021. View Article : Google Scholar : PubMed/NCBI

102 

Zheng Y, Wang W, Zhao J, Wu C, Ye C, Huang M and Wang S: Preparation of injectable temperature-sensitive chitosan-based hydrogel for combined hyperthermia and chemotherapy of colon cancer. Carbohydr Polym. 222:1150392019. View Article : Google Scholar : PubMed/NCBI

103 

Zhang W, Jin X, Li H, Zhang RR and Wu CW: Injectable and body temperature sensitive hydrogels based on chitosan and hyaluronic acid for pH sensitive drug release. Carbohydr Polym. 186:82–90. 2018. View Article : Google Scholar : PubMed/NCBI

104 

Phan VHG, Murugesan M, Huong H, Le TT, Phan TH, Manivasagan P, Mathiyalagan R, Jang ES, Yang DC, Li Y and Thambi T: Cellulose nanocrystals-incorporated thermosensitive hydrogel for controlled release, 3D printing, and breast cancer treatment applications. ACS Appl Mater Interfaces. 14:42812–42826. 2022. View Article : Google Scholar : PubMed/NCBI

105 

Kim J, Francis DM, Sestito LF, Archer PA, Manspeaker MP, O'Melia MJ and Thomas SN: Thermosensitive hydrogel releasing nitric oxide donor and anti-CTLA-4 micelles for anti-tumor immunotherapy. Nat Commun. 13:14792022. View Article : Google Scholar : PubMed/NCBI

106 

Robinson N, Ganesan R, Hegedűs C, Kovács K, Kufer TA and Virág L: Programmed necrotic cell death of macrophages: Focus on pyroptosis, necroptosis, and parthanatos. Redox Biol. 26:1012392019. View Article : Google Scholar : PubMed/NCBI

107 

Zhang Y, Chen X, Gueydan C and Han J: Plasma membrane changes during programmed cell deaths. Cell Res. 28:9–21. 2018. View Article : Google Scholar : PubMed/NCBI

108 

Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, Sun H, Wang DC and Shao F: Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 535:111–116. 2016. View Article : Google Scholar : PubMed/NCBI

109 

Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H and Lieberman J: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 535:153–158. 2016. View Article : Google Scholar : PubMed/NCBI

110 

Wei X, Xie F, Zhou X, Wu Y, Yan H, Liu T, Huang J, Wang F, Zhou F and Zhang L: Role of pyroptosis in inflammation and cancer. Cell Mol Immunol. 19:971–992. 2022. View Article : Google Scholar : PubMed/NCBI

111 

Liu Z, Wang T, She Y, Wu K, Gu S, Li L, Dong C, Chen C and Zhou Y: N6-methyladenosine-modified circIGF2BP3 inhibits CD8+ T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer. 20:1052021. View Article : Google Scholar : PubMed/NCBI

112 

Xia R, Geng G, Yu X, Xu Z, Guo J, Liu H, Li N, Li Z, Li Y, Dai X, et al: LINC01140 promotes the progression and tumor immune escape in lung cancer by sponging multiple microRNAs. J Immunother Cancer. 9:e0027462021. View Article : Google Scholar : PubMed/NCBI

113 

Hou J, Hsu JM and Hung MC: Molecular mechanisms and functions of pyroptosis in inflammation and antitumor immunity. Mol Cell. 81:4579–4590. 2021. View Article : Google Scholar : PubMed/NCBI

114 

Wei Y, Yang L, Pandeya A, Cui J, Zhang Y and Li Z: Pyroptosis-induced inflammation and tissue damage. J Mol Biol. 434:1673012022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Tan J, Zhuo Z and Si Y: Application of pyroptosis in tumor research (Review). Oncol Lett 26: 376, 2023.
APA
Tan, J., Zhuo, Z., & Si, Y. (2023). Application of pyroptosis in tumor research (Review). Oncology Letters, 26, 376. https://doi.org/10.3892/ol.2023.13962
MLA
Tan, J., Zhuo, Z., Si, Y."Application of pyroptosis in tumor research (Review)". Oncology Letters 26.3 (2023): 376.
Chicago
Tan, J., Zhuo, Z., Si, Y."Application of pyroptosis in tumor research (Review)". Oncology Letters 26, no. 3 (2023): 376. https://doi.org/10.3892/ol.2023.13962
Copy and paste a formatted citation
x
Spandidos Publications style
Tan J, Zhuo Z and Si Y: Application of pyroptosis in tumor research (Review). Oncol Lett 26: 376, 2023.
APA
Tan, J., Zhuo, Z., & Si, Y. (2023). Application of pyroptosis in tumor research (Review). Oncology Letters, 26, 376. https://doi.org/10.3892/ol.2023.13962
MLA
Tan, J., Zhuo, Z., Si, Y."Application of pyroptosis in tumor research (Review)". Oncology Letters 26.3 (2023): 376.
Chicago
Tan, J., Zhuo, Z., Si, Y."Application of pyroptosis in tumor research (Review)". Oncology Letters 26, no. 3 (2023): 376. https://doi.org/10.3892/ol.2023.13962
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team